Skip to content
1887
Volume 65, Issue 1
  • ISSN: 2056-5135

Abstract

Palladium based membranes are widely used for supplying ultra-high purity hydrogen to a polymer electrolyte fuel cell (PEFC) installed on small vehicles and various electronic devices. Compared to pressure swing adsorption (PSA), the use of palladium based membrane is more economical for small size (small capacity) applications. The transportation of hydrogen through a palladium based membrane is governed by Sieverts’ Law and quantified with Fick’s First Law. Since the 20th century, the fabrication of high-performance palladium based membrane for enhanced hydrogen recovery performance has become practical. However, along with the improvement in hydrogen recovery performance, concentration polarisation becomes unavoidable because hydrogen permeation flux starts to affect hydrogen concentration at the membrane surface. Various parametric studies have investigated the effects of membrane thickness, hydrogen molar fraction and total upstream and downstream pressures on concentration polarisation level. The influence of membrane temperature, permeability, type and number of species in the hydrogen mixture, diffusivity of the hydrogen mixture, system configurations and flow patterns are also reported and comprehensively reviewed in this paper. Part II will complete the presentation.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15814149544965
2021-01-01
2024-02-24
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/1/Rahman__16a_Imp_PART_I.html?itemId=/content/journals/10.1595/205651320X15814149544965&mimeType=html&fmt=ahah

References

  1. Carcadea E., Ene H., Ingham D. B., Lazar R., Ma L., Pourkashanian M., and Stefanescu I. Int. Commun. Heat Mass Transf., 2005, 32, (10), 1273 LINK https://doi.org/10.1016/j.icheatmasstransfer.2005.07.006 [Google Scholar]
  2. Emonts B., Bøgild Hansen J., Lœgsgaard Jørgensen S., Höhlein B., and Peters R. J. Power Sources, 1998, 71, (1–2), 288 LINK https://doi.org/10.1016/s0378-7753(97)02724-9 [Google Scholar]
  3. Kikuchi E. Catal. Today, 2000, 56, (1–3), 97 LINK https://doi.org/10.1016/s0920-5861(99)00256-4 [Google Scholar]
  4. Arstad B., Venvik H., Klette H., Walmsley J. C., Tucho W. M., Holmestad R., Holmen A., and Bredesen R. Catal. Today, 2006, 118, (1–2), 63 LINK https://doi.org/10.1016/j.cattod.2006.01.041 [Google Scholar]
  5. Basile A., Tereschenko G., Orekhova N., Ermilova M. M., Gallucci F., and Iulianel A. Int. J. Hydrogen Energy, 2006, 31, (12), 1615 LINK https://doi.org/10.1016/j.ijhydene.2005.12.013 [Google Scholar]
  6. Basile A., Tosti S., Capannelli G., Vitulli G., Iulianelli A., Gallucci F., and Drioli E. Catal. Today, 2006, 118, (1–2), 237 LINK https://doi.org/10.1016/j.cattod.2006.05.086 [Google Scholar]
  7. Iulianelli A., Longo T., and Basile A. Int. J. Hydrogen Energy, 2008, 33, (20), 5583 LINK https://doi.org/10.1016/j.ijhydene.2008.07.044 [Google Scholar]
  8. Damle A. S. J. Power Sources, 2009, 186, (1), 167 LINK https://doi.org/10.1016/j.jpowsour.2008.09.059 [Google Scholar]
  9. Israni S. H., and Harold M. P. J. Membr. Sci., 2011, 369, (1–2), 375 LINK https://doi.org/10.1016/j.memsci.2010.12.029 [Google Scholar]
  10. Gepert V., Kilgus M., Schiestel T., Brunner H., Eigenberger G., and Merten C. Fuel Cells, 2006, 6, (6), 472 LINK https://doi.org/10.1002/fuce.200600018 [Google Scholar]
  11. Fujimoto S., Ishihara H., and Tsuruno S. JSME Int. J., 1987, 30, (267), 1437 LINK https://doi.org/10.1299/jsme1987.30.1437 [Google Scholar]
  12. Kusakabe K. Membrane, 2005, 30, (1), 2 LINK https://doi.org/10.5360/membrane.30.2 [Google Scholar]
  13. Narusawa K., Hayashida M., Kurashima D., Wakabayashi K., and Kamiya Y. JSME Int. J. Ser. B, 2003, 46, (4), 643 LINK https://doi.org/10.1299/jsmeb.46.643 [Google Scholar]
  14. Narusawa K., Hayashida M., Kurashima D., Murooka K., Wakabayashi K., and Kamiya Y. Trans. Japan Soc. Mech. Eng. Ser. B, 2003, 69, (687), 2553 LINK https://doi.org/10.1299/kikaib.69.2553 [Google Scholar]
  15. Lee J.-Y., Joo J., Lee J. K., Uhm S., Lee E. S., Jang J. H., Kim N.-K., Lee Y.-C., and Lee J. Korean J. Chem. Eng., 2010, 27, (3), 843 LINK https://doi.org/10.1007/s11814-010-0141-7 [Google Scholar]
  16. Höhlein B., Boe M., Bøgild-Hansen J., Bröckerhoff P., Colsman G., Emonts B., Menzer R., and Riedel E. J. Power Sources, 1996, 61, (1–2), 143 LINK https://doi.org/10.1016/s0378-7753(96)02357-9 [Google Scholar]
  17. Grashoff G. J., Pilkington C. E., and Corti C. W. Platinum Metals Rev., 1983, 27, (4), 157 LINK https://www.technology.matthey.com/article/27/4/157-169/ [Google Scholar]
  18. Lin Y.-M., and Rei M.-H. Sep. Purif. Technol., 2001, 25, (1–3), 87 LINK https://doi.org/10.1016/s1383-5866(01)00094-6 [Google Scholar]
  19. Basile A., Iulianelli A., Longo T., Liguori S., De Falco M., ‘Pd-Based Selective Membrane State-of-the-Art’, in “Membrane Reactors for Hydrogen Production Processes”, eds. De Falco M., Marrelli L., and Iaquaniello G. Springer-Verlag London Ltd, London, UK, 2011, pp. 21–55 LINK https://doi.org/10.1007/978-0-85729-151-6_2 [Google Scholar]
  20. Peters T. A., Polfus J. M., Stange M., Veenstra P., Nijmeijer A., and Bredesen R. Fuel Process. Technol., 2016, 152, 259 LINK https://doi.org/10.1016/j.fuproc.2016.06.012 [Google Scholar]
  21. Gallucci F., Fernandez E., Corengia P., and van Sint Annaland M. Chem. Eng. Sci., 2013, 92, 40 LINK https://doi.org/10.1016/j.ces.2013.01.008 [Google Scholar]
  22. Israni S. H., and Harold M. P. Ind. Eng. Chem. Res., 2010, 49, (21), 10242 LINK https://doi.org/10.1021/ie1005178 [Google Scholar]
  23. Zhao L., Goldbach A., Bao C., and Xu H. J. Membr. Sci., 2015, 496, 301 LINK https://doi.org/10.1016/j.memsci.2015.08.046 [Google Scholar]
  24. Chen C.-H., and Ma Y. H. J. Membr. Sci., 2010, 362, (1–2), 535 LINK https://doi.org/10.1016/j.memsci.2010.07.002 [Google Scholar]
  25. Zhang J., Xu H., and Li W. J. Membr. Sci., 2006, 277, (1–2), 85 LINK https://doi.org/10.1016/j.memsci.2005.10.014 [Google Scholar]
  26. Dannetun H., Wilzén L., and Petersson L.-G. Surf. Sci., 1996, 357–358, 804 LINK https://doi.org/10.1016/0039-6028(96)00269-5 [Google Scholar]
  27. Uemiya S., Sato N., Ando H., Kude Y., Matsuda T., and Kikuchi E. J. Membr. Sci., 1991, 56, (3), 303 LINK https://doi.org/10.1016/s0376-7388(00)83040-9 [Google Scholar]
  28. Al-Mufachi N. A., Rees N. V, and Steinberger-Wilkens R. Renew. Sustain. Energy Rev., 2015, 47, 540 LINK https://doi.org/10.1016/j.rser.2015.03.026 [Google Scholar]
  29. Holleck G. L. J. Phys. Chem., 1970, 74, (3), 503 LINK https://doi.org/10.1021/j100698a005 [Google Scholar]
  30. Sieverts A., and Zapf G. Zeit. Phys. Chem., 1935, 174, (1), 359 LINK https://doi.org/10.1515/zpch-1935-17433 [Google Scholar]
  31. Baker R. W. “Membrane Technology and Applications”, 3rd Edn., John Wiley and Sons Ltd, Chichester, UK, 2012, 575 pp [Google Scholar]
  32. Ma Y. H., ‘Hydrogen Separation Membranes’, in “Advanced Membrane Technology and Applications”, eds. Li N. N., Fane A. G., Ho W. S. W., and Matsuura T. John Wiley & Sons Inc, Hoboken, USA, 2008, pp. 671–684 [Google Scholar]
  33. Ward T. L., and Dao T. J. Membr. Sci., 1999, 153, (2), 211 LINK https://doi.org/10.1016/s0376-7388(98)00256-7 [Google Scholar]
  34. Guazzone F., Engwall E. E., and Ma Y. H. Catal. Today, 2006, 118, (1–2), 24 LINK https://doi.org/10.1016/j.cattod.2005.12.010 [Google Scholar]
  35. Uemiya S., Matsuda T., and Kikuchi E. J. Membr. Sci., 1991, 56, (3), 315 LINK https://doi.org/10.1016/s0376-7388(00)83041-0 [Google Scholar]
  36. Collins J. P., and Way J. D. Ind. Eng. Chem. Res., 1993, 32, (12), 3006 LINK https://doi.org/10.1021/ie00024a008 [Google Scholar]
  37. Antoniazzi A. B., Haasz A. A., and Stangeby P. C. J. Nucl. Mater., 1989, 162–164, 1065 LINK https://doi.org/10.1016/0022-3115(89)90410-8 [Google Scholar]
  38. Yan S., Maeda H., Kusakabe K., and Morooka S. Ind. Eng. Chem. Res., 1994, 33, (3), 616 LINK https://doi.org/10.1021/ie00027a019 [Google Scholar]
  39. Chen W.-H., Syu W.-Z., and Hung C.-I. Int. J. Hydrogen Energy, 2011, 36, (22), 14734 LINK https://doi.org/10.1016/j.ijhydene.2011.08.043 [Google Scholar]
  40. Catalano J., Baschetti M. G., and Sarti G. C. J. Membr. Sci., 2009, 339, (1–2), 57 LINK https://doi.org/10.1016/j.memsci.2009.04.032 [Google Scholar]
  41. Chen W.-H., Syu W.-Z., Hung C.-I., Lin Y.-L., and Yang C.-C. Int. J. Hydrogen Energy, 2012, 37, (17), 12666 LINK https://doi.org/10.1016/j.ijhydene.2012.05.128 [Google Scholar]
  42. He G., Mi Y., Yue P. L., and Chen G. J. Membr. Sci., 1999, 153, (2), 243 LINK https://doi.org/10.1016/s0376-7388(98)00257-9 [Google Scholar]
  43. Caravella A., Hara S., Drioli E., and Barbieri G. Int. J. Hydrogen Energy, 2013, 38, (36), 16229 LINK https://doi.org/10.1016/j.ijhydene.2013.09.102 [Google Scholar]
  44. Coroneo M., Montante G., and Paglianti A. Ind. Eng. Chem. Res., 2010, 49, (19), 9300 LINK https://doi.org/10.1021/ie100840z [Google Scholar]
  45. Lüdtke O., Behling R.-D., and Ohlrogge K. J. Membr. Sci., 1998, 146, (2), 145 LINK https://doi.org/10.1016/s0376-7388(98)00104-5 [Google Scholar]
  46. Adhikari S., and Fernando S. Ind. Eng. Chem. Res., 2006, 45, (3), 875 LINK https://doi.org/10.1021/ie050644l [Google Scholar]
  47. Rei M. H. J. Taiwan Inst. Chem. Eng., 2009, 40, (3), 238 LINK https://doi.org/10.1016/j.jtice.2008.12.011 [Google Scholar]
  48. Li H., Caravella A., and Xu H. Y. J. Mater. Chem. A, 2016, 4, (37), 14069 LINK https://doi.org/10.1039/c6ta05380g [Google Scholar]
  49. Conde J. J., Maroño M., and Sánchez-Hervás J. M. Sep. Purif. Rev., 2017, 46, (2), 152 LINK https://doi.org/10.1080/15422119.2016.1212379 [Google Scholar]
  50. Peters T., and Caravella A. Membranes, 2019, 9, (2), 25 LINK https://doi.org/10.3390/membranes9020025 [Google Scholar]
  51. Zhang J., Liu D., He M., Xu H., and Li W. J. Membr. Sci., 2006, 274, (1–2), 83 LINK https://doi.org/10.1016/j.memsci.2005.07.047 [Google Scholar]
  52. Pizzi D., Worth R., Baschetti M. G., Sarti G. C., and Noda K. J. Membr. Sci., 2008, 325, (1), 446 LINK https://doi.org/10.1016/j.memsci.2008.08.020 [Google Scholar]
  53. Caravella A., Barbieri G., and Drioli E. Sep. Purif. Technol., 2009, 66, (3), 613 LINK https://doi.org/10.1016/j.seppur.2009.01.008 [Google Scholar]
  54. Caravella A., Scura F., Barbieri G., and Drioli E. J. Phys. Chem. B, 2010, 114, (38), 12264 LINK https://doi.org/10.1021/jp104767q [Google Scholar]
  55. Faizal H. M., Kizu R., Kawamura Y., Yokomori T., and Ueda T. J. Therm. Sci. Technol., 2013, 8, (1), 120 LINK https://doi.org/10.1299/jtst.8.120 [Google Scholar]
  56. Chen W.-H., Syu W.-Z., Hung C.-I., Lin Y.-L., and Yang C.-C. Int. J. Hydrogen Energy, 2013, 38, (2), 1145 LINK https://doi.org/10.1016/j.ijhydene.2012.10.068 [Google Scholar]
  57. Chen W.-H., Hsia M.-H., Chi Y.-H., Lin Y.-L., and Yang C.-C. Appl. Energy, 2014, 113, 41 LINK https://doi.org/10.1016/j.apenergy.2013.07.014 [Google Scholar]
  58. Chen W.-H., Lin C.-H., and Lin Y.-L. J. Membr. Sci., 2014, 472, 45 LINK https://doi.org/10.1016/j.memsci.2014.08.041 [Google Scholar]
  59. Nekhamkina O., and Sheintuch M. Chem. Eng. J., 2015, 260, 835 LINK https://doi.org/10.1016/j.cej.2014.09.049 [Google Scholar]
  60. Faizal H. M., Kawasaki Y., Yokomori T., and Ueda T. Sep. Purif. Technol., 2015, 149, 208 LINK https://doi.org/10.1016/j.seppur.2015.05.003 [Google Scholar]
  61. Nakajima T., Kume T., Ikeda Y., Shiraki M., Kurokawa H., Iseki T., Kajitani M., Tanaka H., Hikosaka H., Takagi Y., and Ito M. Int. J. Hydrogen Energy, 2015, 40, (35), 11451 LINK https://doi.org/10.1016/j.ijhydene.2015.03.088 [Google Scholar]
  62. Caravella A., and Sun Y. Int. J. Hydrogen Energy, 2016, 41, (27), 11653 LINK https://doi.org/10.1016/j.ijhydene.2015.12.068 [Google Scholar]
  63. Kian K., Woodall C. M., Wilcox J., and Liguori S. Environments, 2018, 5, (12), 128 LINK https://doi.org/10.3390/environments5120128 [Google Scholar]
  64. Helmi A., Voncken R. J. W., Raijmakers A. J., Roghair I., Gallucci F., and van Sint Annaland M. Chem. Eng. J., 2018, 332, 464 LINK https://doi.org/10.1016/j.cej.2017.09.045 [Google Scholar]
  65. Unemoto A., Kaimai A., Sato K., Otake T., Yashiro K., Mizusaki J., Kawada T., Tsuneki T., Shirasaki Y., and Yasuda I. Int. J. Hydrogen Energy, 2007, 32, (14), 2881 LINK https://doi.org/10.1016/j.ijhydene.2007.03.037 [Google Scholar]
  66. Faizal H. M., Kuwabara M., Kizu R., Yokomori T., and Ueda T. J. Therm. Sci. Technol., 2012, 7, (1), 135 LINK https://doi.org/10.1299/jtst.7.135 [Google Scholar]
  67. Hou K., and Hughes R. J. Membr. Sci., 2002, 206, (1–2), 119 LINK https://doi.org/10.1016/s0376-7388(01)00770-0 [Google Scholar]
  68. Mourgues A., and Sanchez J. J. Membr. Sci., 2005, 252, (1–2), 133 LINK https://doi.org/10.1016/j.memsci.2004.11.024 [Google Scholar]
  69. Jung S. H., Kusakabe K., Morooka S., and Kim S.-D. J. Membr. Sci., 2000, 170, (1), 53 LINK https://doi.org/10.1016/S0376-7388(99)00357-9 [Google Scholar]
  70. Liang W., and Hughes R. Chem. Eng. J., 2005, 112, (1–3), 81 LINK https://doi.org/10.1016/j.cej.2005.06.010 [Google Scholar]
  71. Amano M., Nishimura C., and Komaki M. Mater. Trans. JIM, 1990, 31, (5), 404 LINK https://doi.org/10.2320/matertrans1989.31.404 [Google Scholar]
  72. Amandusson H., Ekedahl L.-G., and Dannetun H. Appl. Surf. Sci., 2000, 153, (4), 259 LINK https://doi.org/10.1016/s0169-4332(99)00357-8 [Google Scholar]
  73. Li A., Liang W., and Hughes R. J. Membr. Sci., 2000, 165, (1), 135 LINK https://doi.org/10.1016/s0376-7388(99)00223-9 [Google Scholar]
  74. Nguyen T. H., Mori S., and Suzuki M. Chem. Eng. J., 2009, 155, (1–2), 55 LINK https://doi.org/10.1016/j.cej.2009.06.024 [Google Scholar]
  75. Hara S., Sakaki K., and Itoh N. Ind. Eng. Chem. Res., 1999, 38, (12), 4913 LINK https://doi.org/10.1021/ie990200n [Google Scholar]
  76. Chen W.-H., Lin C.-N., Chi Y.-H., and Lin Y.-L. Int. J. Energy Res., 2017, 41, (11), 1579 LINK https://doi.org/10.1002/er.3735 [Google Scholar]
  77. Barbieri G., Scura F., Lentini F., De Luca G., and Drioli E. Sep. Purif. Technol., 2008, 61, (2), 217 LINK https://doi.org/10.1016/j.seppur.2007.10.010 [Google Scholar]
  78. Faizal H. M., Yokomori T., and Ueda T. ‘Numerical Investigation on Hydrogen Permeation through Pd/Ag Membrane for H2/N2 Mixture Stagnating Flow’, 24th International Symposium on Transport Phenomena (ISTP-24),Yamaguchi, Japan,1st–5th November, 2013 [Google Scholar]
  79. Nagy E., Nagy R., and Dudas J. Ind. Eng. Chem. Res., 2013, 52, (31), 10441 LINK https://doi.org/10.1021/ie302264j [Google Scholar]
  80. Nagy E. Sep. Purif. Technol., 2010, 73, (2), 194 LINK https://doi.org/10.1016/j.seppur.2010.03.025 [Google Scholar]
  81. Nagy E. ‘Diffusive Plus Convective Mass Transport Through a Plane Membrane Layer: 5.2 Mass Transport Without Chemical Reaction’, “Basic Equation of Mass Transport Through a Membrane Layer”, Ch. 5, Elsevier Inc, Amsterdam, The Netherlands, 2012, p. 121 [Google Scholar]
  82. Gallucci F., Basile A., Tosti S., Iulianelli A., and Drioli E. Int. J. Hydrogen Energy, 2007, 32, (9), 1201 LINK https://doi.org/10.1016/j.ijhydene.2006.11.019 [Google Scholar]
  83. Gallucci F., De Falco M., Tosti S., Marrelli L., and Basile A. Int. J. Hydrogen Energy, 2008, 33, (21), 6165 LINK https://doi.org/10.1016/j.ijhydene.2008.07.026 [Google Scholar]
  84. Gallucci F., and Basile A. Int. J. Hydrogen Energy, 2006, 31, (15), 2243 LINK https://doi.org/10.1016/j.ijhydene.2006.05.007 [Google Scholar]
  85. Chen W. H., Chung Y. C., and Liu J. L. Int. Commun. Heat Mass Transf., 2005, 32, (5), 695 LINK https://doi.org/10.1016/j.icheatmasstransfer.2004.10.019 [Google Scholar]
  86. Faizal H. M., Nyakuma B. B., Rahman M. R. A., Rahman Md. Mizanur, Kamaruzaman N. B., and Syahrullail S. Johnson Matthey Technol. Rev., 2021, 65, (1), 77https://www.technology.matthey.com/article/65/1/77-86/ [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651320X15814149544965
Loading
/content/journals/10.1595/205651320X15814149544965
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error