Skip to content
Volume 63, Issue 4
  • ISSN: 2056-5135


Interfaces are a type of extended defect which govern the properties of materials. As the nanostructuring of materials becomes more prevalent the impact of interfaces such as grain boundaries (GBs) becomes more important. Computational modelling of GBs is vital to the improvement of our understanding of these defects as it allows us to isolate specific structures and understand resulting properties. The first step to accurately modelling GBs is to generate accurate descriptions of the structures. In this paper, we present low angle mirror tilt GB structures for fluorite structured materials (calcium fluoride and ceria). We compare specific GB structures which are generated computationally to experimentally known structures, wherein we see excellent agreement. The high accuracy of the method which we present for predicting these structures can be used in the future to predict interfaces which have not already been experimentally identified and can also be applied to heterointerfaces.


Article metrics loading...

Loading full text...

Full text loading...



  1. Lucid A. K., Keating P. R. L., Allen J. P., and Watson G. W. J. Phys. Chem. C, 2016, 120, (41), 23430 LINK [Google Scholar]
  2. Burbano M., Nadin S., Marrocchelli D., Salanne M., and Watson G. W. Phys. Chem. Chem. Phys., 2014, 16, (18), 8320 LINK [Google Scholar]
  3. Burbano M., Norberg S. T., Hull S., Eriksson S. G., Marrocchelli D., Madden P. A., and Watson G. W. Chem. Mater., 2012, 24, (1), 222 LINK [Google Scholar]
  4. Saiful Islam M. J. Mater. Chem., 2000, 10, (4), 1027 LINK [Google Scholar]
  5. Chroneos A., Yildiz B., Tarancón A., Parfitt D., and Kilner J. A. Energy Environ. Sci., 2011, 4, (8), 2774 LINK [Google Scholar]
  6. Jacobson A. J. Chem. Mater., 2010, 22, (3), 660 LINK [Google Scholar]
  7. Guo X., and Waser R. Prog. Mater. Sci., 2006, 51, (2), 151 LINK [Google Scholar]
  8. Gregori G., Merkle R., and Maier J. Prog. Mater. Sci., 2017, 89, 252 LINK [Google Scholar]
  9. Watanabe T. J. Mater. Sci., 2011, 46, (12), 4095 LINK [Google Scholar]
  10. Feng B., Lugg N. R., Kumamoto A., Ikuhara Y., and Shibata N. ACS Nano, 2017, 11, (11), 11376 LINK [Google Scholar]
  11. Aidhy D. S., Zhang Y., and Weber W. J. J. Mater. Chem. A, 2014, 2, (6), 1704 LINK [Google Scholar]
  12. Feng B., Yokoi T., Kumamoto A., Yoshiya M., Ikuhara Y., and Shibata N. Nature Commun., 2016, 7, 11079 LINK [Google Scholar]
  13. Sánchez-Santolino G., Salafranca J., Pantelides S. T., Pennycook S. J., León C., and Varela M. Phys. Status Solidi Appl. Mater. Sci., 2018, 215, (19), 1 LINK [Google Scholar]
  14. Tuller H. L. Solid State Ionics, 2000, 131, (1–2), 143 LINK [Google Scholar]
  15. Deng W., Carpenter C., Yi N., and Flytzani-Stephanopoulos M. Top. Catal., 2007, 44, (1–2), 199 LINK [Google Scholar]
  16. Khodadadi A., Mohajerzadeh S. S., Mortazavi Y., and Miri A. M. Sensors Actuators B: Chem., 2001, 80, (3), 267 LINK [Google Scholar]
  17. Leach C. A., Tanev P., and Steele B. C. H. J. Mater. Sci. Lett., 1986, 5, (9), 893 LINK [Google Scholar]
  18. Aoki M., Chiang Y.-M., Kosacki I., Lee L. J.-R., Tuller H., and Liu Y. J. Am. Ceram. Soc., 1996, 79, (5), 1169 LINK [Google Scholar]
  19. Guo X., and Maier J. J. Electrochem. Soc., 2001, 148, (3), E121 LINK [Google Scholar]
  20. Lee J.-S., and Kim D.-Y. J. Mater. Res., 2001, 16, (9), 2739 LINK [Google Scholar]
  21. Lee W., Jung H. J., Lee M. H., Kim Y.-B., Park J. S., Sinclair R., and Prinz F. B. Adv. Funct. Mater., 2012, 22, (5), 965 LINK [Google Scholar]
  22. Tschöpe A. Solid State Ionics, 2001, 139, (3–4), 267 LINK [Google Scholar]
  23. Tschöpe A. J. Electroceram., 2005, 14, (1), 5 LINK [Google Scholar]
  24. Kim S., and Maier J. J. Electrochem. Soc., 2002, 149, (10), J73 LINK [Google Scholar]
  25. Guo X., and Ding Y. J. Electrochem. Soc., 2004, 151, (1), J1 LINK [Google Scholar]
  26. Bayliss R. D., Cook S. N., Kotsantonis S., Chater R. J., and Kilner J. A. Adv. Energy Mater., 2014, 4, (10), 1301575 LINK [Google Scholar]
  27. Knöner G., Reimann K., Röwer R., Södervall U., and Schaefer H.-E. Proc. Natl. Acad. Sci., 2003, 100, (7), 3870 LINK [Google Scholar]
  28. Brossmann U., Knoener G., Schaefer H.-E., and Wuerschum R. ChemInform, 2004, 35, (42) LINK [Google Scholar]
  29. Chadwick A. V. Phys. Status Solidi Appl. Mater. Sci., 2007, 204, (3), 631 LINK [Google Scholar]
  30. Inaba H., and Tagawa H. Solid State Ionics, 1996, 83, (1–2), 1 LINK [Google Scholar]
  31. Yoshiya M., and Oyama T. J. Mater. Sci., 2011, 46, (12), 4176 LINK [Google Scholar]
  32. Nerikar P. V., Rudman K., Desai T. G., Byler D., Unal C., McClellan K. J., Phillpot S. R., Sinnott S. B., Peralta P., Uberuaga B. P., and Stanek C. R. J. Am. Ceram. Soc., 2011, 94, (6), 1893 LINK [Google Scholar]
  33. Voronin B. M., and Volkov S. V. J. Phys. Chem. Solids, 2001, 62, (7), 1349 LINK [Google Scholar]
  34. Watson G. W., Kelsey E. T., de Leeuw N. H., Harris D. J., and Parker S. C. J. Chem. Soc. Faraday Trans., 1996, 92, (3), 433 LINK [Google Scholar]
  35. Kronberg M. L., and Wilson F. H. J. Miner. Metals Mater. Soc., 1949, 1, (8), 501 LINK [Google Scholar]
  36. Lejcek P., Jagadish C., Osgood R. M., Parisi J., Wang Z., and Warlimont H. “Grain Boundary Segregation in Metals”, eds. Hull R., Springer Series in Materials Science, Vol. 136, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2010 LINK [Google Scholar]
  37. Watson G. W. ‘Atomistic Simulation of Minerals’, PhD Thesis, Bath University, Bath, UK, 1994, 345 pp [Google Scholar]
  38. Watson G. W., Parker S. C., and Wall A. J. Phys.: Condens. Matter, 1992, 4, (8), 2097 LINK [Google Scholar]
  39. Balducci G., Islam M. S., Kašpar J., Fornasiero P., and Graziani M. Chem. Mater., 2003, 15, (20), 3781 LINK [Google Scholar]
  40. Castiglione M. J., Wilson M., and Madden P. A. J. Phys.: Condens. Matter, 1999, 11, (46), 9009 LINK [Google Scholar]
  41. Madden P. A., and Wilson M. Chem. Soc. Rev., 1996, 25, (5), 339 LINK [Google Scholar]
  42. Wilson N. T., Wilson M., Madden P. A., and Pyper N. C. J. Chem. Phys., 1996, 105, (24), 11209 LINK [Google Scholar]
  43. Pyper N. C. J. Phys.: Condens. Matter, 1995, 7, (48), 9127 LINK [Google Scholar]
  44. Burbano M., Marrocchelli D., and Watson G. W. J. Electroceram., 2014, 32, (1), 28 LINK [Google Scholar]
  45. Feng B., Hojo H., Mizoguchi T., Ohta H., Findlay S. D., Sato Y., Shibata N., Yamamoto T., and Ikuhara Y. Appl. Phys. Lett., 2012, 100, (7), 073109 LINK [Google Scholar]
  46. Feng B., Sugiyama I., Hojo H., Ohta H., Shibata N., and Ikuhara Y. Sci. Rep., 2016, 6, 20288 LINK [Google Scholar]
  47. Shibata N., Oba F., Yamamoto T., and Ikuhara Y. Philos. Mag., 2004, 84, (23), 2381 LINK [Google Scholar]
  48. Williams N. R., Molinari M., Parker S. C., and Storr M. T. J. Nucl. Mater., 2015, 458, 45 LINK [Google Scholar]
  49. Dholabhai P. P., Aguiar J. A., Wu L., Holesinger T. G., Aoki T., Castro R. H. R., and Uberuaga B. P. Phys. Chem. Chem. Phys., 2015, 17, (23), 15375 LINK [Google Scholar]
  50. Hojo H., Mizoguchi T., Ohta H., Findlay S. D., Shibata N., Yamamoto T., and Ikuhara Y. Nano Lett., 2010, 10, (11), 4668 LINK [Google Scholar]
  51. Ikuhara Y. J. Electron Microsc., 2011, 60, (suppl_1), s173 LINK [Google Scholar]
  52. Tong W., Yang H., Moeck P., Nandasiri M. I., and Browning N. D. Acta Mater., 2013, 61, (9), 3392 LINK [Google Scholar]
  53. Fisher C. A. J., and Matsubara H. Solid State Ionics, 1998, 113–115, 311 LINK [Google Scholar]
  54. Fisher C. A. J., and Matsubara H. J. Eur. Ceram. Soc., 1999, 19, (6–7), 703 LINK [Google Scholar]
  55. Lee H. B., Prinz F. B., and Cai W. Acta Mater., 2010, 58, (6), 2197 LINK [Google Scholar]
  56. Li X., Sun J., Shahi P., Gao M., MacDonald A. H., Uwatoko Y., Xiang T., Goodenough J. B., Cheng J., and Zhou J. Proc. Natl. Acad. Sci., 2018, 115, (40), 9935 LINK [Google Scholar]
  57. Dickey E. C., Fan X., and Pennycook S. J. J. Am. Ceram. Soc., 2004, 84, (6), 1361 LINK [Google Scholar]
  58. An J., Park J. S., Koh A. L., Lee H. B., Jung H. J., Schoonman J., Sinclair R., Gür T. M., and Prinz F. B. Sci. Rep., 2013, 3, 2680 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error