Skip to content
Volume 64, Issue 2
  • ISSN: 2056-5135


Portable electronic devices, electric vehicles and stationary energy storage applications, which encourage carbon-neutral energy alternatives, are driving demand for batteries that have concurrently higher energy densities, faster charging rates, safer operation and lower prices. These demands can no longer be met by incrementally improving existing technologies but require the discovery of new materials with exceptional properties. Experimental materials discovery is both expensive and time consuming: before the efficacy of a new battery material can be assessed, its synthesis and stability must be well-understood. Computational materials modelling can expedite this process by predicting novel materials, both in stand-alone theoretical calculations and in tandem with experiments. In this review, we describe a materials discovery framework based on density functional theory (DFT) to predict the properties of electrode and solid-electrolyte materials and validate these predictions experimentally. First, we discuss crystal structure prediction using the random structure searching (AIRSS) method. Next, we describe how DFT results allow us to predict which phases form during electrode cycling, as well as the electrode voltage profile and maximum theoretical capacity. We go on to explain how DFT can be used to simulate experimentally measurable properties such as nuclear magnetic resonance (NMR) spectra and ionic conductivities. We illustrate the described workflow with multiple experimentally validated examples: materials for lithium-ion and sodium-ion anodes and lithium-ion solid electrolytes. These examples highlight the power of combining computation with experiment to advance battery materials research.


Article metrics loading...

Loading full text...

Full text loading...



  1. Hohenberg P., and Kohn W. Phys. Rev., 1964, 136, (3B), B864 LINK [Google Scholar]
  2. Sham L. J., and Kohn W. Phys. Rev., 1966, 145, (2), 561 LINK [Google Scholar]
  3. Perdew J. P., Burke K., and Ernzerhof M. Phys. Rev. Lett., 1996, 77, (18), 3865 LINK [Google Scholar]
  4. Stephens P. J., Devlin F. J., Chabalowski C. F. N., and Frisch M. J. J. Phys. Chem., 1994, 98, (45), 11623 LINK [Google Scholar]
  5. Mardirossian N., and Head-Gordon M. Mol. Phys., 2017, 115, (19), 2315 LINK [Google Scholar]
  6. Kirklin S., Saal J. E., Meredig B., Thompson A., Doak J. W., Aykol M., Rühl S., and Wolverton C. npj Comput. Mater., 2015, 1, 15010 LINK [Google Scholar]
  7. Curtarolo S., Setyawan W., Hart G. L. W., Jahnatek M., Chepulskii R. V, Taylor R. H., Wang S., Xue J., Yang K., Levy O., Mehl M. J., Stokes H. T., Demchenko D. O., and Morgan D. Comput. Mater. Sci., 2012, 58, 218 LINK [Google Scholar]
  8. Jain A., Ong S. P., Hautier G., Chen W., Richards W. D., Dacek S., Cholia S., Gunter D., Skinner D., Ceder G., and Persson K. A. APL Mater., 2013, 1, (1), 011002 LINK [Google Scholar]
  9. Hellenbrandt M. Crystallogr. Rev., 2004, 10, (1), 17 LINK [Google Scholar]
  10. Gražulis S., Daškevič A., Merkys A., Chateigner D., Lutterotti L., Quirós M., Serebryanaya N. R., Moeck P., Downs R. T., and Le Bail A. Nucleic Acids Res., 2012, 40, (D1), D420 LINK [Google Scholar]
  11. Lau C. Y., Dunstan M. T., Hu W., Grey C. P., and Scott S. A. Energy Environ. Sci., 2017, 10, (3), 818 LINK [Google Scholar]
  12. Sendek A. D., Yang Q., Cubuk E. D., Duerloo K.-A. N., Cui Y., and Reed E. J. Energy Environ. Sci., 2017, 10, (1), 306 LINK [Google Scholar]
  13. Kim J. C., Li X., Moore C. J., Bo S.-H., Khalifah P. G., Grey C. P., and Ceder G. Chem. Mater., 2014, 26, (14), 4200 LINK [Google Scholar]
  14. Oganov R., Pickard C. J., Zhu Q., and Needs R. J. Nat. Rev. Mater., 2019, 4, (5), 331 LINK [Google Scholar]
  15. Glass C. W., Oganov A. R., and Hansen N. Comput. Phys. Commun., 2006, 175, (11–12), 713 LINK [Google Scholar]
  16. Wang Y., Lv J., Zhu L., and Ma Y. Phys. Rev. B, 2010, 82, (9), 094116 LINK [Google Scholar]
  17. Wang Y., Lv J., Zhu L., and Ma Y. Comput. Phys. Commun., 2012, 183, (10), 2063 LINK [Google Scholar]
  18. Call S. T., Zubarev D. Y., and Boldyrev A. I. J. Comput. Chem., 2007, 28, (7), 1177 LINK [Google Scholar]
  19. Pickard C. J., and Needs R. J. J. Phys.: Condens. Matter, 2011, 23, (5), 053201 LINK [Google Scholar]
  20. Li Y., Wang L., Liu H., Zhang Y., Hao J., Pickard C. J., Nelson J. R., Needs R. J., Li W., Huang Y., Errea I., Calandra M., Mauri F., and Ma Y. Phys. Rev. B, 2016, 93, (2), 20103 LINK [Google Scholar]
  21. Nelson J. R., Needs R. J., and Pickard C. J. Phys. Rev. B, 2018, 98, (22), 224105 LINK [Google Scholar]
  22. Mayo M., Griffith K. J., Pickard C. J., and Morris A. J. Chem. Mater., 2016, 28, (7), 2011 LINK [Google Scholar]
  23. Mayo M., and Morris A. J. Chem. Mater., 2017, 29, (14), 5787 LINK [Google Scholar]
  24. Stratford J. M., Mayo M., Allan P. K., Pecher O., Borkiewicz O. J., Wiaderek K. M., Chapman K. W., Pickard C. J., Morris A. J., and Grey C. P. J. Am. Chem. Soc., 2017, 139, (21), 7273 LINK [Google Scholar]
  25. Marbella L. E., Evans M. L., Groh M. F., Nelson J., Griffith K. J., Morris A. J., and Grey C. P. J. Am. Chem. Soc., 2018, 140, (25), 7994 LINK [Google Scholar]
  26. McMahon J. M. Phys. Rev. B, 2011, 84, (22), 220104 LINK [Google Scholar]
  27. Medeiros P. V. C., Marks S., Wynn J. M., Vasylenko A., Ramasse Q. M., Quigley D., Sloan J., and Morris A. J. ACS Nano, 2017, 11, (6), 6178 LINK [Google Scholar]
  28. Darby J. P., Arhangelskis M., Katsenis A. D., Marrett J., Friscic T., and Morris A. J. ChemRXiv Prepr., 2019 LINK [Google Scholar]
  29. Schusteritsch G., and Pickard C. J. Phys. Rev. B, 2014, 90, (3), 35424 LINK [Google Scholar]
  30. Morris A. J., Pickard C. J., and Needs R. J. Phys. Rev. B, 2008, 78, (18), 184102 LINK [Google Scholar]
  31. Tait E. W., Ratcliff L. E., Payne M. C., Haynes P. D., and Hine N. D. M. J. Phys.: Condens. Matter, 2016, 28, (19), 195202 LINK [Google Scholar]
  32. Baroni S., de Gironcoli S., Dal Corso A., and Giannozzi P. Rev. Mod. Phys., 2001, 73, (2), 515 LINK [Google Scholar]
  33. Pecher O., Carretero-González J., Griffith K. J., and Grey C. P. Chem. Mater., 2017, 29, (1), 213 LINK [Google Scholar]
  34. Ashbrook S. E., and McKay D. Chem. Commun., 2016, 52, (45), 7186 LINK [Google Scholar]
  35. Stevens R. M., Pitzer R. M., and Lipscomb W. N. J. Chem. Phys., 1963, 38, (2), 550 LINK [Google Scholar]
  36. Mauri F., Pfrommer B. G., and Louie S. G. Phys. Rev. Lett., 1996, 77, (26), 5300 LINK [Google Scholar]
  37. Pickard C. J., and Mauri F. Phys. Rev. B, 2001, 63, (24), 245101 LINK [Google Scholar]
  38. Bonhomme C., Gervais C., Babonneau F., Coelho C., Pourpoint F., Azaïs T., Ashbrook S. E., Griffin J. M., Yates J. R., Mauri F., and Pickard C. J. Chem. Rev., 2012, 112, (11), 5733 LINK [Google Scholar]
  39. Yates J. R., Pickard C. J., and Mauri F. Phys. Rev. B, 2007, 76, (2), 024401 LINK [Google Scholar]
  40. Bak M., Rasmussen J. T., and Nielsen N. C. J. Magn. Reson., 2000, 147, (2), 296 LINK [Google Scholar]
  41. Joyce S. A., Yates J. R., Pickard C. J., and Mauri F. J. Chem. Phys., 2007, 127, (20), 204107 LINK [Google Scholar]
  42. Koçer C. P., Griffith K. J., Grey C. P., and Morris A. J. Phys. Rev. B, 2019, 99, (7), 075151 LINK [Google Scholar]
  43. Koçer C. P., Griffith K. J., Grey C. P., and Morris A. J. J. Am. Chem. Soc., 2019, 141, (38), 15121 LINK [Google Scholar]
  44. Madsen G. K. H., and Singh D. J. Comput. Phys. Commun., 2006, 175, (1), 67 LINK [Google Scholar]
  45. Henkelman G., Uberuaga B. P., and Jónsson H. J. Chem. Phys., 2000, 113, (22), 9901 LINK [Google Scholar]
  46. Friauf R. J. J. Appl. Phys., 1962, 33, (1), 494 LINK [Google Scholar]
  47. de Klerk N. J. J., and Wagemaker M. Chem. Mater., 2016, 28, (9), 3122 LINK [Google Scholar]
  48. de Klerk N. J. J., Rosłoń I., and Wagemaker M. Chem. Mater., 2016, 28, (21), 7955 LINK [Google Scholar]
  49. Hu H., Ji H.-F., and Sun Y. Phys. Chem. Chem. Phys., 2013, 15, (39), 16557 LINK [Google Scholar]
  50. VandeVondele J., Krack M., Mohamed F., Parrinello M., Chassaing T., and Hutter J. Comput. Phys. Commun., 2005, 167, (2), 103 LINK [Google Scholar]
  51. van Beijeren H., and Kehr K. W. J. Phys. C: Solid State Phys., 1986, 19, (9), 1319 LINK [Google Scholar]
  52. Ghosh K., and Krishnamurthy C. V. Phys. Rev. E, 2018, 98, (5), 052115 LINK [Google Scholar]
  53. Deng Z., Zhu Z., Chu I.-H., and Ong S. P. Chem. Mater., 2017, 29, (1), 281 LINK [Google Scholar]
  54. Van Hove L. Phys. Rev., 1954, 95, (1), 249 LINK [Google Scholar]
  55. Van der Ven A., Yu H.-C., Ceder G., and Thornton K. Prog. Mater. Sci., 2010, 55, (2), 61 LINK [Google Scholar]
  56. Gomer R. Rep. Prog. Phys., 1990, 53, (7), 917 LINK [Google Scholar]
  57. Wang Y., Richards W. D., Ong S. P., Miara L. J., Kim J. C., Mo Y., and Ceder G. Nature Mater., 2015, 14, (10), 1026 LINK [Google Scholar]
  58. Vasileiadis A., Carlsen B., de Klerk N. J. J., and Wagemaker M. Chem. Mater., 2018, 30, (19), 6646 LINK [Google Scholar]
  59. Henkelman G., and Jónsson H. J. Chem. Phys., 1999, 111, (15), 7010 LINK [Google Scholar]
  60. Malek R., and Mousseau N. Phys. Rev. E, 2000, 62, (6), 7723 LINK [Google Scholar]
  61. Munro L. J., and Wales D. J. Phys. Rev. B, 1999, 59, (6), 3969 LINK [Google Scholar]
  62. Heyden A., Bell A. T., and Keil F. J. J. Chem. Phys., 2005, 123, (22), 224101 LINK [Google Scholar]
  63. Olsen R. A., Kroes G. J., Henkelman G., Arnaldsson A., and Jónsson H. J. Chem. Phys., 2004, 121, (20), 9776 LINK [Google Scholar]
  64. Henkelman G., and Jónsson H. J. Chem. Phys., 2000, 113, (22), 9978 LINK [Google Scholar]
  65. Kutner R. Phys. Lett. A, 1981, 81, (4), 239 LINK [Google Scholar]
  66. Urban A., Seo D.-H., and Ceder G. npj Comput. Mater., 2016, 2, 16002 LINK [Google Scholar]
  67. Van Der Ven A., Thomas J. C., Xu Q., Swoboda B., and Morgan D. Phys. Rev. B, 2008, 78, (10), 104306 LINK [Google Scholar]
  68. Van der Ven A., Ceder G., Asta M., and Tepesch P. D. Phys. Rev. B, 2001, 64, (18), 184307 LINK [Google Scholar]
  69. Kang J., Chung H., Doh C., Kang B., and Han B. J. Power Sources, 2015, 293, 11 LINK [Google Scholar]
  70. He X., and Mo Y. Phys. Chem. Chem. Phys., 2015, 17, (27), 18035 LINK [Google Scholar]
  71. He X., Zhu Y., and Mo Y. Nature Commun., 2017, 8, 15893 LINK [Google Scholar]
  72. Griffith K. J., Seymour I. D., Hope M. A., Butala M. M., Lamontagne L. K., Preefer M. B., Koçer C. P., Henkelman G., Morris A. J., Cliffe M. J., Dutton S. E., and Grey C. P. J. Am. Chem. Soc., 2019, 141, (42), 16706 LINK [Google Scholar]
  73. Evans M. ‘Matador’, Rev. 063ab7ba, 2016: LINK (Accessed on 19th February 2020) [Google Scholar]
  74. Sanchez J. M., Ducastelle F., and Gratias D. Phys. A: Stat. Mech. Appl., 1984, 128, (1–2), 334 LINK [Google Scholar]
  75. Puchala B., and Van der Ven A. Phys. Rev. B, 2013, 88, (9), 094108 LINK [Google Scholar]
  76. Liu Y., Zhu Y., and Cui Y. Nature Energy, 2019, 4, (7), 540 LINK [Google Scholar]
  77. Loeffler N., Bresser D., Passerini S., and Copley M. Johnson Matthey Technol. Rev., 2015, 59, (1), 34 LINK [Google Scholar]
  78. Mayo M., Darby J. P., Evans M. L., Nelson J. R., and Morris A. J. Chem. Mater., 2018, 30, (15), 5516 LINK [Google Scholar]
  79. Wang J., Raistrick I. D., and Huggins R. A. J. Electrochem. Soc., 1986, 133, (3), 457 LINK [Google Scholar]
  80. Tarascon J.-M., and Armand M. Nature, 2001, 414, (6861), 359 LINK [Google Scholar]
  81. Kang B., and Ceder G. Nature, 2009, 458, (7235), 190 LINK [Google Scholar]
  82. Arbizzani C., Gabrielli G., and Mastragostino M. J. Power Sources, 2011, 196, (10), 4801 LINK [Google Scholar]
  83. Eweka E., Owen J. R., and Ritchie A. J. Power Sources, 1997, 65, (1–2), 247 LINK [Google Scholar]
  84. Harry K. J., Hallinan D. T., Parkinson D. Y., MacDowell A. A., and Balsara N. P. Nature Mater., 2014, 13, (1), 69 LINK [Google Scholar]
  85. Yu S., Schmidt R. D., Garcia-Mendez R., Herbert E., Dudney N. J., Wolfenstine J. B., Sakamoto J., and Siegel D. J. Chem. Mater., 2016, 28, (1), 197 LINK [Google Scholar]
  86. Monroe C., and Newman J. J. Electrochem. Soc., 2005, 152, (2), A396 LINK [Google Scholar]
  87. Ahmad Z., Xie T., Maheshwari C., Grossman J. C., and Viswanathan V. ACS Cent. Sci., 2018, 4, (8), 996 LINK [Google Scholar]
  88. Kamaya N., Homma K., Yamakawa Y., Hirayama M., Kanno R., Yonemura M., Kamiyama T., Kato Y., Hama S., Kawamoto K., and Mitsui A. Nature Mater., 2011, 10, (9), 682 LINK [Google Scholar]
  89. Kato Y., Hori S., Saito T., Suzuki K., Hirayama M., Mitsui A., Yonemura M., Iba H., and Kanno R. Nature Energy, 2016, 1, (4), 16030 LINK [Google Scholar]
  90. Zhu Y., He X., and Mo Y. ACS Appl. Mater. Interfaces, 2015, 7, (42), 23685 LINK [Google Scholar]
  91. Chen R., Qu W., Guo X., Li L., and Wu F. Mater. Horiz., 2016, 3, (6), 487 LINK [Google Scholar]
  92. Thangadurai V., Narayanan S., and Pinzaru D. Chem. Soc. Rev., 2014, 43, (13), 4714 LINK [Google Scholar]
  93. Zhu Z., Chu I.-H., and Ong S. P. Chem. Mater., 2017, 29, (6), 2474 LINK [Google Scholar]
  94. Wang X., Xiao R., Li H., and Chen L. Phys. Rev. Lett., 2017, 118, (19), 195901 LINK [Google Scholar]
  95. Ong S. P., Mo Y., Richards W. D., Miara L., Lee H. S., and Ceder G. Energy Environ. Sci., 2013, 6, (1), 148 LINK [Google Scholar]
  96. Bron P., Johansson S., Zick K., Schmedt auf der Günne J., Dehnen S., and Roling B. J. Am. Chem. Soc., 2013, 135, (42), 15694 LINK [Google Scholar]
  97. Kuhn A., Gerbig O., Zhu C., Falkenberg F., Maier J., and Lotsch B. V. Phys. Chem. Chem. Phys., 2014, 16, (28), 14669 LINK [Google Scholar]
  98. Fujimura K., Seko A., Koyama Y., Kuwabara A., Kishida I., Shitara K., Fisher C. A. J., Moriwake H., and Tanaka I. Adv. Energy Mater., 2013, 3, (8), 980 LINK [Google Scholar]
  99. Chu I. H., Nguyen H., Hy S., Lin Y. C., Wang Z., Xu Z., Deng Z., Meng Y. S., and Ong S. P. ACS Appl. Mater. Interfaces, 2016, 8, (12), 7843 LINK [Google Scholar]
  100. Mo Y., Ong S. P., and Ceder G. Chem. Mater., 2012, 24, (1), 15 LINK [Google Scholar]
  101. Al-Qawasmeh A., Howard J., and Holzwarth N. A. W. J. Electrochem. Soc., 2017, 164, (1), A6386 LINK [Google Scholar]
  102. Brant J. A., Massi D. M., Holzwarth N. A. W., Macneil J. H., Douvalis A. P., Bakas T., Martin S. W., Gross M. D., and Aitken J. A. Chem. Mater., 2015, 27, (1), 189 LINK [Google Scholar]
  103. Al-Qawasmeh A., and Holzwarth N. A. W. J. Electrochem. Soc., 2016, 163, (9), A2079 LINK [Google Scholar]
  104. Lepley N. D., Holzwarth N. A. W., and Du Y. A. Phys. Rev. B, 2013, 88, (10), 104103 LINK [Google Scholar]
  105. De Klerk N. J. J., Van Der Maas E., and Wagemaker M. ACS Appl. Energy Mater., 2018, 1, (7), 3230 LINK [Google Scholar]
  106. Meier K., Laino T., and Curioni A. J. Phys. Chem. C, 2014, 118, (13), 6668 LINK [Google Scholar]
  107. Jalem R., Yamamoto Y., Shiiba H., Nakayama M., Munakata H., Kasuga T., and Kanamura K. Chem. Mater., 2013, 25, (3), 425 LINK [Google Scholar]
  108. García Daza F. A., Bonilla M. R., Llordés A., Carrasco J., and Akhmatskaya E. ACS Appl. Mater. Interfaces, 2019, 11, (1), 753 LINK [Google Scholar]
  109. Deng Y., Eames C., Chotard J.-N., Lalère F., Seznec V., Emge S., Pecher O., Grey C. P., Masquelier C., and Islam M. S. J. Am. Chem. Soc., 2015, 137, (28), 9136 LINK [Google Scholar]
  110. Reddy M. A., Helen M., Groß A., Fichtner M., and Euchner H. ACS Energy Lett., 2018, 3, (12), 2851 LINK [Google Scholar]
  111. Hope M. A., Forse A. C., Griffith K. J., Lukatskaya M. R., Ghidiu M., Gogotsi Y., and Grey C. P. Phys. Chem. Chem. Phys., 2016, 18, (7), 5099 LINK [Google Scholar]
  112. Beladi-Mousavi S. M., and Pumera M. Chem. Soc. Rev., 2018, 47, (18), 6964 LINK [Google Scholar]
  113. Bhauriyal P., Mahata A., and Pathak B. J. Phys. Chem. C, 2018, 122, (5), 2481 LINK [Google Scholar]
  114. Shi L., Zhao T. S., Xu A., and Xu J. B. J. Mater. Chem. A, 2016, 4, (42), 16377 LINK [Google Scholar]
  115. Kirklin S., Meredig B., and Wolverton C. Adv. Energy Mater., 2013, 3, (2), 252 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error