Skip to content
1887
Volume 64, Issue 2
  • ISSN: 2056-5135
  • oa Manufacturing and Characterisation of Robot Assisted Microplasma Multilayer Coating of Titanium Implants

    Biocompatible coatings for medical implants with improved density and crystallinity

  • Authors: D. Alontseva1, E. Ghassemieh2, S. Voinarovych3, O. Kyslytsia3, Y. Polovetskyi3, N. Prokhorenkova4 and A. Kadyroldina4
  • Affiliations: 1 School of Engineering, D. Serikbayev East Kazakhstan State Technical University69 Protozanov Street, Ust-Kamenogorsk, 070004Kazakhstan 2 The Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough UniversityLoughborough, Leicestershire, LE11 3TUUK 3 E.O.Paton Electric Welding Institute of NAS of Ukraine11 Kazymyr Malevich Street, Kyiv, 03150Ukraine 4 D. Serikbayev East Kazakhstan State Technical University69 Protozanov Street, Ust-Kamenogorsk, 070004Kazakhstan
  • Source: Johnson Matthey Technology Review, Volume 64, Issue 2, Apr 2020, p. 180 - 191
  • DOI: https://doi.org/10.1595/205651320X15737283268284
    • Published online: 01 Jan 2020

Abstract

This study focuses on new technologies for the production of medical implants using a combination of robotics and microplasma coatings. This involves robot assisted microplasma spraying (MPS) of a multilayer surface structure on a biomedical implant. The robot motion design provides a consistent and customised plasma coating operation. Based on the analytical model results, certain spraying modes were chosen to form the optimised composition and structure of the titanium/hydroxyapatite (HA) multilayer coatings. It is desirable that the Ti coated lower layer offer a dense layer to provide the implant with suitable structural integrity and the Ti porous layer and HA top layer present biocompatible layers which are suitable for implant and tissue integration. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to analyse the structure of the coatings. The new robot assisted MPS technique resulting from this research provides a promising solution for medical implant technology.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15737283268284
2020-01-01
2024-12-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/2/Alontseva_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15737283268284&mimeType=html&fmt=ahah

References

  1. E. J. Tobin, Adv. Drug Deliv. Rev., 2017, 112, 88 LINK https://doi.org/10.1016/j.addr.2017.01.007 [Google Scholar]
  2. S. V. Dorozhkin, Mater. Sci. Eng.: C, 2015, 55, 272 LINK https://doi.org/10.1016/j.msec.2015.05.033 [Google Scholar]
  3. T. Karachalios, “Bone-Implant Interface in Orthopedic Surgery: Basic Science to Clinical Applications”, ed. Springer-Verlag, London, UK, 2014, 342 pp LINK https://doi.org/10.1007/978-1-4471-5409-9 [Google Scholar]
  4. W. Jing, M. Zhang, L. Jin, J. Zhao, Q. Gao, M. Ren, Q. Fan, Int. J. Surg., 2015, 24, (A), 51 LINK https://doi.org/10.1016/j.ijsu.2015.08.030 [Google Scholar]
  5. S. B. Goodman, Z. Yao, M. Keeney, F. Yang, Biomaterials, 2013, 34, (13), 3174 LINK https://doi.org/10.1016/j.biomaterials.2013.01.074 [Google Scholar]
  6. R. B. Heimann, Open Biomed. Eng. J., 2015, 9, (Suppl. 1-M1), 25 LINK https://doi.org/10.2174/1874120701509010025 [Google Scholar]
  7. S. Sakka, J. Bouaziz, F. B. Ayed, R. Pignatello, ‘Mechanical Properties of Biomaterials Based on Calcium Phosphates and Bioinert Oxides for Applications in Biomedicine’, in “Advances in Biomaterials Science and Biomedical Applications”, eds. IntechOpen Ltd, London, UK, 2013, pp. 2350 LINK https://doi.org/10.5772/53088 [Google Scholar]
  8. C. J. Wilcock, P. Gentile, P. V. Hatton, C. A. Miller, J. Vis. Exp., 2017, (120), e55343 LINK https://doi.org/10.3791/55343 [Google Scholar]
  9. D. Alontseva, Y. Borisov, S. Voinarovych, O. Kyslytsia, T. Kolesnikova, N. Prokhorenkova, A. Kadyroldina, Prz. Elektrotech, 2018, 7, 94 LINK https://doi.org/10.15199/48.2018.07.23 [Google Scholar]
  10. D. L. Alontseva, M. B. Abilev, A. M. Zhilkashinova, S. G. Voinarovych, O. N. Kyslytsia, E. Ghassemieh, A. Russakova, L. Łatka, Adv. Mater. Sci., 2018, 18, (3), 79 LINK https://doi.org/10.1515/adms-2017-0043 [Google Scholar]
  11. D. Alontseva, E. Ghassemieh, A. Dzhes, Acta Phys. Pol. A, 2019, 135, (5), 1113 LINK https://doi.org/10.12693/aphyspola.135.1113 [Google Scholar]
  12. D. L. Alontseva, A. L. Krasavin, D. M. Nurekenov, Ye. T. Zhanuzakov, ‘Mathematical Modeling of Temperature Fields in Two-Layer Heat Absorbers for the Development of Robotic Technology for Microplasma Spraying of Biocompatible Coatings’, Computational and Information Technologies in Science, Engineering and Education (CITech), Ust-Kamenogorsk, Kazakhstan, 25th–28th September, 2018, Springer Nature Switzerland AG, Cham, Switzerland, 2019, pp. 1122 LINK https://doi.org/10.1007/978-3-030-12203-4_2 [Google Scholar]
  13. T. M. Sridhar, U. Kamachi Mudali, M. Subbaiyan, Corros. Sci., 2003, 45, (10), 2337 LINK https://doi.org/10.1016/s0010-938x(03)00063-5 [Google Scholar]
  14. S. Vahabzadeh, M. Roy, A. Bandyopadhyay, S. Bose, Acta Biomater., 2015, 17, 47 LINK https://doi.org/10.1016/j.actbio.2015.01.022 [Google Scholar]
  15. ‘Implants for Surgery: Hydroxyapatite: Coatings of Hydroxyapatite’, BS ISO 13779-2:2000, British Standards Institution, London, UK, 15th November, 2000, 12 pp LINK https://doi.org/10.3403/02106220 [Google Scholar]
  16. L. M. R. de Vasconcellos, D. O. Leite, F. N. de Oliveira, Y. R. Carvalho, C. A. A. Cairo, Braz. Oral Res., 2010, 24, (4), 399 LINK https://doi.org/10.1590/s1806-83242010000400005 [Google Scholar]
  17. F. Matassi, A. Botti, L. Sirleo, C. Carulli, M. Innocenti, Clin. Cases Miner. Bone Metab., 2013, 10, (2), 111 LINK http://doi.org/10.11138/ccmbm/2013.10.2.111 [Google Scholar]
  18. ‘Standard Specification for Composition of Hydroxylapatite for Surgical Implants’, ASTM F1185-03(2014), ASTM International, West Conshohocken, USA, 2014, 3 pp LINK https://doi.org/10.1520/F1185-03R14 [Google Scholar]
  19. ‘Implants for surgery — Metallic materials — Part 3: Wrought titanium 6-aluminium 4-vanadium alloy’, ISO 5832-3:2016, International Organization for Standardization, Geneva, Switzerland, October, 2016, 7 pp LINK https://www.iso.org/standard/66637.html [Google Scholar]
  20. ‘Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401)’, ASTM F136-13, ASTM International, West Conshohocken, USA, 2013, 5 pp LINK https://www.astm.org/Standards/F136.htm [Google Scholar]
  21. ‘Wrought Titanium and Titanium Alloys. Grades’, GOST 19807-91, Euro-Asian Council for Standardization, Metrology and Certification (EASC), Russia, 17th July, 1991, 6 pp LINK https://gostperevod.com/gost-19807-91.html [Google Scholar]
  22. K. Yushenko, Y. Borisov, S. Voynarovych, O. Fomakin, International Association Interm, ‘Plasmatron for Spraying of Coatings’, World Patent Appl. 2004/010,747 [Google Scholar]
  23. ‘Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings’, ASTM E2109-01(2014), ASTM International, West Conshohocken, USA, 2014, 8 pp LINK https://doi.org/10.1520/e2109 [Google Scholar]
  24. ‘Geometrical Product Specifications (GPS) – Surface Texture: Profile Method – Terms, Definitions and Surface Texture Parameters’, ISO 4287:1997, International Organization for Standardization, Geneva, Switzerland, April, 1997, 25 pp LINK https://www.iso.org/standard/10132.html [Google Scholar]
  25. ‘Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings’, ASTM C633-13(2017), ASTM International, West Conshohocken, USA, 2017, 8 pp LINK https://doi.org/10.1520/C0633-13R17 [Google Scholar]
  26. ‘Standard Practice for X-ray Diffraction Determination of Phase Content of Plasma-Sprayed Hydroxyapatite Coatings’, ASTM F2024-10(2016), ASTM International, West Conshohocken, USA, 2016, 4 pp LINK https://doi.org/10.1520/F2024-10R16 [Google Scholar]
  27. D. C. Montgomery, G. C. Runger, N. R. Hubele, “Engineering Statistics”, 2nd Edn.,John Wiley and Sons Inc, Hoboken, USA, 2001 [Google Scholar]
  28. M. Mutter, G. Mauer, R. Mücke, O. Guillon, R. Vaßen, Surf. Coatings Technol., 2017, 318, 157 LINK https://doi.org/10.1016/j.surfcoat.2016.12.061 [Google Scholar]
  29. ‘Implants for surgery – Plasma-sprayed unalloyed titanium coatings on metallic surgical implants – Part 1: General requirements’, ISO 13179-1:2014, International Organization for Standardization, Geneva, Switzerland, June, 2014, 5 pp LINK https://www.iso.org/standard/53448.html [Google Scholar]
  30. K. A. Gross, M. Babovic, Biomaterials, 2002, 23, (24), 4731 LINK https://doi.org/10.1016/s0142-9612(02)00222-3 [Google Scholar]
  31. B. D. Boyan, T. W. Hummert, D. D. Dean, Z. Schwartz, Biomaterials, 1996, 17, (2), 137 LINK https://doi.org/10.1016/0142-9612(96)85758-9 [Google Scholar]
  32. A. Boyde, A. Corsi, R. Quarto, R. Cancedda, P. Bianco, Bone, 1999, 24, (6), 579 LINK https://doi.org/10.1016/s8756-3282(99)00083-6 [Google Scholar]
  33. R. K. Roy, “Design of Experiments using the Taguchi Approach: 16 Steps to Product and Process Improvement”, John Wiley and Sons Inc, New York, USA, 2001, 538 pp [Google Scholar]
  34. C. Pierlot, L. Pawlowski, M. Bigan, P. Chagnon, Surf. Coatings Technol., 2008, 202, (18), 4483 LINK https://doi.org/10.1016/j.surfcoat.2008.04.031 [Google Scholar]
  35. S. Dyshlovenko, L. Pawlowski, P. Roussel, D. Murano, A. Le Maguer, Surf. Coatings Technol., 2006, 200, (12–13), 3845 LINK https://doi.org/10.1016/j.surfcoat.2004.11.037 [Google Scholar]
  36. J. Cizek, J. Matejicek, J. Therm. Spray Technol., 2018, 27, (8), 1251 LINK https://doi.org/10.1007/s11666-018-0798-8 [Google Scholar]
  37. B. Fotovvati, N. Namdari, A. Dehghanghadikolaei, J. Manuf. Mater. Process., 2019, 3, (1), 28 LINK https://doi.org/10.3390/jmmp3010028 [Google Scholar]
  38. M. Fousova, D. Vojtech, E. Jablonska, J. Fojt, J. Lipov, Materials, 2017, 10, (9), 987 LINK https://doi.org/10.3390/ma10090987 [Google Scholar]
  39. P. Honigmann, N. Sharma, B. Okolo, U. Popp, B. Msallem, F. M. Thieringer, BioMed Res. Int., 2018, 4520636 LINK https://doi.org/10.1155/2018/4520636 [Google Scholar]
  40. W. Jamróz, J. Szafraniec, M. Kurek, R. Jachowicz, Pharm. Res., 2018, 35, (9), 176 LINK https://doi.org/10.1007/s11095-018-2454-x [Google Scholar]
/content/journals/10.1595/205651320X15737283268284
Loading
/content/journals/10.1595/205651320X15737283268284
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test