Skip to content
Volume 62, Issue 2
  • ISSN: 2056-5135


Chemically regenerative redox cathode (CRRC) polymer electrolyte fuel cells (PEFCs) are attracting more interest as a platinum-free PEFC technology. These fuel cells utilise a liquid catalyst or catholyte, to perform the indirect reduction of oxygen, eliminating the major degradation mechanisms that plague PEFC durability. A key component of a CRRC PEFC system is the catholyte. This article reports a thorough study of the effect of catholyte concentration and temperature on CRRC PEFC system performance for HPVMoO and NaHPVMoO, two promising polyoxometalate (POM)-based catholytes. The results suggest 80°C and a catholyte concentration of 0.3 M provide the optimum performance for both HPVMoO and NaHPVMoO (for ambient pressure operation).


Article metrics loading...

Loading full text...

Full text loading...



  1. Gasteiger H. A., and Marković N. M. Science, 2009, 324, (5923), 48 LINK [Google Scholar]
  2. Mathias M. F., Makharia R., Gasteiger H. A., Conley J. J., Fuller T. J., Gittleman C. J., Kocha S. S., Miller D. P., Mittelsteadt C. K., Xie T., Yan S. G., and Yu P. T. Electrochem. Soc. Interface, 2005, 14, (3), 24 LINK [Google Scholar]
  3. Yoshida T., and Kojima K. Electrochem. Soc. Interface, 2015, 24, (2), 45 LINK [Google Scholar]
  4. Samsun R. C., and Garland N. “Fuel Cells: Data, Facts and Figures”, eds. Stolten D., Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany, 2016, 408 pp LINK [Google Scholar]
  5. ‘Germany: H2 MOBILITY Targets 400 Hydrogen Fueling Stations by 2023’, Hydrogen Mobility Europe, Fuel Cells and Hydrogen Joint Undertaking, Brussels, Belgium, 5th May, 2016 LINK [Google Scholar]
  6. “Fuel Cell Technical Team Roadmap”, U.S. DRIVE, Office of Energy Efficiency and Renewable Energy, Washington, DC, USA, June, 2013 LINK [Google Scholar]
  7. Wagner F. T., Lakshmanan B., and Mathias M. F. J. Phys. Chem. Lett., 2010, 1, (14), 2204 LINK [Google Scholar]
  8. Holton O. T., and Stevenson J. W. Platinum Metals Rev., 2013, 57, (4), 259 LINK [Google Scholar]
  9. Gasteiger H. A., Kocha S. S., Sompalli B., and Wagner F. T. Appl. Catal. B: Environ., 2005, 56, (1–2), 9 LINK [Google Scholar]
  10. Coms F. D. ECS Trans., 2008, 16, (2), 235 LINK [Google Scholar]
  11. Endoh E., Terazono S., Widjaja H., and Takimoto Y. Electrochem. Solid-State Lett., 2004, 7, (7), A209 LINK [Google Scholar]
  12. Reiser C. A., Bregoli L., Patterson T. W., Yi J. S., Yang J. D., Perry M. L., and Jarvi T. D. Electrochem. Solid-State Lett., 2005, 8, (6), A273 LINK [Google Scholar]
  13. Brightman E., and Hinds G. J. Power Sources, 2014, 267, 160 LINK [Google Scholar]
  14. Tolmachev Yu. V., and Vorotyntsev M. A. Russ. J. Electrochem., 2014, 50, (5), 403 LINK [Google Scholar]
  15. Posner A. M. Fuel, 1955, 34, 330 [Google Scholar]
  16. Gunn N. L. O., Ward D. B., Menelaou C., Herbert M. A., and Davies T. J. J. Power Sources, 2017, 348, 107 LINK [Google Scholar]
  17. Singh R., Shah A. A., Potter A., Clarkson B., Creeth A., Downs C., and Walsh F. C. J. Power Sources, 2012, 201, 159 LINK [Google Scholar]
  18. Ward D. B., Gunn N. L. O., Uwigena N., and Davies T. J. J. Power Sources, 2018, 375, 68 LINK [Google Scholar]
  19. Han S.-B., Kwak D.-H., Park H. S., Choi I.-A., Park J.-Y., Ma K.-B., Won J.-E., Kim D.-H., Kim S.-J., Kim M.-C., and Park K.-W. ACS Catal., 2016, 6, (8), 5302 LINK [Google Scholar]
  20. Han S.-B., Kwak D.-H., Park H. S., Choi I.-A., Park J.-Y., Kim S.-J., Kim M.-C., Hong S., and Park K.-W. Angew. Chem. Int. Ed., 2017, 56, (11), 2893 LINK [Google Scholar]
  21. ‘3.4: Fuel Cells, 2016’, in “Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan”, Office of Energy Efficiency and Renewable Energy, Washington, DC, USA, May, 2017 LINK LINK [Google Scholar]
  22. ‘ACAL Energy Fuel Cell Achieves 10,000 Hour Endurance’, Fuel Cell Today, Royston, Hertfordshire, UK, 27th June, 2013 LINK,000-hour-endurance [Google Scholar]
  23. Odyakov V. F., Zhizhina E. G., and Matveev K. I. J. Mol. Catal. A: Chem., 2000, 158, (1), 453 LINK [Google Scholar]
  24. Matsui T., Morikawa E., Nakada S., Okanishi T., Muroyama H., Hirao Y., Takahashi T., and Eguchi K. ACS Appl. Mater. Interfaces, 2016, 8, (28), 18119 LINK [Google Scholar]
  25. Song C., Tang Y., Zhang J. L., Zhang J., Wang H., Shen J., McDermid S., Li J., and Kozak P. Electrochim. Acta, 2007, 52, (7), 2552 LINK [Google Scholar]
  26. Zhang C., Zhao T. S., Xu Q., An L., and Zhao G. Appl. Energy, 2015, 155, 349 LINK [Google Scholar]
  27. de Bruijn F. A., Makkus R. C., Mallant R. K. A. M., and Janssen G. J. M. Adv. Fuel Cells, 2007, 1, 235 LINK [Google Scholar]
  28. Martin N., and Herbert M. ACAL Energy Ltd, ‘Synthesis of Polyoxometalates’, World Patent Appl. 2015/097,459 [Google Scholar]
  29. Pettersson L. Mol. Eng., 1993, 3, (1–3), 29 LINK [Google Scholar]
  30. Pettersson L., Andersson I., Grate J. H., and Selling A. Inorg. Chem., 1994, 33, (5), 982 LINK [Google Scholar]
  31. Selling A., Andersson I., Grate J. H., and Pettersson L. Eur. J. Inorg. Chem., 2000, (7), 1509 LINK<1509::AID-EJIC1509>3.0.CO;2-7 [Google Scholar]
  32. Kozhevnikov I. V. Chem. Rev., 1998, 98, (1), 171 LINK [Google Scholar]
  33. Souchay P., Chauveau F., and Courtin P. Bull. Soc. Chim. France, 1968, (6), 2384 [Google Scholar]
  34. Kozhevnikov I. V. Izv. Akad. Nauk SSSR: Ser. Khim., 1983, 4, 721; translated into English in Russ. Chem. Bull., 1983, 32, (4), 655 LINK [Google Scholar]
  35. Berdnikov V. M., Kuznetsova L. I., Matveev K. I., Kirik N. P., and Yurchenko E. N. Koord. Khim., 1979, 5, (1), 78 [Google Scholar]
  36. Kozhevnikov I. V., Burov Yu. V., and Matveev K. I. Izv. Akad. Nauk SSSR: Ser. Khim., 1981, 11, 2428; translated into English in Russ. Chem. Bull., 1981, 30, (11), 2001 LINK [Google Scholar]
  37. Zhizhina E. G., Odyakov V. F., Simonova M. V., and Matveev K. I. Kinet. Catal., 2005, 46, (3), 354 LINK [Google Scholar]
  38. Selling A., Andersson I., Grate J. H., and Pettersson L. Eur. J. Inorg. Chem., 2002, (3), 743 LINK<743::AID-EJIC743>3.0.CO;2-V [Google Scholar]
  39. Wang L., Husar A., Zhou T., and Liu H. Int. J. Hydrogen Energy, 2003, 28, (11), 1263 LINK [Google Scholar]
  40. Zhang J., Tang Y., Song C., Zhang J., and Wang H. J. Power Sources, 2006, 163, (1), 532 LINK [Google Scholar]
  41. Song Y., Fenton J. M., Kunz H. R., Bonville L. J., and Williams M. V. J. Electrochem. Soc., 2005, 152, (3), A539 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error