Skip to content
1887
Volume 63, Issue 3
  • ISSN: 2056-5135
  • oa Size Dependent Elastic and Thermophysical Properties of Zinc Oxide Nanowires

    Semiconductor materials characterisation for high temperature applications

  • Authors: Sudhanshu Tripathi1, Rekha Agarwal2 and Devraj Singh3
  • Affiliations: 1 University School of Information, Communication and TechnologyGuru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi-110078India 2 Department of Electronics and Communication Engineering, Amity School of Engineering and TechnologyAmity Campus, Sector-125, Noida-201313India 3 Amity Institute of Applied SciencesAmity University Uttar Pradesh, Noida-201313India
  • Source: Johnson Matthey Technology Review, Volume 63, Issue 3, Jul 2019, p. 166 - 176
  • DOI: https://doi.org/10.1595/205651319X15514400132039
    • Published online: 01 Jan 2019

Abstract

Size dependent characterisation is important for applications in nanoelectromechanical systems (NEMS), nanogenerators, biosensors and other related areas at higher temperature regimes. In this paper we have computed elastic, mechanical, thermal and ultrasonic properties of zinc oxide nanowires (ZnO-NWs) of different diameters at high temperatures. The higher order elastic constants of ZnO-NWs were computed using a simple interaction potential model. The mechanical properties such as bulk modulus, Young’s modulus, shear modulus and Poisson’s ratio were determined based on the formulated elastic constants. Various ultrasonic parameters such as ultrasonic wave velocities, ultrasonic Grüneisen parameter and ultrasonic attenuation were obtained with the help of elastic constants and density. The temperature dependent ultrasonic wave velocities propagating along the length of the nanowire at different orientations were calculated using elastic constants to determine anisotropic behaviour. The diameter dependent ultrasonic losses and thermal characteristics of ZnO-NWs were also determined. The ultrasonic attenuation due to the phonon-viscosity mechanism is predominant for the total ultrasonic attenuation for ZnO-NWs. The correlation among the ultrasonic parameters, thermal conductivity and size of ZnO-NWs is established leading to potential industrial applications.

Loading

Article metrics loading...

/content/journals/10.1595/205651319X15514400132039
2019-01-01
2024-12-23
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/63/3/Tripathi_16a_Imp.html?itemId=/content/journals/10.1595/205651319X15514400132039&mimeType=html&fmt=ahah

References

  1. A. Dev, A. Elshaer, T. Voss, IEEE J. Sel. Top. Quantum Electron., 2011, 17, (4), 896 LINK https://doi.org/10.1109/jstqe.2010.2082506 [Google Scholar]
  2. A. Gupta, B. C. Kim, D. Li, E. Edwards, C. Brantley, P. Ruffin, ‘Zinc Oxide Nanowires for Biosensing Applications’, 11th IEEE International Conference on Nanotechnology, Portland, USA, 15th–18th August, 2011, IEEE, Piscataway, USA, pp. 16151618 LINK https://doi.org/10.1109/nano.2011.6144446 [Google Scholar]
  3. T. S. Herng, A. Kumar, C. S. Ong, Y. P. Feng, Y. H. Lu, K. Y. Zeng, J. Ding, Sci. Rep., 2012, 2, 587 LINK https://doi.org/10.1038/srep00587 [Google Scholar]
  4. W. Wang, Z. Pi, F. Lei, Y. Lu, AIP Adv., 2016, 6, (3), 35111 LINK https://doi.org/10.1063/1.4944499 [Google Scholar]
  5. S. Fan, S. Bi, Q. Li, Q. Guo, J. Liu, Z. Ouyang, C. Jiang, J. Song, Nanotechnol., 2018, 29, (12), 125702 LINK https://doi.org/10.1088/1361-6528/aaa929 [Google Scholar]
  6. A. Vazinishayan, S. Yang, D. R. Lambada, Y. Wang, Results Phys., 2018, 9, 218 LINK https://doi.org/10.1016/j.rinp.2018.02.048 [Google Scholar]
  7. C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, Y. J. Yan, Phys. Rev. Lett., 2006, 96, (7), 075505 LINK https://doi.org/10.1103/physrevlett.96.075505 [Google Scholar]
  8. J. Pan, Y. Zhou, C. Zhao, Y. Zheng, C. Li, Mater. Res. Express, 2018, 6, (2), 25012 LINK https://doi.org/10.1088/2053-1591/aaeb6d [Google Scholar]
  9. A. V Desai, M. A. Haque, Sensors Actuators A: Phys., 2007, 134, (1), 169 LINK https://doi.org/10.1016/j.sna.2006.04.046 [Google Scholar]
  10. A. Roy, J. Mead, S. Wang, H. Huang, Sci. Rep., 2017, 7, 9547 LINK https://doi.org/10.1038/s41598-017-09843-5 [Google Scholar]
  11. F. Xu, Q. Qin, A. Mishra, Y. Gu, Y. Zhu, Nano Res., 2010, 3, (4), 271 LINK https://doi.org/10.1007/s12274-010-1030-4 [Google Scholar]
  12. A. J. Kulkarni, M. Zhou, F. J. Ke, Nanotechnol., 2005, 16, (12), 2749 LINK https://doi.org/10.1088/0957-4484/16/12/001 [Google Scholar]
  13. X. Wu, J. Lee, V. Varshney, J. L. Wohlwend, K. A. Roy, T. Luo, Sci. Rep., 2016, 6, 22504 LINK https://doi.org/10.1038/srep22504 [Google Scholar]
  14. V. Koutu, O. Subohi, L. Shastri, M. M. Malik, Adv. Powder Technol., 2018, 29, (9), 2061 LINK https://doi.org/10.1016/j.apt.2018.05.012 [Google Scholar]
  15. R. Kumar, M. Kumar, Indian J. Pure Appl. Phys., 2013, 51, (2), 87 LINK http://nopr.niscair.res.in/handle/123456789/15911 [Google Scholar]
  16. D. K. Pandey, S. Pandey, ‘Ultrasonics: A Technique of Material Characterization’, in “Acoustic waves”, ed. D. W. Dissanayak, InTech, Rijeka, Croatia, 2010, pp. 398430 LINK https://www.intechopen.com/books/acoustic-waves/ultrasonics-a-technique-of-material-characterization [Google Scholar]
  17. S. Mori, Y. Hiki, J. Phys. Soc. Japan, 1978, 45, (5), 1449 LINK https://doi.org/10.1143/jpsj.45.1449 [Google Scholar]
  18. A. K. Yadav, R. R. Yadav, D. K. Pandey, D. Singh, Mater. Lett., 2008, 62, (17–18), 3258 LINK https://doi.org/10.1016/j.matlet.2008.02.036 [Google Scholar]
  19. D. K. Pandey, D. Singh, R. R. Yadav, Appl. Acoust., 2007, 68, (7), 766 LINK https://doi.org/10.1016/j.apacoust.2006.04.004 [Google Scholar]
  20. G. A. Alers, J. R. Neighbours, J. Phys. Chem. Solids, 1958, 7, (1), 58 LINK https://doi.org/10.1016/0022-3697(58)90180-x [Google Scholar]
  21. M. Rosen, H. Klimker, Phys. Rev. B, 1970, 1, (9), 3748 LINK https://doi.org/10.1103/physrevb.1.3748 [Google Scholar]
  22. W. P. Mason, A. Rosenberg, J. Acoust. Soc. Am., 1969, 45, (2), 470 LINK https://doi.org/10.1121/1.1911397 [Google Scholar]
  23. C. P. Yadav, D. K. Pandey, D. Singh, Indian J. Phys., 2019, Online First LINK https://doi.org/10.1007/s12648-019-01389-8 [Google Scholar]
  24. M. Nandanpawar, S. Rajagopalan, J. Acoust. Soc. Am., 1982, 71, (6), 1469 LINK https://doi.org/10.1121/1.387844 [Google Scholar]
  25. W. P. Mason, ‘Effect of Impurities and Phonon Processes on the Ultrasonic Attenuation of Germanium, Crystal Quartz, and Silicon’, in “Physical Acoustics”, ed. W. P. Mason, Academic Press Inc, New York, USA, 1965, pp 235286 LINK https://doi.org/10.1016/b978-0-12-395669-9.50013-8 [Google Scholar]
  26. C. Tripathy, D. Singh, R. Paikaray, Can. J. Phys., 2018, 96, (5), 513 LINK https://doi.org/10.1139/cjp-2017-0491 [Google Scholar]
  27. Y.-N. Xu, W. Y. Ching, Phys. Rev. B, 1993, 48, (7), 4335 LINK https://doi.org/10.1103/physrevb.48.4335 [Google Scholar]
  28. M. Born, K. Huang, “Dynamical Theory of Crystal Lattices”, Clarendon Press, Oxford, UK, 1954, 420 pp [Google Scholar]
  29. P. Gopal, N. A. Spaldin, J. Electron. Mater., 2006, 35, (4), 538 LINK https://doi.org/10.1007/s11664-006-0096-y [Google Scholar]
  30. G. Carlotti, D. Fioretto, G. Socino, E. Verona, J. Phys.: Condens. Matter, 1995, 7, (48), 9147 LINK https://doi.org/10.1088/0953-8984/7/48/006 [Google Scholar]
  31. I. B. Kobiakov, Solid State Commun., 1980, 35, (3), 305 LINK https://doi.org/10.1016/0038-1098(80)90502-5 [Google Scholar]
  32. R. Chowdhury, S. Adhikari, F. Scarpa, Phys. E: Low-dimensional Syst. Nanostructures, 2010, 42, (8), 2036 LINK https://doi.org/10.1016/j.physe.2010.03.018 [Google Scholar]
  33. X. Wang, Y. Gu, X. Sun, H. Wang, Y. Zhang, J. Appl. Phys., 2014, 115, (21), 213516 LINK https://doi.org/10.1063/1.4881775 [Google Scholar]
  34. S. M. Galagali, N. S. Sankeshwar, B. G. Mulimani, J. Phys. Chem. Solids, 2015, 83, 8 LINK https://doi.org/10.1016/j.jpcs.2015.03.016 [Google Scholar]
  35. B. Guo, U. Ravaioli, M. Staedele, Comput. Phys. Commun., 2006, 175, (7), 482 LINK https://doi.org/10.1016/j.cpc.2006.06.008 [Google Scholar]
  36. D. K. Pandey, P. K. Yadawa, R. R. Yadav, Mater. Lett., 2007, 61, (30), 5194 LINK https://doi.org/10.1016/j.matlet.2007.04.028 [Google Scholar]
  37. S. K. Verma, D. K. Pandey, R. R. Yadav, Phys. B: Condens. Matter, 2012, 407, (18), 3731 LINK https://doi.org/10.1016/j.physb.2012.05.052 [Google Scholar]
  38. “American Institute of Physics Handbook”, 3rd Edn., ed. D. E. Gray, McGraw-Hill, New York, USA, 1972 [Google Scholar]
  39. J. Alvarez-Quintana, E. Martínez, E. Pérez-Tijerina, S. A. Pérez-García, J. Rodríguez-Viejo, J. Appl. Phys., 2010, 107, (6), 063713 LINK https://doi.org/10.1063/1.3330755 [Google Scholar]
/content/journals/10.1595/205651319X15514400132039
Loading
/content/journals/10.1595/205651319X15514400132039
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test