Skip to content
1887
Volume 62, Issue 3
  • ISSN: 2056-5135

Abstract

Dynamic nuclear polarisation (DNP) gives large (>100-fold) signal enhancements in solid-state nuclear magnetic resonance (solid-state NMR) spectra the transfer of spin polarisation from unpaired electrons from radicals implanted in the sample. This means that the detailed information about local molecular environment available for bulk samples from solid-state NMR spectroscopy can now be obtained for dilute species, such as sites on the surfaces of catalysts and catalyst supports. In this paper we describe a DNP-enhanced solid-state NMR study of the widely used catalyst γ-alumina which is often modified at the surface by the incorporation of alkaline earth oxides in order to control the availability of catalytically active penta-coordinate surface Al sites. DNP-enhanced 27Al solid-state NMR allows surface sites in γ-alumina to be observed and their 27Al NMR parameters measured. In addition changes in the availability of different surface sites can be detected after incorporation of barium oxide.

Loading

Article metrics loading...

/content/journals/10.1595/205651318X696765
2018-01-01
2024-02-28
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/3/Mais_16a_Imp.html?itemId=/content/journals/10.1595/205651318X696765&mimeType=html&fmt=ahah

References

  1. Ni Q. Z., Daviso E., Can T. V., Markhasin E., Jawla S. K., Swager T. M., Temkin R. J., Herzfeld J., and Griffin R. G. Acc. Chem. Res., 2013, 46, (9), 1933 LINK https://doi.org/10.1021/ar300348n [Google Scholar]
  2. Rossini A. J., Zagdoun A., Lelli M., Lesage A., Copéret C., and Emsley L. Acc. Chem. Res., 2013, 46, (9), 1942 LINK https://doi.org/10.1021/ar300322x [Google Scholar]
  3. Can T. V., Ni Q. Z., and Griffin R. G. J. Magn. Reson., 2015, 253, 23 LINK https://doi.org/10.1016/j.jmr.2015.02.005 [Google Scholar]
  4. Lee D., Hediger S., and De Paëpe G. Solid State Nucl. Magn. Reson., 2015, 66–67, 6 LINK https://doi.org/10.1016/j.ssnmr.2015.01.003 [Google Scholar]
  5. Hunter R. I., Cruickshank P. A. S., Bolton D. R., Riedi P. C., and Smith G. M. Phys. Chem. Chem. Phys., 2010, 12, (22), 5752 LINK https://doi.org/10.1039/C002251A [Google Scholar]
  6. Kemp T. F., Dannatt H. R. W., Barrow N. S., Watts A., Brown S. P., Newton M. E., and Dupree R. J. Magn. Reson., 2016, 265, 77 LINK https://doi.org/10.1016/j.jmr.2016.01.021 [Google Scholar]
  7. Rosay M., Tometich L., Pawsey S., Bader R., Schauwecker R., Blank M., Borchard P. M., Cauffman S. R., Felch K. L., Weber R. T., Temkin R. J., Griffin R. G., and Maas W. E. Phys. Chem. Chem. Phys., 2010, 12, (22), 5850 LINK https://doi.org/10.1039/C003685B [Google Scholar]
  8. Grüning W. R., Rossini A. J., Zagdoun A., Gajan D., Lesage A., Emsley L., and Copéret C. Phys. Chem. Chem. Phys., 2013, 15, (32), 13270 LINK https://doi.org/10.1039/C3CP00026E [Google Scholar]
  9. Johnson R. L., Perras F. A., Kobayashi T., Schwartz T. J., Dumesic J. A., Shanks B. H., and Pruski M. Chem. Commun., 2016, 52, (9), 1859 LINK https://doi.org/10.1039/C5CC06788J [Google Scholar]
  10. Perras F. A., Chaudhary U., Slowing I. I., and Pruski M. J. Phys. Chem. C, 2016, 120, (21), 11535 LINK https://doi.org/10.1021/acs.jpcc.6b02579 [Google Scholar]
  11. Kobayashi T., Perras F. A., Chaudhary U., Slowing I. I., Huang W., Sadow A. D., and Pruski M. Solid State Nucl. Magn. Reson., 2017, 87, 38 LINK https://doi.org/10.1016/j.ssnmr.2017.08.002 [Google Scholar]
  12. Perras F. A., Padmos J. D., Johnson R. L., Wang L.-L., Schwartz T. J., Kobayashi T., Horton J. H., Dumesic J. A., Shanks B. H., Johnson D. D., and Pruski M. J. Am. Chem. Soc., 2017, 139, (7), 2702 LINK https://doi.org/10.1021/jacs.6b11408 [Google Scholar]
  13. Hope M. A., Halat D. M., Magusin P. C. M. M., Paul S., Peng L., and Grey C. P. Chem. Commun., 2017, 53, (13), 2142 LINK https://doi.org/10.1039/C6CC10145C [Google Scholar]
  14. Busca G., ‘Structural, Surface, and Catalytic Properties of Aluminas’, in “Advances in Catalysis”, ed. and Jentoft F. C. 57, Elsevier Inc, San Diego, USA, 2014, pp. 319404 [Google Scholar]
  15. Barrow N. S., Scullard A., and Collis N. Johnson Matthey Technol. Rev., 2016, 60, (2), 90 LINK https://www.technology.matthey.com/article/60/2/90-97/ [Google Scholar]
  16. Shelef M., and Gandhi H. S. Platinum Metals Rev., 1974, 18, (1), 2 LINK https://www.technology.matthey.com/article/18/1/2-14/ [Google Scholar]
  17. Haouas M., Taulelle F., and Martineau C. Prog. Nucl. Magn. Reson. Spectrosc., 2016, 94–95, 11 LINK https://doi.org/10.1016/j.pnmrs.2016.01.003 [Google Scholar]
  18. Morris H. D., and Ellis P. D. J. Am. Chem. Soc., 1989, 111, (16), 6045 LINK https://doi.org/10.1021/ja00198a012 [Google Scholar]
  19. Coster D., Blumenfeld A. L., and Fripiat J. J. J. Phys. Chem., 1994, 98, (24), 6201 LINK https://doi.org/10.1021/j100075a024 [Google Scholar]
  20. Kim H. J., Lee H. C., and Lee J. S. J. Phys. Chem. C, 2007, 111, (4), 1579 LINK https://doi.org/10.1021/jp0651945 [Google Scholar]
  21. Lee D., Duong N. T., Lafon O., and De Paëpe G. J. Phys. Chem. C, 2014, 118, (43), 25065 LINK https://doi.org/10.1021/jp508009x [Google Scholar]
  22. Kwak J. H., Hu J. Z., Kim D. H., Szanyi J., and Peden C. H. F. J. Catal., 2007, 251, (1), 189 LINK https://doi.org/10.1016/j.jcat.2007.06.029 [Google Scholar]
  23. Wischert R., Florian P., Copéret C., Massiot D., and Sautet P. J. Phys. Chem. C, 2014, 118, (28), 15292 LINK https://doi.org/10.1021/jp503277m [Google Scholar]
  24. Rozita Y., Brydson R., Comyn T. P., Scott A. J., Hammond C., Brown A., Chauruka S., Hassanpour A., Young N. P., Kirkland A. I., Sawada H., and Smith R. I. ChemCatChem, 2013, 5, (9), 2695 LINK https://doi.org/10.1002/cctc.201200880 [Google Scholar]
  25. Vitzthum V., Miéville P., Carnevale D., Caporini M. A., Gajan D., Copéret C., Lelli M., Zagdoun A., Rossini A. J., Lesage A., Emsley L., and Bodenhausen G. Chem. Commun., 2012, 48, (14), 1988 LINK https://doi.org/10.1039/C2CC15905H [Google Scholar]
  26. Zagdoun A., Casano G., Ouari O., Schwarzwälder M., Rossini A. J., Aussenac F., Yulikov M., Jeschke G., Copéret C., Lesage A., Tordo P., and Emsley L. J. Am. Chem. Soc., 2013, 135, (34), 12790 LINK https://doi.org/10.1021/ja405813t [Google Scholar]
  27. d’Espinose de la Caillerie J.-B., Fretigny C., and Massiot D. J. Magn. Reson., 2008, 192, (2), 244 LINK https://doi.org/10.1016/j.jmr.2008.03.001 [Google Scholar]
  28. Kraus H., Müller M., Prins R., and Kentgens A. P. M. J. Phys. Chem. B, 1998, 102, (20), 3862 LINK https://doi.org/10.1021/jp972909i [Google Scholar]
  29. Ashbrook S. E., and Wimperis S. J. Magn. Reson., 2000, 147, (2), 238 LINK https://doi.org/10.1006/jmre.2000.2174 [Google Scholar]
  30. Czjzek G., Fink J., Götz F., Schmidt H., Coey J. M. D., Rebouillat J.-P., and Liénard A. Phys. Rev. B, 1981, 23, (6), 2513 LINK https://doi.org/10.1103/PhysRevB.23.2513 [Google Scholar]
  31. Le Caër G., and Brand R. A. J. Phys.: Condens. Matter, 1998, 10, (47), 10715 LINK https://doi.org/10.1088/0953-8984/10/47/020 [Google Scholar]
  32. Massiot D., Fayon F., Capron M., King I., Le Calvé S., Alonso B., Durand J.-O., Bujoli B., Gan Z., and Hoatson G. Magn. Reson. Chem., 2002, 40, (1), 70 LINK https://doi.org/10.1002/mrc.984 [Google Scholar]
  33. Kwak J. H., Hu J., Mei D., Yi C.-W., Kim D. H., Peden C. H. F., Allard L. F., and Szanyi J. Science, 2009, 325, (5948), 1670 LINK https://doi.org/10.1126/science.1176745 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651318X696765
Loading
/content/journals/10.1595/205651318X696765
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error