Skip to content
1887
Volume 62, Issue 2
  • ISSN: 2056-5135

Abstract

Chemically regenerative redox cathode (CRRC) polymer electrolyte fuel cells (PEFCs) are attracting more interest as a platinum-free PEFC technology. These fuel cells utilise a liquid catalyst or catholyte, to perform the indirect reduction of oxygen, eliminating the major degradation mechanisms that plague PEFC durability. A key component of a CRRC PEFC system is the catholyte. This article reports a thorough study of the effect of catholyte concentration and temperature on CRRC PEFC system performance for HPVMoO and NaHPVMoO, two promising polyoxometalate (POM)-based catholytes. The results suggest 80°C and a catholyte concentration of 0.3 M provide the optimum performance for both HPVMoO and NaHPVMoO (for ambient pressure operation).

Loading

Article metrics loading...

/content/journals/10.1595/205651318X696800
2018-01-01
2024-02-27
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/2/Davies_16a_Imp.html?itemId=/content/journals/10.1595/205651318X696800&mimeType=html&fmt=ahah

References

  1. Gasteiger H. A., and Marković N. M. Science, 2009, 324, (5923), 48 LINK https://doi.org/10.1126/science.1172083 [Google Scholar]
  2. Mathias M. F., Makharia R., Gasteiger H. A., Conley J. J., Fuller T. J., Gittleman C. J., Kocha S. S., Miller D. P., Mittelsteadt C. K., Xie T., Yan S. G., and Yu P. T. Electrochem. Soc. Interface, 2005, 14, (3), 24 LINK http://www.electrochem.org/dl/interface/fal/fal05/IF8-05_Pg24-35.pdf [Google Scholar]
  3. Yoshida T., and Kojima K. Electrochem. Soc. Interface, 2015, 24, (2), 45 LINK https://www.electrochem.org/dl/interface/sum/sum15/sum15_p45_49.pdf [Google Scholar]
  4. Samsun R. C., and Garland N. “Fuel Cells: Data, Facts and Figures”, eds. Stolten D., Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany, 2016, 408 pp LINK https://doi.org/10.1002/9783527693924 [Google Scholar]
  5. ‘Germany: H2 MOBILITY Targets 400 Hydrogen Fueling Stations by 2023’, Hydrogen Mobility Europe, Fuel Cells and Hydrogen Joint Undertaking, Brussels, Belgium, 5th May, 2016 LINK http://h2me.eu/2016/05/05/germany-h2-mobility-targets-400-hydrogen-fueling-stations-by-2023/ [Google Scholar]
  6. “Fuel Cell Technical Team Roadmap”, U.S. DRIVE, Office of Energy Efficiency and Renewable Energy, Washington, DC, USA, June, 2013 LINK https://energy.gov/sites/prod/files/2014/02/f8/fctt_roadmap_june2013.pdf [Google Scholar]
  7. Wagner F. T., Lakshmanan B., and Mathias M. F. J. Phys. Chem. Lett., 2010, 1, (14), 2204 LINK https://doi.org/10.1021/jz100553m [Google Scholar]
  8. Holton O. T., and Stevenson J. W. Platinum Metals Rev., 2013, 57, (4), 259 LINK http://www.technology.matthey.com/article/57/4/259-271/ [Google Scholar]
  9. Gasteiger H. A., Kocha S. S., Sompalli B., and Wagner F. T. Appl. Catal. B: Environ., 2005, 56, (1–2), 9 LINK https://doi.org/10.1016/j.apcatb.2004.06.021 [Google Scholar]
  10. Coms F. D. ECS Trans., 2008, 16, (2), 235 LINK https://doi.org/10.1149/1.2981859 [Google Scholar]
  11. Endoh E., Terazono S., Widjaja H., and Takimoto Y. Electrochem. Solid-State Lett., 2004, 7, (7), A209 LINK https://doi.org/10.1149/1.1739314 [Google Scholar]
  12. Reiser C. A., Bregoli L., Patterson T. W., Yi J. S., Yang J. D., Perry M. L., and Jarvi T. D. Electrochem. Solid-State Lett., 2005, 8, (6), A273 LINK https://doi.org/10.1149/1.1896466 [Google Scholar]
  13. Brightman E., and Hinds G. J. Power Sources, 2014, 267, 160 LINK https://doi.org/10.1016/j.jpowsour.2014.05.040 [Google Scholar]
  14. Tolmachev Yu. V., and Vorotyntsev M. A. Russ. J. Electrochem., 2014, 50, (5), 403 LINK https://doi.org/10.1134/S1023193514020050 [Google Scholar]
  15. Posner A. M. Fuel, 1955, 34, 330 [Google Scholar]
  16. Gunn N. L. O., Ward D. B., Menelaou C., Herbert M. A., and Davies T. J. J. Power Sources, 2017, 348, 107 LINK https://doi.org/10.1016/j.jpowsour.2017.02.048 [Google Scholar]
  17. Singh R., Shah A. A., Potter A., Clarkson B., Creeth A., Downs C., and Walsh F. C. J. Power Sources, 2012, 201, 159 LINK https://doi.org/10.1016/j.jpowsour.2011.10.078 [Google Scholar]
  18. Ward D. B., Gunn N. L. O., Uwigena N., and Davies T. J. J. Power Sources, 2018, 375, 68 LINK https://doi.org/10.1016/j.jpowsour.2017.11.035 [Google Scholar]
  19. Han S.-B., Kwak D.-H., Park H. S., Choi I.-A., Park J.-Y., Ma K.-B., Won J.-E., Kim D.-H., Kim S.-J., Kim M.-C., and Park K.-W. ACS Catal., 2016, 6, (8), 5302 LINK https://doi.org/10.1021/acscatal.6b01388 [Google Scholar]
  20. Han S.-B., Kwak D.-H., Park H. S., Choi I.-A., Park J.-Y., Kim S.-J., Kim M.-C., Hong S., and Park K.-W. Angew. Chem. Int. Ed., 2017, 56, (11), 2893 LINK https://doi.org/10.1002/anie.201610738 [Google Scholar]
  21. ‘3.4: Fuel Cells, 2016’, in “Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan”, Office of Energy Efficiency and Renewable Energy, Washington, DC, USA, May, 2017 LINK https://energy.gov/sites/prod/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf LINK https://energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22 [Google Scholar]
  22. ‘ACAL Energy Fuel Cell Achieves 10,000 Hour Endurance’, Fuel Cell Today, Royston, Hertfordshire, UK, 27th June, 2013 LINK http://www.fuelcelltoday.com/news-archive/2013/june/acal-energy-fuel-cell-achieves-10,000-hour-endurance [Google Scholar]
  23. Odyakov V. F., Zhizhina E. G., and Matveev K. I. J. Mol. Catal. A: Chem., 2000, 158, (1), 453 LINK https://doi.org/10.1016/S1381-1169(00)00123-0 [Google Scholar]
  24. Matsui T., Morikawa E., Nakada S., Okanishi T., Muroyama H., Hirao Y., Takahashi T., and Eguchi K. ACS Appl. Mater. Interfaces, 2016, 8, (28), 18119 LINK https://doi.org/10.1021/acsami.6b05202 [Google Scholar]
  25. Song C., Tang Y., Zhang J. L., Zhang J., Wang H., Shen J., McDermid S., Li J., and Kozak P. Electrochim. Acta, 2007, 52, (7), 2552 LINK https://doi.org/10.1016/j.electacta.2006.09.008 [Google Scholar]
  26. Zhang C., Zhao T. S., Xu Q., An L., and Zhao G. Appl. Energy, 2015, 155, 349 LINK https://doi.org/10.1016/j.apenergy.2015.06.002 [Google Scholar]
  27. de Bruijn F. A., Makkus R. C., Mallant R. K. A. M., and Janssen G. J. M. Adv. Fuel Cells, 2007, 1, 235 LINK https://doi.org/10.1016/S1752-301X(07)80010-X [Google Scholar]
  28. Martin N., and Herbert M. ACAL Energy Ltd, ‘Synthesis of Polyoxometalates’, World Patent Appl. 2015/097,459 [Google Scholar]
  29. Pettersson L. Mol. Eng., 1993, 3, (1–3), 29 LINK https://doi.org/10.1007/BF00999622 [Google Scholar]
  30. Pettersson L., Andersson I., Grate J. H., and Selling A. Inorg. Chem., 1994, 33, (5), 982 LINK https://doi.org/10.1021/ic00083a023 [Google Scholar]
  31. Selling A., Andersson I., Grate J. H., and Pettersson L. Eur. J. Inorg. Chem., 2000, (7), 1509 LINK https://doi.org/10.1002/1099-0682(200007)2000:7<1509::AID-EJIC1509>3.0.CO;2-7 [Google Scholar]
  32. Kozhevnikov I. V. Chem. Rev., 1998, 98, (1), 171 LINK https://doi.org/10.1021/cr960400y [Google Scholar]
  33. Souchay P., Chauveau F., and Courtin P. Bull. Soc. Chim. France, 1968, (6), 2384 [Google Scholar]
  34. Kozhevnikov I. V. Izv. Akad. Nauk SSSR: Ser. Khim., 1983, 4, 721; translated into English in Russ. Chem. Bull., 1983, 32, (4), 655 LINK https://doi.org/10.1007/BF00953451 [Google Scholar]
  35. Berdnikov V. M., Kuznetsova L. I., Matveev K. I., Kirik N. P., and Yurchenko E. N. Koord. Khim., 1979, 5, (1), 78 [Google Scholar]
  36. Kozhevnikov I. V., Burov Yu. V., and Matveev K. I. Izv. Akad. Nauk SSSR: Ser. Khim., 1981, 11, 2428; translated into English in Russ. Chem. Bull., 1981, 30, (11), 2001 LINK https://doi.org/10.1007/BF01094617 [Google Scholar]
  37. Zhizhina E. G., Odyakov V. F., Simonova M. V., and Matveev K. I. Kinet. Catal., 2005, 46, (3), 354 LINK https://doi.org/10.1007/s10975-005-0084-x [Google Scholar]
  38. Selling A., Andersson I., Grate J. H., and Pettersson L. Eur. J. Inorg. Chem., 2002, (3), 743 LINK https://doi.org/10.1002/1099-0682(200203)2002:3<743::AID-EJIC743>3.0.CO;2-V [Google Scholar]
  39. Wang L., Husar A., Zhou T., and Liu H. Int. J. Hydrogen Energy, 2003, 28, (11), 1263 LINK https://doi.org/10.1016/S0360-3199(02)00284-7 [Google Scholar]
  40. Zhang J., Tang Y., Song C., Zhang J., and Wang H. J. Power Sources, 2006, 163, (1), 532 LINK https://doi.org/10.1016/j.jpowsour.2006.09.026 [Google Scholar]
  41. Song Y., Fenton J. M., Kunz H. R., Bonville L. J., and Williams M. V. J. Electrochem. Soc., 2005, 152, (3), A539 LINK https://doi.org/10.1149/1.1855871 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651318X696800
Loading
/content/journals/10.1595/205651318X696800
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error