Skip to content
1887
Volume 62, Issue 3
  • ISSN: 2056-5135

Abstract

The understanding of location and accessibility of zeolite acid sites is a key issue in heterogeneous catalysis. This paper provides a brief overview of Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) characterisation of acidity in zeolites based on the application of test molecules with a diverse range of basicity and kinetic diameters. Many zeolites, including ZSM-5 and BEA, have been characterised by monitoring the interaction between the zeolite acid sites and test molecules, such as 1,3,5-triisopropylbenzene, pyridine and alkylpyridines, to probe the location, accessibility and strength of the Brønsted acid sites. 1,3,5-triisopropylbenzene can be used to distinguish Brønsted acid sites located on the external and internal surface in most medium and large pore channel zeolites. Brønsted acid sites on the external surface of medium pore zeolites can also be quantified using 2,6-di--butyl-pyridine and 2,4,6-trimethylpyridine. It is concluded that using a combination of probe molecules, including co-adsorption experiments, affords differentiation between acid sites located in channels and cavities of different sizes and on the external and internal surfaces of various zeolitic structures.

Loading

Article metrics loading...

/content/journals/10.1595/205651318X696792
2018-01-01
2024-02-27
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/3/Freitas_16a_Imp.html?itemId=/content/journals/10.1595/205651318X696792&mimeType=html&fmt=ahah

References

  1. Weitkamp J. Solid State Ionics, 2000, 131, (1–2), 175 LINK https://doi.org/10.1016/S0167-2738(00)00632-9 [Google Scholar]
  2. Corma A. J. Catal., 2003, 216, (1–2), 298 LINK https://doi.org/10.1016/S0021-9517(02)00132-X [Google Scholar]
  3. Čejka J., Centi G., Perez-Pariente J., and Roth W. J. Catal. Today, 2012, 179, (1), 2LINK https://doi.org/10.1016/j.cattod.2011.10.006 [Google Scholar]
  4. Xu R., Pang W., Yu J., Huo Q., and Chen J. “Chemistry of Zeolites and Related Porous Material: Synthesis and Structure”, John Wiley & Sons (Asia) Pte Ltd, Singapore, 2007, 616 pp [Google Scholar]
  5. Corma A. Chem. Rev., 1997, 97, (6), 2373 LINK https://doi.org/10.1021/cr960406n [Google Scholar]
  6. van Donk S., Janssen A. H., Bitter J. H., and de Jong K. P. Catal. Rev. Sci. Eng., 2003, 45, (2), 297 LINK https://dx.doi.org/10.1081/CR-120023908 [Google Scholar]
  7. Pérez-Ramírez J., Christensen C. H., Egeblad K., Christensen C. H., and Groen J. C. Chem. Soc. Rev., 2008, 37, (11), 2530 LINK https://dx.doi.org/10.1039/b809030k [Google Scholar]
  8. Wei Y., Parmentier T. E., de Jong K. P., and Zečević J. Chem. Soc. Rev., 2015, 44, (20), 7234 LINK https://doi.org/10.1039/c5cs00155b [Google Scholar]
  9. Milina M., Mitchell S., Crivelli P., Cooke D., and Pérez-Ramírez J. Nat. Commun., 2014, 5, 3922 LINK https://doi.org/10.1038/ncomms4922 [Google Scholar]
  10. “Mesoporous Zeolites: Preparation, Characterization and Applications”, eds. García-Martínez J., and Li K. Wiley-VCH Verlag GmbH & Co, Weinheim, Germany, 2015, 608 pp [Google Scholar]
  11. Hadjiivanov K. Adv. Catal., 2014, 57, 99 LINK https://dx.doi.org/10.1016/B978-0-12-800127-1.00002-3 [Google Scholar]
  12. Zhai D., Li Y., Zheng H., Zhao L., Gao J., Xu C., and Shen B. J. Catal., 2017, 352, 627 LINK https://dx.doi.org/10.1016/j.jcat.2017.06.035 [Google Scholar]
  13. Lamberti C., Zecchina A., Groppo E., and Bordiga S. Chem. Soc. Rev., 2010, 39, (12), 4951 LINK https://dx.doi.org/10.1039/c0cs00117a [Google Scholar]
  14. Bordiga S., Lamberti C., Bonino F., Travert A., and Thibault-Starzyk F. Chem. Soc. Rev., 2015, 44, (20), 7262 LINK https://doi.org/10.1039/c5cs00396b [Google Scholar]
  15. Vimont A., Thibault-Starzyk F., and Daturi M. Chem. Soc. Rev., 2010, 39, (12), 4928 LINK https://doi.org/10.1039/b919543m [Google Scholar]
  16. Niwa M., Katada N., and Okumura K. “Characterisation and Design of Zeolite Catalysts: Solid Acidity, Shape Selectivity and Loading Properties”, Springer-Verlag, Berlin, Germany, 2010, 184 pp [Google Scholar]
  17. Busca G. Micro. Meso. Mater., 2017, 254, 3 LINK https://dx.doi.org/10.1016/j.micromeso.2017.04.007 [Google Scholar]
  18. Sandoval-Díaz L.-E., González-Amaya J.-A., and Trujillo C.-A. Micro. Meso. Mater., 2015, 215, 229 LINK https://dx.doi.org/10.1016/j.micromeso.2015.04.038 [Google Scholar]
  19. Trombetta M., Busca G., Lenarda M., Storaro L., and Pavan M. Appl. Catal. A: Gen., 1999, 182, (2), 225 LINK https://doi.org/10.1016/S0926-860X(99)00005-8 [Google Scholar]
  20. Armaroli T., Bevilacqua M., Trombetta M., Milella F., Alejandre A. G., Ramírez J., Notari B., Willey R. J., and Busca G. Appl. Catal. A: Gen., 2001, 216, (1–2), 59 LINK https://doi.org/10.1016/S0926-860X(01)00543-9 [Google Scholar]
  21. Trombetta M., Armaroli T., Alejandre A. G., Solis J. R., and Busca G. Appl. Catal. A: Gen., 2000, 192, (1), 125 LINK https://doi.org/10.1016/S0926-860X(99)00338-5 [Google Scholar]
  22. Bevilacqua M., and Busca G. Catal. Commum., 2002, 3, (11), 497 LINK https://doi.org/10.1016/S1566-7367(02)00196-6 [Google Scholar]
  23. Montanari T., Bevilacqua M., and Busca G. Appl. Catal. A: Gen., 2006, 307, (1), 21 LINK https://doi.org/10.1016/j.apcata.2006.03.003 [Google Scholar]
  24. Tzoulaki D., Jentys A., Pérez-Ramírez J., Egeblad K., and Lercher J. A. Catal. Today, 2012, 198, (1), 3 LINK https://doi.org/10.1016/j.cattod.2012.03.078 [Google Scholar]
  25. Marie O., Massiani P., and Thibault-Starzyk F. J. Phys. Chem. B, 2004, 108(16), 5073 LINK https://doi.org/10.1021/jp037915v [Google Scholar]
  26. Maache M., Janin A., Lavalley J. C., and Benazzi E. Zeolites, 1995, 15, (6), 507 LINK https://doi.org/10.1016/0144-2449(95)00019-3 [Google Scholar]
  27. Baerlocher C., McCusker L. B., and Olson D. H. ‘MOR: Cmcm’, in “Atlas of Zeolite Framework Types”, 6th Edn., Elsevier Science BV, Amsterdam, The Netherlands, 2007, pp. 218–219 LINK https://doi.org/10.1016/B978-044453064-6/50290-5 [Google Scholar]
  28. Chua L. M., Hitchcock I., Fletcher R. S., Holt E. M., Lowe J., and Rigby S. P. J. Catal., 2012, 286, 260 LINK https://doi.org/10.1016/j.jcat.2011.11.012 [Google Scholar]
  29. Nesterenko N. S., Thibault-Starzyk F., Montouillout V., Yuschenko V. V., Fernandez C., Gilson J.-P., Fajula F., and Ivanova I. I. Micro. Meso. Mater., 2004, 71, (1–3), 157 LINK https://doi.org/10.1016/j.micromeso.2004.03.028 [Google Scholar]
  30. Nesterenko N. S., Thibault-Starzyk F., Montouilliout V., Yushchenko V. V., Fernandez C., Gilson J.-P., Fajula F., and Ivanova I. I. Kinet. Katal., 2006, 47, (1), 45; translated into English in Kinet. Catal., 2006, 47, (1), 40 LINK https://doi.org/10.1134/S0023158406010071 [Google Scholar]
  31. Bleken F. L., Barbera K., Bonino F., Olsbye U., Lillerud K. P., Bordiga S., Beato P., Janssens T. V. W., and Svelle S. J. Catal., 2013, 307, 62 LINK https://doi.org/10.1016/j.jcat.2013.07.004 [Google Scholar]
  32. Jacobs P. A., and Heylen C. F. J. Catal., 1974, 34, (2), 267 LINK https://doi.org/10.1016/0021-9517(74)90036-0 [Google Scholar]
  33. Ordomsky V. V., Murzin V. Y., Monakhova Yu. V., Zubavichus Y. V., Knyazeva E. E., Nesterenko N. S., and Ivanova I. I. Micro. Meso. Mater., 2007, 105, (1–2), 101 LINK https://doi.org/10.1016/j.micromeso.2007.05.056 [Google Scholar]
  34. Corma A., Fornés V., Forni L., Márquez F., Martínez-Triguero J., and Moscotti D. J. Catal., 1998, 179, (2), 451 LINK https://doi.org/10.1006/jcat.1998.2233 [Google Scholar]
  35. Góra-Marek K., Tarach K., and Choi M. J. Phys. Chem. C, 2014, 118, (23), 12266 LINK https://doi.org/10.1021/jp501928k [Google Scholar]
  36. Oliviero L., Vimont A., Lavalley J.-C., Sarria F. R., Gaillard M., and Maugé F. Phys. Chem. Chem. Phys., 2005, 7, (8), 1861 LINK https://doi.org/10.1039/B500689A [Google Scholar]
  37. Onfroy T., Clet G., and Houalla M. Micro. Meso. Mater., 2005, 82, (1–2), 99 LINK https://doi.org/10.1016/j.micromeso.2005.02.020 [Google Scholar]
  38. Corma A., Rodellas C., and Fornes V. J. Catal., 1984, 88, (2), 374 LINK https://doi.org/10.1016/0021-9517(84)90014-9 [Google Scholar]
  39. Armaroli T., Bevilacqua M., Trombetta M., Alejandre A. G., Ramirez J., and Busca G. Appl. Catal. A: Gen., 2001, 220, (1–2), 181 LINK https://doi.org/10.1016/S0926-860X(01)00720-7 [Google Scholar]
  40. Barbera K., Bonino F., Bordiga S., Janssens T. V. W., and Beato P. J. Catal., 2011, 280, (2), 196 LINK https://doi.org/10.1016/j.jcat.2011.03.016 [Google Scholar]
  41. Almutairi S. M. T., Mezari B., Pidko E. A., Magusin P. C. M. M., and Hensen E. J. M. J. Catal., 2013, 307, 194 LINK https://doi.org/10.1016/j.jcat.2013.07.021 [Google Scholar]
  42. Holm M. S., Svelle S., Joensen F., Beato P., Christensen C. H., Bordiga S., and Bjørgen M. Appl. Catal. A: Gen., 2009, 356, (1), 23 LINK https://doi.org/10.1016/j.apcata.2008.11.033 [Google Scholar]
  43. Thibault-Starzyk F., Vimont A., and Gilson J.-P. Catal. Today, 2001, 70, (1–3), 227 LINK https://doi.org/10.1016/S0920-5861(01)00420-5 [Google Scholar]
  44. Thibault-Starzyk F., Stan I., Abelló S., Bonilla A., Thomas K., Fernandez C., Gilson J.-P., and Pérez-Ramírez J. J. Catal., 2009, 264, (1), 11 LINK https://doi.org/10.1016/j.jcat.2009.03.006 [Google Scholar]
  45. Mlekodaj K., Tarach K., Datka J., Góra-Marek K., and Makowski W. Micro. Meso. Mater., 2014, 183, 54 LINK https://doi.org/10.1016/j.micromeso.2013.08.051 [Google Scholar]
  46. Sadowska K., Góra-Marek K., and Datka J. J. Phys. Chem. C, 2013, 117, (18), 9237 LINK https://doi.org/10.1021/jp400400t [Google Scholar]
  47. Zecchina A., Bordiga S., Spoto G., Scarano D., Spanò G., and Geobaldo F. J. Chem. Soc., Faraday Trans., 1996, 92, (23), 4863 LINK https://doi.org/10.1039/FT9969204863 [Google Scholar]
  48. Crépeau G., Montouillout V., Vimont A., Mariey L., Cseri T., and Maugé F. J. Phys. Chem. B, 2006, 110, (31), 15172 LINK https://doi.org/10.1021/jp062252d [Google Scholar]
  49. Daniell W., Topsøe N.-Y., and Knözinger H. Langmuir, 2001, 17, (20), 6233 LINK https://doi.org/10.1021/la010345a [Google Scholar]
  50. Traa Y., Sealy S., Weitkamp J., ‘Characterization of the Pore Size of Molecular Sieves Using Molecular Probes’, in “Molecular Sieves: Characterization II”, eds. Karge H. G., and Weitkamp J. 5, Springer-Verlag, Berlin, Germany, 2007, pp. 103–154 LINK https://doi.org/10.1007/3829_003 [Google Scholar]
  51. Müller M., Harvey G., and Prins R. Micro. Meso. Mater., 2000, 34, (3), 281 LINK https://doi.org/10.1016/s1387-1811(99)00180-8 [Google Scholar]
  52. Jiang Y., Huang J,, Dai W., and Hunger M. Solid State Nucl. Magn. Reson., 2011, 39, (3–4), 116 LINK https://doi.org/10.1016/j.ssnmr.2011.03.007 [Google Scholar]
  53. Sandoval-Díaz L.-E., González-Amaya J.-A., and Trujillo C.-A. Micro. Meso. Mater., 2015, 215, 229 LINK https://doi.org/10.1016/j.micromeso.2015.04.038 [Google Scholar]
  54. Lunsford J. H., Rothwell W. P., and Shen W. J. Am. Chem. Soc., 1985, 107, (6), 1540 LINK https://doi.org/10.1021/ja00292a015 [Google Scholar]
  55. Rakiewicz E. F., Peters A. W., Wormsbecher R. F., Sutovich K. J., and Mueller K. T. J. Phys. Chem. B, 1998, 102, (16), 2890 LINK https://doi.org/10.1021/jp980808u [Google Scholar]
  56. Kao H.-M., Yu C.-Y., and Yeh M.-C. Micro. Meso. Mater., 2002, 53, (1–2), 1 LINK https://doi.org/10.1016/S1387-1811(02)00279-2 [Google Scholar]
  57. Guan J., Li X., Yang G., Zhang W., Liu X., Han X., and Bao X. J. Mol. Catal. A: Chem., 2009, 310, (1–2), 113 LINK https://doi.org/10.1016/j.molcata.2009.06.005 [Google Scholar]
  58. Seo Y., Cho K., Jung Y., and Ryoo R. ACS Catal., 2013, 3, (4), 713 LINK https://doi.org/10.1021/cs300824e [Google Scholar]
  59. Zheng A., Huang S.-J., Wang Q., Zhang H., Deng F., and Liu S.-B. J. Catal., 2013, 34, (3), 436 LINK https://doi.org/10.1016/S1872-2067(12)60528-2 [Google Scholar]
  60. Zheng A., Liu S.-B., and Deng F. Solid State Nucl. Magn. Reson., 2013, 55–56, 12 LINK https://doi.org/10.1016/j.ssnmr.2013.09.001 [Google Scholar]
  61. Zheng A., Deng F., and Liu S.-B. Ann. Rep. NMR Spectrosc., 2014, 81, 47 LINK https://doi.org/10.1016/B978-0-12-800185-1.00002-4 [Google Scholar]
  62. Hernandez-Tamargo C. E., Roldan A., and de Leeuw N. H. J. Phys. Chem. C, 2016, 120, (34), 19097 LINK https://doi.org/10.1021/acs.jpcc.6b03448 [Google Scholar]
  63. Zheng A., Li S., Liu S.-B., and Deng F. Acc. Chem. Res., 2016, 49, (4), 655 LINK https://doi.org/10.1021/acs.accounts.6b00007 [Google Scholar]
  64. Zhao R., Zhao Z., Li S., and Zhang W. J. Phys. Chem. Lett., 2017, 8, (10), 2323 LINK https://doi.org/10.1021/acs.jpclett.7b00711 [Google Scholar]
  65. Zheng A., Huang S.-J., Liu S.-B., and Deng F. Phys. Chem. Chem. Phys., 2011, 13, (33), 14889 LINK https://doi.org/10.1039/C1CP20417C [Google Scholar]
  66. Hayashi S., Jimura K., and Kojima N. Micro. Meso. Mater., 2014, 186, 101 LINK https://doi.org/10.1016/j.micromeso.2013.11.047 [Google Scholar]
  67. Zheng A., Liu S.-B., and Deng F. Chem. Rev., 2017, 117, (19), 12475 LINK https://doi.org/10.1021/acs.chemrev.7b00289 [Google Scholar]
  68. Zhao Q., Chen W.-H., Huang S.-J., Wu Y.-C., Lee H.-K., and Liu S.-B. J. Phys. Chem. B, 2002, 106, (17), 4462 LINK https://doi.org/10.1021/jp015574k [Google Scholar]
  69. Webster C. E., Drago R. S., and Zerner M. C. J. Phys. Chem. B, 1999, 103, (8), 1242 LINK https://doi.org/10.1021/jp984055n [Google Scholar]
  70. Wiper P. V., Amelse J., and Mafra L. J. Catal., 2014, 316, 240 LINK https://doi.org/10.1016/j.jcat.2014.05.017 [Google Scholar]
  71. Zheng A., Chen L., Yang J., Zhang M., Su Y., Yue Y., Ye C., and Deng F. J. Phys. Chem. B, 2005, 109, (51), 24273 LINK https://doi.org/10.1021/jp0527249 [Google Scholar]
  72. Leydier F., Chizallet C., Chaumonnot A., Digne M., Soyer E., Quoineaud A.-A., Costa D., and Raybaud P. J. Catal., 2011, 284, (2), 215 LINK https://doi.org/10.1016/j.jcat.2011.08.015 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651318X696792
Loading
/content/journals/10.1595/205651318X696792
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error