Skip to content
Volume 64, Issue 2
  • ISSN: 2056-5135


Understanding the manufacture and operation of automotive emissions control particulate filters is important in the optimised design of these emissions control systems. Here we show how magnetic resonance imaging (MRI) can be used to understand the drying process, which is part of the manufacture of catalysed particulate filters. Comparison between a wall-flow particulate filter substrate and a flow-through monolith (FTM) has been performed, with MRI giving spatial information on the drying process. We have also used MRI to study the fluid dynamics of a gasoline particulate filter (GPF). Inlet and outlet channel gas velocities have been measured for a clean GPF and two GPF samples loaded with particulate matter (PM) to understand the effect of PM on the filter flow profiles and porous wall permeability as soot is deposited.


Article metrics loading...

Loading full text...

Full text loading...



  1. Commission Regulation (EU) 459/2012, Official J. Eur. Union, 2012, 55, (L142), 16 LINK [Google Scholar]
  2. Nijhuis T. A., Beers A. E. W., Vergunst T., Hoek I., Kapteijn F., and Moulijn J. A. Catal. Rev. Sci. Eng., 2001, 43, (4), 345 LINK [Google Scholar]
  3. Vergunst T., Kapteijn F., and Moulijn J. A. Appl. Catal. A: Gen., 2001, 213, (2), 179 LINK [Google Scholar]
  4. Wahlberg A., Pettersson L. J., Bruce K., Andersson M., and Jansson K. Appl. Catal. B: Environ., 1999, 23, (4), 271 LINK [Google Scholar]
  5. Ismagilov Z. R., Yashnik S. A., Matveev A. A., Koptyug I. V., and Moulijn J. A. Catal. Today, 2005, 105, (3–4), 484 LINK [Google Scholar]
  6. Mujumdar A. S. “Handbook of Industrial Drying”, 3rd Edn., ed. Taylor and Francis Group LLC, 2007, 1280 pp [Google Scholar]
  7. Bissett E. J. Chem. Eng. Sci., 1984, 39, (7–8), 1233 LINK [Google Scholar]
  8. Konstandopoulos A. G., and Johnson J. H. SAE Technical Paper 890405, SAE International, Warrendale, USA, 1st February, 1989 LINK [Google Scholar]
  9. Bissett E. J., Kostoglou M., and Konstandopoulos A. G. Chem. Eng. Sci., 2012, 84, 255 LINK [Google Scholar]
  10. York A. P. E., Watling T. C., Ahmadinejad M., Bergeal D., Phillips P. R., and Swallow D. SAE Int. J. Fuels Lubr., 2009, 2, (1), 578 LINK [Google Scholar]
  11. Gladden L. F. Am. Inst. Chem. Eng. J., 2004, 49, (1), 2 LINK [Google Scholar]
  12. Hollewand M. P., and Gladden L. F. Magn. Reson. Imaging, 1994, 12, (2), 291 LINK [Google Scholar]
  13. Yu Khitrina L., Koptyug I. V., Pakhomov N. A., Sagdeev R. Z., and Parmon V. N. J. Phys. Chem. B, 2000, 104, (9), 1966 LINK [Google Scholar]
  14. Koptyug I. V., Kabanikhin S. I., Iskakov K. T., Fenelonov V. B., Yu Khitrina L., Sagdeev R. Z., and Parmon V. N. Chem. Eng. Sci., 2000, 55, (9), 1559 LINK [Google Scholar]
  15. Koptyug I. V., Yu Khitrina L., Parmon V. N., and Sagdeev R. Z. Magn. Reson. Imaging, 2001, 19, (3–4), 531 LINK [Google Scholar]
  16. Lysova A. A., Koptyug I. V., Sagdeev R. Z., Parmon V. N., Bergwerff J. A., and Weckhuysen B. M. J. Am. Chem. Soc., 2005, 127, (34), 11916 LINK [Google Scholar]
  17. Enjilela R., Cano-Barrita P. F. J., Komar A., Boyd A. J., and Balcom B. J. Mater. Struct., 2017, 50, (2), 151 LINK [Google Scholar]
  18. Guillot G., Trokiner A., Darrasse L., and Saint-Jalmes H. J. Phys. D.: Appl. Phys., 1989, 22, (11), 1646 LINK [Google Scholar]
  19. Song K. M., Mitchell J., Jaffel H., and Gladden L. F. J. Mater. Sci., 2010, 45, (19), 5282 LINK [Google Scholar]
  20. Mantle M. D. Int. J. Pharm., 2011, 417, (1–2), 173 LINK [Google Scholar]
  21. Zhang Q., Gladden L., Avalle P., and Mantle M. J. Control. Release, 2011, 156, (3), 345 LINK [Google Scholar]
  22. Griffith J. D., Bayly A. E., and Johns M. L. Chem. Eng. Sci., 2008, 63, (13), 3449 LINK [Google Scholar]
  23. Griffith J. D., Bayly A. E., and Johns M. L. J. Colloid Interface Sci., 2007, 315, (1), 223 LINK [Google Scholar]
  24. Adiletta G., Iannone G., Russo P., Patimo G., De Pasquale S., and Di Matteo M. Int. J. Food Sci. Technol., 2014, 49, (12), 2602 LINK [Google Scholar]
  25. Manzocco L., Anese M., Marzona S., Innocente N., Lagazio C., and Nicoli M. C. Food Chem., 2013, 141, (3), 2246 LINK [Google Scholar]
  26. Tsuruta T., Tanigawa H., and Sashi H. Dry. Technol., 2015, 33, (15–16), 1830 LINK [Google Scholar]
  27. Mantle M. D., Reis N. C., Griffiths R. F., and Gladden L. F. Magn. Reson. Imaging, 2003, 21, (3–4), 293 LINK [Google Scholar]
  28. Reis N. C., Griffiths R. F., Mantle M. D., and Gladden L. F. Int. J. Heat Mass Trans., 2003, 46, (7), 1279 LINK [Google Scholar]
  29. Reis N. C., Griffiths R. F., Mantle M. D., Gladden L. F., and Santos J. M. Int. J. Heat Mass Trans., 2006, 49, (5–6), 951 LINK [Google Scholar]
  30. van der Heijden G. H. A., Huinink H. P., Pel L., and Kopinga K. Chem. Eng. Sci., 2009, 64, (12), 3010 LINK [Google Scholar]
  31. Koptyug I. V. Prog. Nucl. Magn. Reson. Spectrosc., 2012, 65, 1 LINK [Google Scholar]
  32. Koptyug I. V., Altobelli S., Fukushima E., Matveev A. V., and Sagdeev R. Z. J. Magn. Reson., 2000, 147, (1), 36 LINK [Google Scholar]
  33. Koptyug I. V., Yu Ilyina L., Matveev A. V., Sagdeev R. Z., Parmon V. N., and Altobelli S. A. Catal. Today, 2001, 69, (1–4), 385 LINK [Google Scholar]
  34. Koptyug I. V., Matveev A. V., and Altobelli S. A. Appl. Magn. Reson., 2002, 22, (2), 187 LINK [Google Scholar]
  35. Codd S. L., and Altobelli S. A. J. Magn. Reson., 2003, 163, (1), 16 LINK [Google Scholar]
  36. Ramskill N. P., York A. P. E., Sederman A. J., and Gladden L. F. Chem. Eng. Sci., 2017, 158, 490 LINK [Google Scholar]
  37. Lustig M., Donoho D., and Pauly J. M. Magn. Reson. Med., 2007, 58, (6), 1182 LINK [Google Scholar]
  38. Lustig M. ‘Sparse MRI’, PhD thesis, Department of Electrical Engineering, Stanford University, Stanford, USA, 2008, 131 pp [Google Scholar]
  39. Holland D. J., Bostock M. J., Gladden L. F., and Nietlispach D. Angew. Chem. Int. Ed., 2011, 50, (29), 6548 LINK [Google Scholar]
  40. Wu Y., D’Agostino C., Holland D. J., and Gladden L. F. Chem. Commun., 2014, 50, (91), 14137 LINK [Google Scholar]
  41. Holland D. J., and Gladden L. F. Angew. Chem. Int. Ed., 2014, 53, (49), 13330 LINK [Google Scholar]
  42. Callaghan P. T. “Principles of Nuclear Magnetic Resonance Microscopy”, Oxford University Press, Oxford, UK, 1993, 492 pp [Google Scholar]
  43. Haacke E. M., Brown R. W., Thompson M. R., and Venkatesan R. “Magnetic Resonance Imaging – Physical Principles and Sequence Design”, John Wiley and Sons Inc, New York, USA, 1999, 914 pp [Google Scholar]
  44. Mantle M. D., and Sederman A. J. Prog. Nucl. Magn. Reson. Spectrosc., 2003, 43, (1–2), 3 LINK [Google Scholar]
  45. Caprihan A., and Fukushima E. Phys. Rep., 1990, 198, (4), 195 LINK [Google Scholar]
  46. Perry R. H., and Green D. W. “Perry’s Chemical Engineers’ Handbook”, 8th Edn., eds. McGraw-Hill Education, New York, USA, 2008 [Google Scholar]
  47. Hennig J., Nauerth A., and Friedburg H. Magn. Reson. Med., 1986, 3, (6), 823 LINK [Google Scholar]
  48. Schejbal M., Marek M., Kubíček M., and Kočí P. Chem. Eng. J., 2009, 154, (1–3), 219 LINK [Google Scholar]
  49. Yu M., Luss D., and Balakotaiah V. Chem. Eng. J., 2013, 226, 68 LINK [Google Scholar]
  50. Bond G., Moyes R. B., Pollington S. D., and Whan D. A. Stud. Surf. Sci. Catal., 1993, 75, 1805 LINK [Google Scholar]
  51. de Jong K. P. Stud. Surf. Sci. Catal., 1991, 63, 19 LINK [Google Scholar]
  52. Bensaid S., Marchisio D. L., and Fino D. Chem. Eng. Sci., 2010, 65, (1), 357 LINK [Google Scholar]
  53. York A. P. E., Watling T. C., Ramskill N. P., Gladden L. F., Sederman A. J., Tsolakis A., Herreros J. M., and Lefort I. SAE Technical Paper 2015-01-2009, SAE International, Warrendale, USA, 1st September, 2015 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error