Skip to content
1887
Volume 62, Issue 2
  • ISSN: 2056-5135

Abstract

Chemically regenerative redox cathode (CRRC) polymer electrolyte fuel cells (PEFCs) are attracting more interest as a platinum-free PEFC technology. These fuel cells utilise a liquid catalyst or catholyte, to perform the indirect reduction of oxygen, eliminating the major degradation mechanisms that plague PEFC durability. A key component of a CRRC PEFC system is the catholyte. This article reports a thorough study of the effect of catholyte concentration and temperature on CRRC PEFC system performance for HPVMoO and NaHPVMoO, two promising polyoxometalate (POM)-based catholytes. The results suggest 80°C and a catholyte concentration of 0.3 M provide the optimum performance for both HPVMoO and NaHPVMoO (for ambient pressure operation).

Loading

Article metrics loading...

/content/journals/10.1595/205651318X696800
2018-01-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/2/Davies_16a_Imp.html?itemId=/content/journals/10.1595/205651318X696800&mimeType=html&fmt=ahah

References

  1. H. A. Gasteiger, N. M. Marković, Science, 2009, 324, (5923), 48 LINK https://doi.org/10.1126/science.1172083 [Google Scholar]
  2. M. F. Mathias, R. Makharia, H. A. Gasteiger, J. J. Conley, T. J. Fuller, C. J. Gittleman, S. S. Kocha, D. P. Miller, C. K. Mittelsteadt, T. Xie, S. G. Yan, P. T. Yu, Electrochem. Soc. Interface, 2005, 14, (3), 24 LINK http://www.electrochem.org/dl/interface/fal/fal05/IF8-05_Pg24-35.pdf [Google Scholar]
  3. T. Yoshida, K. Kojima, Electrochem. Soc. Interface, 2015, 24, (2), 45 LINK https://www.electrochem.org/dl/interface/sum/sum15/sum15_p45_49.pdf [Google Scholar]
  4. R. C. Samsun, N. Garland, “Fuel Cells: Data, Facts and Figures”, eds. D. Stolten, Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany, 2016, 408 pp LINK https://doi.org/10.1002/9783527693924 [Google Scholar]
  5. ‘Germany: H2 MOBILITY Targets 400 Hydrogen Fueling Stations by 2023’, Hydrogen Mobility Europe, Fuel Cells and Hydrogen Joint Undertaking, Brussels, Belgium, 5th May, 2016 LINK http://h2me.eu/2016/05/05/germany-h2-mobility-targets-400-hydrogen-fueling-stations-by-2023/ [Google Scholar]
  6. “Fuel Cell Technical Team Roadmap”, U.S. DRIVE, Office of Energy Efficiency and Renewable Energy, Washington, DC, USA, June, 2013 LINK https://energy.gov/sites/prod/files/2014/02/f8/fctt_roadmap_june2013.pdf [Google Scholar]
  7. F. T. Wagner, B. Lakshmanan, M. F. Mathias, J. Phys. Chem. Lett., 2010, 1, (14), 2204 LINK https://doi.org/10.1021/jz100553m [Google Scholar]
  8. O. T. Holton, J. W. Stevenson, Platinum Metals Rev., 2013, 57, (4), 259 LINK http://www.technology.matthey.com/article/57/4/259-271/ [Google Scholar]
  9. H. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, Appl. Catal. B: Environ., 2005, 56, (1–2), 9 LINK https://doi.org/10.1016/j.apcatb.2004.06.021 [Google Scholar]
  10. F. D. Coms, ECS Trans., 2008, 16, (2), 235 LINK https://doi.org/10.1149/1.2981859 [Google Scholar]
  11. E. Endoh, S. Terazono, H. Widjaja, Y. Takimoto, Electrochem. Solid-State Lett., 2004, 7, (7), A209 LINK https://doi.org/10.1149/1.1739314 [Google Scholar]
  12. C. A. Reiser, L. Bregoli, T. W. Patterson, J. S. Yi, J. D. Yang, M. L. Perry, T. D. Jarvi, Electrochem. Solid-State Lett., 2005, 8, (6), A273 LINK https://doi.org/10.1149/1.1896466 [Google Scholar]
  13. E. Brightman, G. Hinds, J. Power Sources, 2014, 267, 160 LINK https://doi.org/10.1016/j.jpowsour.2014.05.040 [Google Scholar]
  14. Yu. V. Tolmachev, M. A. Vorotyntsev, Russ. J. Electrochem., 2014, 50, (5), 403 LINK https://doi.org/10.1134/S1023193514020050 [Google Scholar]
  15. A. M. Posner, Fuel, 1955, 34, 330 [Google Scholar]
  16. N. L. O. Gunn, D. B. Ward, C. Menelaou, M. A. Herbert, T. J. Davies, J. Power Sources, 2017, 348, 107 LINK https://doi.org/10.1016/j.jpowsour.2017.02.048 [Google Scholar]
  17. R. Singh, A. A. Shah, A. Potter, B. Clarkson, A. Creeth, C. Downs, F. C. Walsh, J. Power Sources, 2012, 201, 159 LINK https://doi.org/10.1016/j.jpowsour.2011.10.078 [Google Scholar]
  18. D. B. Ward, N. L. O. Gunn, N. Uwigena, T. J. Davies, J. Power Sources, 2018, 375, 68 LINK https://doi.org/10.1016/j.jpowsour.2017.11.035 [Google Scholar]
  19. S.-B. Han, D.-H. Kwak, H. S. Park, I.-A. Choi, J.-Y. Park, K.-B. Ma, J.-E. Won, D.-H. Kim, S.-J. Kim, M.-C. Kim, K.-W. Park, ACS Catal., 2016, 6, (8), 5302 LINK https://doi.org/10.1021/acscatal.6b01388 [Google Scholar]
  20. S.-B. Han, D.-H. Kwak, H. S. Park, I.-A. Choi, J.-Y. Park, S.-J. Kim, M.-C. Kim, S. Hong, K.-W. Park, Angew. Chem. Int. Ed., 2017, 56, (11), 2893 LINK https://doi.org/10.1002/anie.201610738 [Google Scholar]
  21. ‘3.4: Fuel Cells, 2016’, in “Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan”, Office of Energy Efficiency and Renewable Energy, Washington, DC, USA, May, 2017 LINK https://energy.gov/sites/prod/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf LINK https://energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22 [Google Scholar]
  22. ‘ACAL Energy Fuel Cell Achieves 10,000 Hour Endurance’, Fuel Cell Today, Royston, Hertfordshire, UK, 27th June, 2013 LINK http://www.fuelcelltoday.com/news-archive/2013/june/acal-energy-fuel-cell-achieves-10,000-hour-endurance [Google Scholar]
  23. V. F. Odyakov, E. G. Zhizhina, K. I. Matveev, J. Mol. Catal. A: Chem., 2000, 158, (1), 453 LINK https://doi.org/10.1016/S1381-1169(00)00123-0 [Google Scholar]
  24. T. Matsui, E. Morikawa, S. Nakada, T. Okanishi, H. Muroyama, Y. Hirao, T. Takahashi, K. Eguchi, ACS Appl. Mater. Interfaces, 2016, 8, (28), 18119 LINK https://doi.org/10.1021/acsami.6b05202 [Google Scholar]
  25. C. Song, Y. Tang, J. L. Zhang, J. Zhang, H. Wang, J. Shen, S. McDermid, J. Li, P. Kozak, Electrochim. Acta, 2007, 52, (7), 2552 LINK https://doi.org/10.1016/j.electacta.2006.09.008 [Google Scholar]
  26. C. Zhang, T. S. Zhao, Q. Xu, L. An, G. Zhao, Appl. Energy, 2015, 155, 349 LINK https://doi.org/10.1016/j.apenergy.2015.06.002 [Google Scholar]
  27. F. A. de Bruijn, R. C. Makkus, R. K. A. M. Mallant, G. J. M. Janssen, Adv. Fuel Cells, 2007, 1, 235 LINK https://doi.org/10.1016/S1752-301X(07)80010-X [Google Scholar]
  28. N. Martin, M. Herbert, ACAL Energy Ltd,, ‘Synthesis of Polyoxometalates’, World Patent Appl. 2015/097,459 [Google Scholar]
  29. L. Pettersson, Mol. Eng., 1993, 3, (1–3), 29 LINK https://doi.org/10.1007/BF00999622 [Google Scholar]
  30. L. Pettersson, I. Andersson, J. H. Grate, A. Selling, Inorg. Chem., 1994, 33, (5), 982 LINK https://doi.org/10.1021/ic00083a023 [Google Scholar]
  31. A. Selling, I. Andersson, J. H. Grate, L. Pettersson, Eur. J. Inorg. Chem., 2000, (7), 1509 LINK https://doi.org/10.1002/1099-0682(200007)2000:7<1509::AID-EJIC1509>3.0.CO;2-7 [Google Scholar]
  32. I. V. Kozhevnikov, Chem. Rev., 1998, 98, (1), 171 LINK https://doi.org/10.1021/cr960400y [Google Scholar]
  33. P. Souchay, F. Chauveau, P. Courtin, Bull. Soc. Chim. France, 1968, (6), 2384 [Google Scholar]
  34. I. V. Kozhevnikov, Izv. Akad. Nauk SSSR: Ser. Khim., 1983, 4, 721; translated into English in Russ. Chem. Bull., 1983, 32, (4), 655 LINK https://doi.org/10.1007/BF00953451 [Google Scholar]
  35. V. M. Berdnikov, L. I. Kuznetsova, K. I. Matveev, N. P. Kirik, E. N. Yurchenko, Koord. Khim., 1979, 5, (1), 78 [Google Scholar]
  36. I. V. Kozhevnikov, Yu. V. Burov, K. I. Matveev, Izv. Akad. Nauk SSSR: Ser. Khim., 1981, 11, 2428; translated into English in Russ. Chem. Bull., 1981, 30, (11), 2001 LINK https://doi.org/10.1007/BF01094617 [Google Scholar]
  37. E. G. Zhizhina, V. F. Odyakov, M. V. Simonova, K. I. Matveev, Kinet. Catal., 2005, 46, (3), 354 LINK https://doi.org/10.1007/s10975-005-0084-x [Google Scholar]
  38. A. Selling, I. Andersson, J. H. Grate, L. Pettersson, Eur. J. Inorg. Chem., 2002, (3), 743 LINK https://doi.org/10.1002/1099-0682(200203)2002:3<743::AID-EJIC743>3.0.CO;2-V [Google Scholar]
  39. L. Wang, A. Husar, T. Zhou, H. Liu, Int. J. Hydrogen Energy, 2003, 28, (11), 1263 LINK https://doi.org/10.1016/S0360-3199(02)00284-7 [Google Scholar]
  40. J. Zhang, Y. Tang, C. Song, J. Zhang, H. Wang, J. Power Sources, 2006, 163, (1), 532 LINK https://doi.org/10.1016/j.jpowsour.2006.09.026 [Google Scholar]
  41. Y. Song, J. M. Fenton, H. R. Kunz, L. J. Bonville, M. V. Williams, J. Electrochem. Soc., 2005, 152, (3), A539 LINK https://doi.org/10.1149/1.1855871 [Google Scholar]
/content/journals/10.1595/205651318X696800
Loading
/content/journals/10.1595/205651318X696800
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test