Skip to content
1887
Volume 62, Issue 3
  • ISSN: 2056-5135

Abstract

The understanding of location and accessibility of zeolite acid sites is a key issue in heterogeneous catalysis. This paper provides a brief overview of Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) characterisation of acidity in zeolites based on the application of test molecules with a diverse range of basicity and kinetic diameters. Many zeolites, including ZSM-5 and BEA, have been characterised by monitoring the interaction between the zeolite acid sites and test molecules, such as 1,3,5-triisopropylbenzene, pyridine and alkylpyridines, to probe the location, accessibility and strength of the Brønsted acid sites. 1,3,5-triisopropylbenzene can be used to distinguish Brønsted acid sites located on the external and internal surface in most medium and large pore channel zeolites. Brønsted acid sites on the external surface of medium pore zeolites can also be quantified using 2,6-di--butyl-pyridine and 2,4,6-trimethylpyridine. It is concluded that using a combination of probe molecules, including co-adsorption experiments, affords differentiation between acid sites located in channels and cavities of different sizes and on the external and internal surfaces of various zeolitic structures.

Loading

Article metrics loading...

/content/journals/10.1595/205651318X696792
2018-01-01
2024-11-25
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/3/Freitas_16a_Imp.html?itemId=/content/journals/10.1595/205651318X696792&mimeType=html&fmt=ahah

References

  1. J. Weitkamp, Solid State Ionics, 2000, 131, (1–2), 175 LINK https://doi.org/10.1016/S0167-2738(00)00632-9 [Google Scholar]
  2. A. Corma, J. Catal., 2003, 216, (1–2), 298 LINK https://doi.org/10.1016/S0021-9517(02)00132-X [Google Scholar]
  3. J. Čejka, G. Centi, J. Perez-Pariente, W. J. Roth, Catal. Today, 2012, 179, (1), 2LINK https://doi.org/10.1016/j.cattod.2011.10.006 [Google Scholar]
  4. R. Xu, W. Pang, J. Yu, Q. Huo, J. Chen, “Chemistry of Zeolites and Related Porous Material: Synthesis and Structure”, John Wiley & Sons (Asia) Pte Ltd, Singapore, 2007, 616 pp [Google Scholar]
  5. A. Corma, Chem. Rev., 1997, 97, (6), 2373 LINK https://doi.org/10.1021/cr960406n [Google Scholar]
  6. S. van Donk, A. H. Janssen, J. H. Bitter, K. P. de Jong, Catal. Rev. Sci. Eng., 2003, 45, (2), 297 LINK https://dx.doi.org/10.1081/CR-120023908 [Google Scholar]
  7. J. Pérez-Ramírez, C. H. Christensen, K. Egeblad, C. H. Christensen, J. C. Groen, Chem. Soc. Rev., 2008, 37, (11), 2530 LINK https://dx.doi.org/10.1039/b809030k [Google Scholar]
  8. Y. Wei, T. E. Parmentier, K. P. de Jong, J. Zečević, Chem. Soc. Rev., 2015, 44, (20), 7234 LINK https://doi.org/10.1039/c5cs00155b [Google Scholar]
  9. M. Milina, S. Mitchell, P. Crivelli, D. Cooke, J. Pérez-Ramírez, Nat. Commun., 2014, 5, 3922 LINK https://doi.org/10.1038/ncomms4922 [Google Scholar]
  10. “Mesoporous Zeolites: Preparation, Characterization and Applications”, eds. J. García-Martínez, K. Li, Wiley-VCH Verlag GmbH & Co, Weinheim, Germany, 2015, 608 pp [Google Scholar]
  11. K. Hadjiivanov, Adv. Catal., 2014, 57, 99 LINK https://dx.doi.org/10.1016/B978-0-12-800127-1.00002-3 [Google Scholar]
  12. D. Zhai, Y. Li, H. Zheng, L. Zhao, J. Gao, C. Xu, B. Shen, J. Catal., 2017, 352, 627 LINK https://dx.doi.org/10.1016/j.jcat.2017.06.035 [Google Scholar]
  13. C. Lamberti, A. Zecchina, E. Groppo, S. Bordiga, Chem. Soc. Rev., 2010, 39, (12), 4951 LINK https://dx.doi.org/10.1039/c0cs00117a [Google Scholar]
  14. S. Bordiga, C. Lamberti, F. Bonino, A. Travert, F. Thibault-Starzyk, Chem. Soc. Rev., 2015, 44, (20), 7262 LINK https://doi.org/10.1039/c5cs00396b [Google Scholar]
  15. A. Vimont, F. Thibault-Starzyk, M. Daturi, Chem. Soc. Rev., 2010, 39, (12), 4928 LINK https://doi.org/10.1039/b919543m [Google Scholar]
  16. M. Niwa, N. Katada, K. Okumura, “Characterisation and Design of Zeolite Catalysts: Solid Acidity, Shape Selectivity and Loading Properties”, Springer-Verlag, Berlin, Germany, 2010, 184 pp [Google Scholar]
  17. G. Busca, Micro. Meso. Mater., 2017, 254, 3 LINK https://dx.doi.org/10.1016/j.micromeso.2017.04.007 [Google Scholar]
  18. L.-E. Sandoval-Díaz, J.-A. González-Amaya, C.-A. Trujillo, Micro. Meso. Mater., 2015, 215, 229 LINK https://dx.doi.org/10.1016/j.micromeso.2015.04.038 [Google Scholar]
  19. M. Trombetta, G. Busca, M. Lenarda, L. Storaro, M. Pavan, Appl. Catal. A: Gen., 1999, 182, (2), 225 LINK https://doi.org/10.1016/S0926-860X(99)00005-8 [Google Scholar]
  20. T. Armaroli, M. Bevilacqua, M. Trombetta, F. Milella, A. G. Alejandre, J. Ramírez, B. Notari, R. J. Willey, G. Busca, Appl. Catal. A: Gen., 2001, 216, (1–2), 59 LINK https://doi.org/10.1016/S0926-860X(01)00543-9 [Google Scholar]
  21. M. Trombetta, T. Armaroli, A. G. Alejandre, J. R. Solis, G. Busca, Appl. Catal. A: Gen., 2000, 192, (1), 125 LINK https://doi.org/10.1016/S0926-860X(99)00338-5 [Google Scholar]
  22. M. Bevilacqua, G. Busca, Catal. Commum., 2002, 3, (11), 497 LINK https://doi.org/10.1016/S1566-7367(02)00196-6 [Google Scholar]
  23. T. Montanari, M. Bevilacqua, G. Busca, Appl. Catal. A: Gen., 2006, 307, (1), 21 LINK https://doi.org/10.1016/j.apcata.2006.03.003 [Google Scholar]
  24. D. Tzoulaki, A. Jentys, J. Pérez-Ramírez, K. Egeblad, J. A. Lercher, Catal. Today, 2012, 198, (1), 3 LINK https://doi.org/10.1016/j.cattod.2012.03.078 [Google Scholar]
  25. O. Marie, P. Massiani, F. Thibault-Starzyk, J. Phys. Chem. B, 2004, 108(16), 5073 LINK https://doi.org/10.1021/jp037915v [Google Scholar]
  26. M. Maache, A. Janin, J. C. Lavalley, E. Benazzi, Zeolites, 1995, 15, (6), 507 LINK https://doi.org/10.1016/0144-2449(95)00019-3 [Google Scholar]
  27. C. Baerlocher, L. B. McCusker, D. H. Olson, ‘MOR: Cmcm’, in “Atlas of Zeolite Framework Types”, 6th Edn., Elsevier Science BV, Amsterdam, The Netherlands, 2007, pp. 218–219 LINK https://doi.org/10.1016/B978-044453064-6/50290-5 [Google Scholar]
  28. L. M. Chua, I. Hitchcock, R. S. Fletcher, E. M. Holt, J. Lowe, S. P. Rigby, J. Catal., 2012, 286, 260 LINK https://doi.org/10.1016/j.jcat.2011.11.012 [Google Scholar]
  29. N. S. Nesterenko, F. Thibault-Starzyk, V. Montouillout, V. V. Yuschenko, C. Fernandez, J.-P. Gilson, F. Fajula, I. I. Ivanova, Micro. Meso. Mater., 2004, 71, (1–3), 157 LINK https://doi.org/10.1016/j.micromeso.2004.03.028 [Google Scholar]
  30. N. S. Nesterenko, F. Thibault-Starzyk, V. Montouilliout, V. V. Yushchenko, C. Fernandez, J.-P. Gilson, F. Fajula, I. I. Ivanova, Kinet. Katal., 2006, 47, (1), 45; translated into English in Kinet. Catal., 2006, 47, (1), 40 LINK https://doi.org/10.1134/S0023158406010071 [Google Scholar]
  31. F. L. Bleken, K. Barbera, F. Bonino, U. Olsbye, K. P. Lillerud, S. Bordiga, P. Beato, T. V. W. Janssens, S. Svelle, J. Catal., 2013, 307, 62 LINK https://doi.org/10.1016/j.jcat.2013.07.004 [Google Scholar]
  32. P. A. Jacobs, C. F. Heylen, J. Catal., 1974, 34, (2), 267 LINK https://doi.org/10.1016/0021-9517(74)90036-0 [Google Scholar]
  33. V. V. Ordomsky, V. Y. Murzin, Yu. V. Monakhova, Y. V. Zubavichus, E. E. Knyazeva, N. S. Nesterenko, I. I. Ivanova, Micro. Meso. Mater., 2007, 105, (1–2), 101 LINK https://doi.org/10.1016/j.micromeso.2007.05.056 [Google Scholar]
  34. A. Corma, V. Fornés, L. Forni, F. Márquez, J. Martínez-Triguero, D. Moscotti, J. Catal., 1998, 179, (2), 451 LINK https://doi.org/10.1006/jcat.1998.2233 [Google Scholar]
  35. K. Góra-Marek, K. Tarach, M. Choi, J. Phys. Chem. C, 2014, 118, (23), 12266 LINK https://doi.org/10.1021/jp501928k [Google Scholar]
  36. L. Oliviero, A. Vimont, J.-C. Lavalley, F. R. Sarria, M. Gaillard, F. Maugé, Phys. Chem. Chem. Phys., 2005, 7, (8), 1861 LINK https://doi.org/10.1039/B500689A [Google Scholar]
  37. T. Onfroy, G. Clet, M. Houalla, Micro. Meso. Mater., 2005, 82, (1–2), 99 LINK https://doi.org/10.1016/j.micromeso.2005.02.020 [Google Scholar]
  38. A. Corma, C. Rodellas, V. Fornes, J. Catal., 1984, 88, (2), 374 LINK https://doi.org/10.1016/0021-9517(84)90014-9 [Google Scholar]
  39. T. Armaroli, M. Bevilacqua, M. Trombetta, A. G. Alejandre, J. Ramirez, G. Busca, Appl. Catal. A: Gen., 2001, 220, (1–2), 181 LINK https://doi.org/10.1016/S0926-860X(01)00720-7 [Google Scholar]
  40. K. Barbera, F. Bonino, S. Bordiga, T. V. W. Janssens, P. Beato, J. Catal., 2011, 280, (2), 196 LINK https://doi.org/10.1016/j.jcat.2011.03.016 [Google Scholar]
  41. S. M. T. Almutairi, B. Mezari, E. A. Pidko, P. C. M. M. Magusin, E. J. M. Hensen, J. Catal., 2013, 307, 194 LINK https://doi.org/10.1016/j.jcat.2013.07.021 [Google Scholar]
  42. M. S. Holm, S. Svelle, F. Joensen, P. Beato, C. H. Christensen, S. Bordiga, M. Bjørgen, Appl. Catal. A: Gen., 2009, 356, (1), 23 LINK https://doi.org/10.1016/j.apcata.2008.11.033 [Google Scholar]
  43. F. Thibault-Starzyk, A. Vimont, J.-P. Gilson, Catal. Today, 2001, 70, (1–3), 227 LINK https://doi.org/10.1016/S0920-5861(01)00420-5 [Google Scholar]
  44. F. Thibault-Starzyk, I. Stan, S. Abelló, A. Bonilla, K. Thomas, C. Fernandez, J.-P. Gilson, J. Pérez-Ramírez, J. Catal., 2009, 264, (1), 11 LINK https://doi.org/10.1016/j.jcat.2009.03.006 [Google Scholar]
  45. K. Mlekodaj, K. Tarach, J. Datka, K. Góra-Marek, W. Makowski, Micro. Meso. Mater., 2014, 183, 54 LINK https://doi.org/10.1016/j.micromeso.2013.08.051 [Google Scholar]
  46. K. Sadowska, K. Góra-Marek, J. Datka, J. Phys. Chem. C, 2013, 117, (18), 9237 LINK https://doi.org/10.1021/jp400400t [Google Scholar]
  47. A. Zecchina, S. Bordiga, G. Spoto, D. Scarano, G. Spanò, F. Geobaldo, J. Chem. Soc., Faraday Trans., 1996, 92, (23), 4863 LINK https://doi.org/10.1039/FT9969204863 [Google Scholar]
  48. G. Crépeau, V. Montouillout, A. Vimont, L. Mariey, T. Cseri, F. Maugé, J. Phys. Chem. B, 2006, 110, (31), 15172 LINK https://doi.org/10.1021/jp062252d [Google Scholar]
  49. W. Daniell, N.-Y. Topsøe, H. Knözinger, Langmuir, 2001, 17, (20), 6233 LINK https://doi.org/10.1021/la010345a [Google Scholar]
  50. Y. Traa, S. Sealy, J. Weitkamp, ‘Characterization of the Pore Size of Molecular Sieves Using Molecular Probes’, in “Molecular Sieves: Characterization II”, eds. H. G. Karge, J. Weitkamp, 5, Springer-Verlag, Berlin, Germany, 2007, pp. 103–154 LINK https://doi.org/10.1007/3829_003 [Google Scholar]
  51. M. Müller, G. Harvey, R. Prins, Micro. Meso. Mater., 2000, 34, (3), 281 LINK https://doi.org/10.1016/s1387-1811(99)00180-8 [Google Scholar]
  52. Y. Jiang, J, Huang, W. Dai, M. Hunger, Solid State Nucl. Magn. Reson., 2011, 39, (3–4), 116 LINK https://doi.org/10.1016/j.ssnmr.2011.03.007 [Google Scholar]
  53. L.-E. Sandoval-Díaz, J.-A. González-Amaya, C.-A. Trujillo, Micro. Meso. Mater., 2015, 215, 229 LINK https://doi.org/10.1016/j.micromeso.2015.04.038 [Google Scholar]
  54. J. H. Lunsford, W. P. Rothwell, W. Shen, J. Am. Chem. Soc., 1985, 107, (6), 1540 LINK https://doi.org/10.1021/ja00292a015 [Google Scholar]
  55. E. F. Rakiewicz, A. W. Peters, R. F. Wormsbecher, K. J. Sutovich, K. T. Mueller, J. Phys. Chem. B, 1998, 102, (16), 2890 LINK https://doi.org/10.1021/jp980808u [Google Scholar]
  56. H.-M. Kao, C.-Y. Yu, M.-C. Yeh, Micro. Meso. Mater., 2002, 53, (1–2), 1 LINK https://doi.org/10.1016/S1387-1811(02)00279-2 [Google Scholar]
  57. J. Guan, X. Li, G. Yang, W. Zhang, X. Liu, X. Han, X. Bao, J. Mol. Catal. A: Chem., 2009, 310, (1–2), 113 LINK https://doi.org/10.1016/j.molcata.2009.06.005 [Google Scholar]
  58. Y. Seo, K. Cho, Y. Jung, R. Ryoo, ACS Catal., 2013, 3, (4), 713 LINK https://doi.org/10.1021/cs300824e [Google Scholar]
  59. A. Zheng, S.-J. Huang, Q. Wang, H. Zhang, F. Deng, S.-B. Liu, J. Catal., 2013, 34, (3), 436 LINK https://doi.org/10.1016/S1872-2067(12)60528-2 [Google Scholar]
  60. A. Zheng, S.-B. Liu, F. Deng, Solid State Nucl. Magn. Reson., 2013, 55–56, 12 LINK https://doi.org/10.1016/j.ssnmr.2013.09.001 [Google Scholar]
  61. A. Zheng, F. Deng, S.-B. Liu, Ann. Rep. NMR Spectrosc., 2014, 81, 47 LINK https://doi.org/10.1016/B978-0-12-800185-1.00002-4 [Google Scholar]
  62. C. E. Hernandez-Tamargo, A. Roldan, N. H. de Leeuw, J. Phys. Chem. C, 2016, 120, (34), 19097 LINK https://doi.org/10.1021/acs.jpcc.6b03448 [Google Scholar]
  63. A. Zheng, S. Li, S.-B. Liu, F. Deng, Acc. Chem. Res., 2016, 49, (4), 655 LINK https://doi.org/10.1021/acs.accounts.6b00007 [Google Scholar]
  64. R. Zhao, Z. Zhao, S. Li, W. Zhang, J. Phys. Chem. Lett., 2017, 8, (10), 2323 LINK https://doi.org/10.1021/acs.jpclett.7b00711 [Google Scholar]
  65. A. Zheng, S.-J. Huang, S.-B. Liu, F. Deng, Phys. Chem. Chem. Phys., 2011, 13, (33), 14889 LINK https://doi.org/10.1039/C1CP20417C [Google Scholar]
  66. S. Hayashi, K. Jimura, N. Kojima, Micro. Meso. Mater., 2014, 186, 101 LINK https://doi.org/10.1016/j.micromeso.2013.11.047 [Google Scholar]
  67. A. Zheng, S.-B. Liu, F. Deng, Chem. Rev., 2017, 117, (19), 12475 LINK https://doi.org/10.1021/acs.chemrev.7b00289 [Google Scholar]
  68. Q. Zhao, W.-H. Chen, S.-J. Huang, Y.-C. Wu, H.-K. Lee, S.-B. Liu, J. Phys. Chem. B, 2002, 106, (17), 4462 LINK https://doi.org/10.1021/jp015574k [Google Scholar]
  69. C. E. Webster, R. S. Drago, M. C. Zerner, J. Phys. Chem. B, 1999, 103, (8), 1242 LINK https://doi.org/10.1021/jp984055n [Google Scholar]
  70. P. V. Wiper, J. Amelse, L. Mafra, J. Catal., 2014, 316, 240 LINK https://doi.org/10.1016/j.jcat.2014.05.017 [Google Scholar]
  71. A. Zheng, L. Chen, J. Yang, M. Zhang, Y. Su, Y. Yue, C. Ye, F. Deng, J. Phys. Chem. B, 2005, 109, (51), 24273 LINK https://doi.org/10.1021/jp0527249 [Google Scholar]
  72. F. Leydier, C. Chizallet, A. Chaumonnot, M. Digne, E. Soyer, A.-A. Quoineaud, D. Costa, P. Raybaud, J. Catal., 2011, 284, (2), 215 LINK https://doi.org/10.1016/j.jcat.2011.08.015 [Google Scholar]
/content/journals/10.1595/205651318X696792
Loading
/content/journals/10.1595/205651318X696792
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test