Skip to content
Volume 64, Issue 2
  • ISSN: 2056-5135


This study focuses on new technologies for the production of medical implants using a combination of robotics and microplasma coatings. This involves robot assisted microplasma spraying (MPS) of a multilayer surface structure on a biomedical implant. The robot motion design provides a consistent and customised plasma coating operation. Based on the analytical model results, certain spraying modes were chosen to form the optimised composition and structure of the titanium/hydroxyapatite (HA) multilayer coatings. It is desirable that the Ti coated lower layer offer a dense layer to provide the implant with suitable structural integrity and the Ti porous layer and HA top layer present biocompatible layers which are suitable for implant and tissue integration. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to analyse the structure of the coatings. The new robot assisted MPS technique resulting from this research provides a promising solution for medical implant technology.


Article metrics loading...

Loading full text...

Full text loading...



  1. Tobin E. J. Adv. Drug Deliv. Rev., 2017, 112, 88 LINK [Google Scholar]
  2. Dorozhkin S. V. Mater. Sci. Eng.: C, 2015, 55, 272 LINK [Google Scholar]
  3. Karachalios T. “Bone-Implant Interface in Orthopedic Surgery: Basic Science to Clinical Applications”, ed. Springer-Verlag, London, UK, 2014, 342 pp LINK [Google Scholar]
  4. Jing W., Zhang M., Jin L., Zhao J., Gao Q., Ren M., and Fan Q. Int. J. Surg., 2015, 24, (A), 51 LINK [Google Scholar]
  5. Goodman S. B., Yao Z., Keeney M., and Yang F. Biomaterials, 2013, 34, (13), 3174 LINK [Google Scholar]
  6. Heimann R. B. Open Biomed. Eng. J., 2015, 9, (Suppl. 1-M1), 25 LINK [Google Scholar]
  7. Sakka S., Bouaziz J., Ayed F. B., and Pignatello R. ‘Mechanical Properties of Biomaterials Based on Calcium Phosphates and Bioinert Oxides for Applications in Biomedicine’, in “Advances in Biomaterials Science and Biomedical Applications”, eds. IntechOpen Ltd, London, UK, 2013, pp. 2350 LINK [Google Scholar]
  8. Wilcock C. J., Gentile P., Hatton P. V., and Miller C. A. J. Vis. Exp., 2017, (120), e55343 LINK [Google Scholar]
  9. Alontseva D., Borisov Y., Voinarovych S., Kyslytsia O., Kolesnikova T., Prokhorenkova N., and Kadyroldina A. Prz. Elektrotech, 2018, 7, 94 LINK [Google Scholar]
  10. Alontseva D. L., Abilev M. B., Zhilkashinova A. M., Voinarovych S. G., Kyslytsia O. N., Ghassemieh E., Russakova A., and Łatka L. Adv. Mater. Sci., 2018, 18, (3), 79 LINK [Google Scholar]
  11. Alontseva D., Ghassemieh E., and Dzhes A. Acta Phys. Pol. A, 2019, 135, (5), 1113 LINK [Google Scholar]
  12. Alontseva D. L., Krasavin A. L., Nurekenov D. M., and Zhanuzakov Ye. T. ‘Mathematical Modeling of Temperature Fields in Two-Layer Heat Absorbers for the Development of Robotic Technology for Microplasma Spraying of Biocompatible Coatings’, Computational and Information Technologies in Science, Engineering and Education (CITech), Ust-Kamenogorsk, Kazakhstan, 25th–28th September, 2018, Springer Nature Switzerland AG, Cham, Switzerland, 2019, pp. 1122 LINK [Google Scholar]
  13. Sridhar T. M., Kamachi Mudali U., and Subbaiyan M. Corros. Sci., 2003, 45, (10), 2337 LINK [Google Scholar]
  14. Vahabzadeh S., Roy M., Bandyopadhyay A., and Bose S. Acta Biomater., 2015, 17, 47 LINK [Google Scholar]
  15. ‘Implants for Surgery: Hydroxyapatite: Coatings of Hydroxyapatite’, BS ISO 13779-2:2000, British Standards Institution, London, UK, 15th November, 2000, 12 pp LINK [Google Scholar]
  16. de Vasconcellos L. M. R., Leite D. O., de Oliveira F. N., Carvalho Y. R., and Cairo C. A. A. Braz. Oral Res., 2010, 24, (4), 399 LINK [Google Scholar]
  17. Matassi F., Botti A., Sirleo L., Carulli C., and Innocenti M. Clin. Cases Miner. Bone Metab., 2013, 10, (2), 111 LINK [Google Scholar]
  18. ‘Standard Specification for Composition of Hydroxylapatite for Surgical Implants’, ASTM F1185-03(2014), ASTM International, West Conshohocken, USA, 2014, 3 pp LINK [Google Scholar]
  19. ‘Implants for surgery — Metallic materials — Part 3: Wrought titanium 6-aluminium 4-vanadium alloy’, ISO 5832-3:2016, International Organization for Standardization, Geneva, Switzerland, October, 2016, 7 pp LINK [Google Scholar]
  20. ‘Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401)’, ASTM F136-13, ASTM International, West Conshohocken, USA, 2013, 5 pp LINK [Google Scholar]
  21. ‘Wrought Titanium and Titanium Alloys. Grades’, GOST 19807-91, Euro-Asian Council for Standardization, Metrology and Certification (EASC), Russia, 17th July, 1991, 6 pp LINK [Google Scholar]
  22. Yushenko K., Borisov Y., Voynarovych S., and Fomakin O. International Association Interm, ‘Plasmatron for Spraying of Coatings’, World Patent Appl. 2004/010,747 [Google Scholar]
  23. ‘Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings’, ASTM E2109-01(2014), ASTM International, West Conshohocken, USA, 2014, 8 pp LINK [Google Scholar]
  24. ‘Geometrical Product Specifications (GPS) – Surface Texture: Profile Method – Terms, Definitions and Surface Texture Parameters’, ISO 4287:1997, International Organization for Standardization, Geneva, Switzerland, April, 1997, 25 pp LINK [Google Scholar]
  25. ‘Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings’, ASTM C633-13(2017), ASTM International, West Conshohocken, USA, 2017, 8 pp LINK [Google Scholar]
  26. ‘Standard Practice for X-ray Diffraction Determination of Phase Content of Plasma-Sprayed Hydroxyapatite Coatings’, ASTM F2024-10(2016), ASTM International, West Conshohocken, USA, 2016, 4 pp LINK [Google Scholar]
  27. Montgomery D. C., Runger G. C., and Hubele N. R. “Engineering Statistics”, 2nd Edn.,John Wiley and Sons Inc, Hoboken, USA, 2001 [Google Scholar]
  28. Mutter M., Mauer G., Mücke R., Guillon O., and Vaßen R. Surf. Coatings Technol., 2017, 318, 157 LINK [Google Scholar]
  29. ‘Implants for surgery – Plasma-sprayed unalloyed titanium coatings on metallic surgical implants – Part 1: General requirements’, ISO 13179-1:2014, International Organization for Standardization, Geneva, Switzerland, June, 2014, 5 pp LINK [Google Scholar]
  30. Gross K. A., and Babovic M. Biomaterials, 2002, 23, (24), 4731 LINK [Google Scholar]
  31. Boyan B. D., Hummert T. W., Dean D. D., and Schwartz Z. Biomaterials, 1996, 17, (2), 137 LINK [Google Scholar]
  32. Boyde A., Corsi A., Quarto R., Cancedda R., and Bianco P. Bone, 1999, 24, (6), 579 LINK [Google Scholar]
  33. Roy R. K. “Design of Experiments using the Taguchi Approach: 16 Steps to Product and Process Improvement”, John Wiley and Sons Inc, New York, USA, 2001, 538 pp [Google Scholar]
  34. Pierlot C., Pawlowski L., Bigan M., and Chagnon P. Surf. Coatings Technol., 2008, 202, (18), 4483 LINK [Google Scholar]
  35. Dyshlovenko S., Pawlowski L., Roussel P., Murano D., and Le Maguer A. Surf. Coatings Technol., 2006, 200, (12–13), 3845 LINK [Google Scholar]
  36. Cizek J., and Matejicek J. J. Therm. Spray Technol., 2018, 27, (8), 1251 LINK [Google Scholar]
  37. Fotovvati B., Namdari N., and Dehghanghadikolaei A. J. Manuf. Mater. Process., 2019, 3, (1), 28 LINK [Google Scholar]
  38. Fousova M., Vojtech D., Jablonska E., Fojt J., and Lipov J. Materials, 2017, 10, (9), 987 LINK [Google Scholar]
  39. Honigmann P., Sharma N., Okolo B., Popp U., Msallem B., and Thieringer F. M. BioMed Res. Int., 2018, 4520636 LINK [Google Scholar]
  40. Jamróz W., Szafraniec J., Kurek M., and Jachowicz R. Pharm. Res., 2018, 35, (9), 176 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error