Skip to content
Volume 64, Issue 2
  • ISSN: 2056-5135


The adsorption and diffusion of species in activated carbons is fundamental to many processes in catalysis and energy storage. Nuclear magnetic resonance (NMR) gives an insight into the molecular-level mechanisms of these phenomena thanks to the unique magnetic shielding properties of the porous carbon structure, which allows adsorbed (in-pore) species to be distinguished from those in the bulk (ex-pore). In this work we investigate exchange dynamics between ex-pore and in-pore solvent species in microporous carbons using a combination of one-dimensional (1D) and two-dimensional (2D) NMR experiments. We systematically compare the effects of four variables: particle size, porosity, solvent polarity and solvent viscosity to build up a picture of how these factors influence the exchange kinetics. We show that exchange rates are greater in smaller and more highly activated carbon particles, which is expected due to the shorter in-pore–ex-pore path length and faster diffusion in large pores. Our results also show that in-pore–ex-pore exchange of apolar solvents is slower than water, suggesting that the hydrophobic chemistry of the carbon surface plays a role in the diffusion kinetics, and that increased viscosity also reduces the exchange kinetics. Our results also suggest the importance of other parameters, such as molecular diameter and solvent packing in micropores.


Article metrics loading...

Loading full text...

Full text loading...



  1. Harris R. K., Thompson T. V., Norman P. R., and Pottage C. J. Chem. Soc. Faraday Trans., 1996, 92, (14), 2615 LINK [Google Scholar]
  2. von Ragué Schleyer P., Maerker C., Dransfeld A., Jiao H., and van Eikema Hommes N. J. R. J. Am. Chem. Soc., 1996, 118, (26), 6317 LINK [Google Scholar]
  3. Borchardt L., Oschatz M., Paasch S., Kaskel S., and Brunner E. Phys. Chem. Chem. Phys., 2013, 15, (36), 15177 LINK [Google Scholar]
  4. Forse A. C., Griffin J. M., Wang H., Trease N. M., Presser V., Gogotsi Y., Simon P., and Grey C. P. Phys. Chem. Chem. Phys., 2013, 15, (20), 7722 LINK [Google Scholar]
  5. Forse A. C., Griffin J. M., Presser V., Gogotsi Y., and Grey C. P. J. Phys. Chem. C, 2014, 118, (14), 7508 LINK [Google Scholar]
  6. Xing Y.-Z., Luo Z.-X., Kleinhammes A., and Wu Y. Carbon, 2014, 77, 1132 LINK [Google Scholar]
  7. Hwang S., and Kaärger J. Magn. Reson. Imaging, 2019, 56, 3 LINK [Google Scholar]
  8. Furtado F., Galvosas P., Gonçalves M., Kopinke F.-D., Naumov S., Rodríguez-Reinoso F., Roland U., Valiullin R., and Kärger J. Micro. Meso. Mater., 2011, 141, (1–3), 184 LINK [Google Scholar]
  9. Alam T. M., and Osborn Popp T. M. Chem. Phys. Lett., 2016, 658, 51 LINK [Google Scholar]
  10. Forse A. C., Griffin J. M., Merlet C., Carretero-Gonzalez J., Raji A.-R. O., Trease N. M., and Grey C. P. Nature Energy, 2017, 2, (3), 16216 LINK [Google Scholar]
  11. Macura S., Huang Y., Suter D., and Ernst R. R. J. Magn. Reson., 1981, 43, (2), 259 LINK [Google Scholar]
  12. Levitt M. H. “Spin Dynamics – Basics of Nuclear Magnetic Resonance”, John Wiley and Sons Ltd, Chichester, UK, 2001, 686 pp [Google Scholar]
  13. Bain A. D. Prog. Nucl. Magn. Reson. Spectrosc., 2003, 43, (3–4), 63 LINK [Google Scholar]
  14. Griffin J. M., Forse A. C., Wang H., Trease N. M., Taberna P.-L., Simon P., and Grey C. P. Faraday Discuss., 2014, 176, 49 LINK [Google Scholar]
  15. Fulik N., Hippauf F., Leistenschneider D., Paasch S., Kaskel S., Brunner E., and Borchardt L. Energy Storage Mater., 2018, 12, 183 LINK [Google Scholar]
  16. Cervini L., Lynes O. D., Akien G. R., Kerridge A., Barrow N. S., and Griffin J. M. Energy Storage Mater., 2019, 21, 335 LINK [Google Scholar]
  17. Merlet C., Forse A. C., Griffin J. M., Frenkel D., and Grey C. P. J. Chem. Phys., 2015, 142, (9), 094701 LINK [Google Scholar]
  18. Cansado I. P. P., Gonçalves F. A. M. M., Carrott P. J. M., and Ribeiro Carrott M. M. L. Carbon, 2007, 45, (12), 2454 LINK [Google Scholar]
  19. Anderson R. J., McNicholas T. P., Kleinhammes A., Wang A., Liu J., and Wu Y. J. Am. Chem. Soc., 2010, 132, (25), 8618 LINK [Google Scholar]
  20. Luo Z.-X., Xing Y.-Z., Ling Y.-C., Kleinhammes A., and Wu Y. Nature Commun., 2015, 6, 6358 LINK [Google Scholar]
  21. Wang H., Forse A. C., Griffin J. M., Trease N. M., Trognko L., Taberna P.-L., Simon P., and Grey C. P. J. Am. Chem. Soc., 2013, 135, (50), 18968 LINK [Google Scholar]
  22. Vold R. L., and Hoatson G. L. J. Magn. Reson., 2009, 198, (1), 57 LINK [Google Scholar]
  23. Diallo S. O. Phys. Rev. E, 2015, 92, (1), 012312 LINK [Google Scholar]
  24. Cadar C., and Ardelean I. Magn. Reson. Chem., 2019, 57, (10), 829 LINK [Google Scholar]
  25. Tsimpanogiannis I. N., Moultos O. A., Franco L. F. M., de M. B., Spera M., Erdős M., and Economou I. G. Mol. Simul., 2019, 45, (4–5), 425 LINK [Google Scholar]
  26. Holz M., Heil S. R., and Sacco A. Phys. Chem. Chem. Phys., 2000, 2, (20), 4740 LINK [Google Scholar]
  27. Fomin Y. D., Ryzhov V. N., and Tsiok E. N. J. Chem. Phys., 2015, 143, (18), 184702 LINK [Google Scholar]
  28. Shimoyama T., Tashima K., and Ruike M. Coll. Surf. A: Physicochem. Eng. Asp., 2017, 533, 255 LINK [Google Scholar]
  29. Fukano M., Fujimori T., Ségalini J., Iwama E., Taberna P.-L., Iiyama T., Ohba T., Kanoh H., Gogotsi Y., Simon P., and Kaneko K. J. Phys. Chem. C, 2013, 117, (11), 5752 LINK [Google Scholar]
  30. Griffin J. ‘Observing Solvent Dynamics in Porous Carbons by Nuclear Magnetic Resonance’, Dataset, Research Directory, Lancaster University, UK, 2019 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error