Skip to content
1887
Volume 64, Issue 2
  • ISSN: 2056-5135
  • oa Insights into Automotive Particulate Filters using Magnetic Resonance Imaging

    Understanding filter drying in the manufacturing process and the effect of particulate matter on filter operation and fluid dynamics

  • Authors: J. D. Cooper1, N. P. Ramskill1, A. J. Sederman1, L. F. Gladden1, A. Tsolakis2, E. H. Stitt3 and A. P. E. York4
  • Affiliations: 1 Department of Chemical Engineering and Biotechnology, University of CambridgeWest Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0ASUK 2 School of Mechanical Engineering, University of BirminghamEdgbaston, Birmingham, B15 2TTUK 3 Johnson MattheyPO Box 1, Belasis Avenue, Billingham, Cleveland, TS23 1LBUK 4 Johnson MattheyBlounts Court, Sonning Common, Reading, RG4 9NHUK
  • Source: Johnson Matthey Technology Review, Volume 64, Issue 2, Apr 2020, p. 165 - 179
  • DOI: https://doi.org/10.1595/205651320X15754757907469
    • Published online: 01 Jan 2020

Abstract

Understanding the manufacture and operation of automotive emissions control particulate filters is important in the optimised design of these emissions control systems. Here we show how magnetic resonance imaging (MRI) can be used to understand the drying process, which is part of the manufacture of catalysed particulate filters. Comparison between a wall-flow particulate filter substrate and a flow-through monolith (FTM) has been performed, with MRI giving spatial information on the drying process. We have also used MRI to study the fluid dynamics of a gasoline particulate filter (GPF). Inlet and outlet channel gas velocities have been measured for a clean GPF and two GPF samples loaded with particulate matter (PM) to understand the effect of PM on the filter flow profiles and porous wall permeability as soot is deposited.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15754757907469
2020-01-01
2024-12-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/2/York_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15754757907469&mimeType=html&fmt=ahah

References

  1. Commission Regulation (EU) 459/2012, Official J. Eur. Union, 2012, 55, (L142), 16 LINK http://data.europa.eu/eli/reg/2012/459/oj [Google Scholar]
  2. T. A. Nijhuis, A. E. W. Beers, T. Vergunst, I. Hoek, F. Kapteijn, J. A. Moulijn, Catal. Rev. Sci. Eng., 2001, 43, (4), 345 LINK https://doi.org/10.1081/CR-120001807 [Google Scholar]
  3. T. Vergunst, F. Kapteijn, J. A. Moulijn, Appl. Catal. A: Gen., 2001, 213, (2), 179 LINK https://doi.org/10.1016/S0926-860X(00)00896-6 [Google Scholar]
  4. A. Wahlberg, L. J. Pettersson, K. Bruce, M. Andersson, K. Jansson, Appl. Catal. B: Environ., 1999, 23, (4), 271 LINK https://doi.org/10.1016/S0926-3373(99)00083-1 [Google Scholar]
  5. Z. R. Ismagilov, S. A. Yashnik, A. A. Matveev, I. V. Koptyug, J. A. Moulijn, Catal. Today, 2005, 105, (3–4), 484 LINK https://doi.org/10.1016/j.cattod.2005.06.054 [Google Scholar]
  6. A. S. Mujumdar, “Handbook of Industrial Drying”, 3rd Edn., ed. Taylor and Francis Group LLC, 2007, 1280 pp [Google Scholar]
  7. E. J. Bissett, Chem. Eng. Sci., 1984, 39, (7–8), 1233 LINK https://doi.org/10.1016/0009-2509(84)85084-8 [Google Scholar]
  8. A. G. Konstandopoulos, J. H. Johnson, SAE Technical Paper 890405, SAE International, Warrendale, USA, 1st February, 1989 LINK https://doi.org/10.4271/890405 [Google Scholar]
  9. E. J. Bissett, M. Kostoglou, A. G. Konstandopoulos, Chem. Eng. Sci., 2012, 84, 255 LINK https://doi.org/10.1016/j.ces.2012.08.012 [Google Scholar]
  10. A. P. E. York, T. C. Watling, M. Ahmadinejad, D. Bergeal, P. R. Phillips, D. Swallow, SAE Int. J. Fuels Lubr., 2009, 2, (1), 578 LINK https://doi.org/10.4271/2009-01-1266 [Google Scholar]
  11. L. F. Gladden, Am. Inst. Chem. Eng. J., 2004, 49, (1), 2 LINK https://doi.org/10.1002/aic.690490102 [Google Scholar]
  12. M. P. Hollewand, L. F. Gladden, Magn. Reson. Imaging, 1994, 12, (2), 291 LINK https://doi.org/10.1016/0730-725X(94)91538-5 [Google Scholar]
  13. L. Yu Khitrina, I. V. Koptyug, N. A. Pakhomov, R. Z. Sagdeev, V. N. Parmon, J. Phys. Chem. B, 2000, 104, (9), 1966 LINK https://doi.org/10.1021/jp994412 [Google Scholar]
  14. I. V. Koptyug, S. I. Kabanikhin, K. T. Iskakov, V. B. Fenelonov, L. Yu Khitrina, R. Z. Sagdeev, V. N. Parmon, Chem. Eng. Sci., 2000, 55, (9), 1559 LINK https://doi.org/10.1016/S0009-2509(99)00404-2 [Google Scholar]
  15. I. V. Koptyug, L. Yu Khitrina, V. N. Parmon, R. Z. Sagdeev, Magn. Reson. Imaging, 2001, 19, (3–4), 531 LINK https://doi.org/10.1016/S0730-725X(01)00286-7 [Google Scholar]
  16. A. A. Lysova, I. V. Koptyug, R. Z. Sagdeev, V. N. Parmon, J. A. Bergwerff, B. M. Weckhuysen, J. Am. Chem. Soc., 2005, 127, (34), 11916 LINK https://doi.org/10.1021/ja053456v [Google Scholar]
  17. R. Enjilela, P. F. J. Cano-Barrita, A. Komar, A. J. Boyd, B. J. Balcom, Mater. Struct., 2017, 50, (2), 151 LINK https://doi.org/10.1617/s11527-017-1017-7 [Google Scholar]
  18. G. Guillot, A. Trokiner, L. Darrasse, H. Saint-Jalmes, J. Phys. D.: Appl. Phys., 1989, 22, (11), 1646 LINK https://doi.org/10.1088/0022-3727/22/11/013 [Google Scholar]
  19. K. M. Song, J. Mitchell, H. Jaffel, L. F. Gladden, J. Mater. Sci., 2010, 45, (19), 5282 LINK https://doi.org/10.1007/s10853-010-4572-7 [Google Scholar]
  20. M. D. Mantle, Int. J. Pharm., 2011, 417, (1–2), 173 LINK https://doi.org/10.1016/j.ijpharm.2010.11.035 [Google Scholar]
  21. Q. Zhang, L. Gladden, P. Avalle, M. Mantle, J. Control. Release, 2011, 156, (3), 345 LINK https://doi.org/10.1016/j.jconrel.2011.08.039 [Google Scholar]
  22. J. D. Griffith, A. E. Bayly, M. L. Johns, Chem. Eng. Sci., 2008, 63, (13), 3449 LINK https://doi.org/10.1016/j.ces.2008.03.043 [Google Scholar]
  23. J. D. Griffith, A. E. Bayly, M. L. Johns, J. Colloid Interface Sci., 2007, 315, (1), 223 LINK https://doi.org/10.1016/J.JCIS.2007.06.050 [Google Scholar]
  24. G. Adiletta, G. Iannone, P. Russo, G. Patimo, S. De Pasquale, M. Di Matteo, Int. J. Food Sci. Technol., 2014, 49, (12), 2602 LINK https://doi.org/10.1111/ijfs.12591 [Google Scholar]
  25. L. Manzocco, M. Anese, S. Marzona, N. Innocente, C. Lagazio, M. C. Nicoli, Food Chem., 2013, 141, (3), 2246 LINK https://doi.org/10.1016/j.foodchem.2013.04.068 [Google Scholar]
  26. T. Tsuruta, H. Tanigawa, H. Sashi, Dry. Technol., 2015, 33, (15–16), 1830 LINK https://doi.org/10.1080/07373937.2015.1036286 [Google Scholar]
  27. M. D. Mantle, N. C. Reis, R. F. Griffiths, L. F. Gladden, Magn. Reson. Imaging, 2003, 21, (3–4), 293 LINK https://doi.org/10.1016/S0730-725X(03)00157-7 [Google Scholar]
  28. N. C. Reis, R. F. Griffiths, M. D. Mantle, L. F. Gladden, Int. J. Heat Mass Trans., 2003, 46, (7), 1279 LINK https://doi.org/10.1016/S0017-9310(02)00395-2 [Google Scholar]
  29. N. C. Reis, R. F. Griffiths, M. D. Mantle, L. F. Gladden, J. M. Santos, Int. J. Heat Mass Trans., 2006, 49, (5–6), 951 LINK https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2005.09.014 [Google Scholar]
  30. G. H. A. van der Heijden, H. P. Huinink, L. Pel, K. Kopinga, Chem. Eng. Sci., 2009, 64, (12), 3010 LINK https://doi.org/10.1016/J.CES.2009.03.012 [Google Scholar]
  31. I. V. Koptyug, Prog. Nucl. Magn. Reson. Spectrosc., 2012, 65, 1 LINK https://doi.org/10.1016/j.pnmrs.2011.12.001 [Google Scholar]
  32. I. V. Koptyug, S. Altobelli, E. Fukushima, A. V. Matveev, R. Z. Sagdeev, J. Magn. Reson., 2000, 147, (1), 36 LINK https://doi.org/10.1006/jmre.2000.2186 [Google Scholar]
  33. I. V. Koptyug, L. Yu Ilyina, A. V. Matveev, R. Z. Sagdeev, V. N. Parmon, S. A. Altobelli, Catal. Today, 2001, 69, (1–4), 385 LINK http://doi.org/10.1016/S0920-5861(01)00396-0 [Google Scholar]
  34. I. V. Koptyug, A. V. Matveev, S. A. Altobelli, Appl. Magn. Reson., 2002, 22, (2), 187 LINK https://doi.org/10.1007/BF03166102 [Google Scholar]
  35. S. L. Codd, S. A. Altobelli, J. Magn. Reson., 2003, 163, (1), 16 LINK https://doi.org/10.1016/S1090-7807(03)00111-3 [Google Scholar]
  36. N. P. Ramskill, A. P. E. York, A. J. Sederman, L. F. Gladden, Chem. Eng. Sci., 2017, 158, 490 LINK https://doi.org/10.1016/j.ces.2016.10.017 [Google Scholar]
  37. M. Lustig, D. Donoho, J. M. Pauly, Magn. Reson. Med., 2007, 58, (6), 1182 LINK https://doi.org/10.1002/mrm.21391 [Google Scholar]
  38. M. Lustig, ‘Sparse MRI’, PhD thesis, Department of Electrical Engineering, Stanford University, Stanford, USA, 2008, 131 pp [Google Scholar]
  39. D. J. Holland, M. J. Bostock, L. F. Gladden, D. Nietlispach, Angew. Chem. Int. Ed., 2011, 50, (29), 6548 LINK https://doi.org/10.1002/anie.201100440 [Google Scholar]
  40. Y. Wu, C. D’Agostino, D. J. Holland, L. F. Gladden, Chem. Commun., 2014, 50, (91), 14137 LINK https://doi.org/10.1039/c4cc06051b [Google Scholar]
  41. D. J. Holland, L. F. Gladden, Angew. Chem. Int. Ed., 2014, 53, (49), 13330 LINK https://doi.org/10.1002/anie.201400535 [Google Scholar]
  42. P. T. Callaghan, “Principles of Nuclear Magnetic Resonance Microscopy”, Oxford University Press, Oxford, UK, 1993, 492 pp [Google Scholar]
  43. E. M. Haacke, R. W. Brown, M. R. Thompson, R. Venkatesan, “Magnetic Resonance Imaging – Physical Principles and Sequence Design”, John Wiley and Sons Inc, New York, USA, 1999, 914 pp [Google Scholar]
  44. M. D. Mantle, A. J. Sederman, Prog. Nucl. Magn. Reson. Spectrosc., 2003, 43, (1–2), 3 LINK https://doi.org/10.1016/S0079-6565(03)00005-0 [Google Scholar]
  45. A. Caprihan, E. Fukushima, Phys. Rep., 1990, 198, (4), 195 LINK https://doi.org/10.1016/0370-1573(90)90046-5 [Google Scholar]
  46. R. H. Perry, D. W. Green, “Perry’s Chemical Engineers’ Handbook”, 8th Edn., eds. McGraw-Hill Education, New York, USA, 2008 [Google Scholar]
  47. J. Hennig, A. Nauerth, H. Friedburg, Magn. Reson. Med., 1986, 3, (6), 823 LINK https://doi.org/10.1002/mrm.1910030602 [Google Scholar]
  48. M. Schejbal, M. Marek, M. Kubíček, P. Kočí, Chem. Eng. J., 2009, 154, (1–3), 219 LINK https://doi.org/10.1016/j.cej.2009.04.056 [Google Scholar]
  49. M. Yu, D. Luss, V. Balakotaiah, Chem. Eng. J., 2013, 226, 68 LINK https://doi.org/10.1016/j.cej.2013.04.026 [Google Scholar]
  50. G. Bond, R. B. Moyes, S. D. Pollington, D. A. Whan, Stud. Surf. Sci. Catal., 1993, 75, 1805 LINK https://doi.org/10.1016/S0167-2991(08)64539-5 [Google Scholar]
  51. K. P. de Jong, Stud. Surf. Sci. Catal., 1991, 63, 19 LINK https://doi.org/10.1016/S0167-2991(08)64569-3 [Google Scholar]
  52. S. Bensaid, D. L. Marchisio, D. Fino, Chem. Eng. Sci., 2010, 65, (1), 357 LINK https://doi.org/10.1016/j.ces.2009.06.051 [Google Scholar]
  53. A. P. E. York, T. C. Watling, N. P. Ramskill, L. F. Gladden, A. J. Sederman, A. Tsolakis, J. M. Herreros, I. Lefort, SAE Technical Paper 2015-01-2009, SAE International, Warrendale, USA, 1st September, 2015 LINK https://doi.org/10.4271/2015-01-2009 [Google Scholar]
/content/journals/10.1595/205651320X15754757907469
Loading
/content/journals/10.1595/205651320X15754757907469
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test