Skip to content
1887
Volume 65, Issue 1
  • ISSN: 2056-5135

Abstract

This article completes the presentation of various techniques reducing concentration polarisation in palladium based membranes for supplying ultra-high purity hydrogen to a polymer electrolyte fuel cell (PEFC), such as the implementation of baffles and the use of microchannel configuration. The present paper also reviews and reports the current methods for estimating hydrogen permeation flux under concentration polarisation influence, which will be a useful guide for academics and industrial practitioners.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16019176538189
2021-01-01
2024-02-28
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/1/Rahman__16a_Imp_PART_II.html?itemId=/content/journals/10.1595/205651321X16019176538189&mimeType=html&fmt=ahah

References

  1. Gallucci F., Basile A., Tosti S., Iulianelli A., and Drioli E. Int. J. Hydrogen Energy, 2007, 32, (9), 1201 LINK https://doi.org/10.1016/j.ijhydene.2006.11.019 [Google Scholar]
  2. Miguel C. V., Mendes A., Tosti S., and Madeira L. M. Int. J. Hydrogen Energy, 2012, 37, (17), 12680 LINK https://doi.org/10.1016/j.ijhydene.2012.05.131 [Google Scholar]
  3. Gallucci F., Chiaravalloti F., Tosti S., Drioli E., and Basile A. Int. J. Hydrogen Energy, 2007, 32, (12), 1837 LINK https://doi.org/10.1016/j.ijhydene.2006.09.034 [Google Scholar]
  4. Barbieri G., Scura F., Lentini F., De Luca G., and Drioli E. Sep. Purif. Technol., 2008, 61, (2), 217 LINK https://doi.org/10.1016/j.seppur.2007.10.010 [Google Scholar]
  5. Incropera F. P., and DeWitt D. P. “Fundamentals of Heat and Mass Transfer”,4th Edn., John Wiley & Sons, Inc., Hoboken, USA, 1996 [Google Scholar]
  6. Chen W.-H., Syu W.-Z., Hung C.-I., Lin Y.-L., and Yang C.-C. Int. J. Hydrogen Energy, 2012, 37, (17), 12666 LINK https://doi.org/10.1016/j.ijhydene.2012.05.128 [Google Scholar]
  7. Chen W.-H., Syu W.-Z., Hung C.-I., Lin Y.-L., and Yang C.-C. Int. J. Hydrogen Energy, 2013, 38, (2), 1145 LINK https://doi.org/10.1016/j.ijhydene.2012.10.068 [Google Scholar]
  8. Coroneo M., Montante G., and Paglianti A. Ind. Eng. Chem. Res., 2010, 49, (19), 9300 LINK https://doi.org/10.1021/ie100840z [Google Scholar]
  9. Chen W.-H., Lin C.-H., and Lin Y.-L. J. Membr. Sci., 2014, 472, 45 LINK https://doi.org/10.1016/j.memsci.2014.08.041 [Google Scholar]
  10. Faizal H. M., Kizu R., Kawamura Y., Yokomori T., and Ueda T. J. Therm. Sci. Technol., 2013, 8, (1), 120 LINK https://doi.org/10.1299/jtst.8.120 [Google Scholar]
  11. Chen W.-H., Hsia M.-H., Chi Y.-H., Lin Y.-L., and Yang C.-C. Appl. Energy, 2014, 113, 41 LINK https://doi.org/10.1016/j.apenergy.2013.07.014 [Google Scholar]
  12. Catalano J., Baschetti M. G., and Sarti G. C. J. Membr. Sci., 2009, 339, (1–2), 57 LINK https://doi.org/10.1016/j.memsci.2009.04.032 [Google Scholar]
  13. Zhao L., Goldbach A., Bao C., and Xu H. J. Membr. Sci., 2015, 496, 301 LINK https://doi.org/10.1016/j.memsci.2015.08.046 [Google Scholar]
  14. Faizal H. M., Kawasaki Y., Yokomori T., and Ueda T. Sep. Purif. Technol., 2015, 149, 208 LINK https://doi.org/10.1016/j.seppur.2015.05.003 [Google Scholar]
  15. Nakajima T., Kume T., Ikeda Y., Shiraki M., Kurokawa H., Iseki T., Kajitani M., Tanaka H., Hikosaka H., Takagi Y., and Ito M. Int. J. Hydrogen Energy, 2015, 40, (35), 11451 LINK https://doi.org/10.1016/j.ijhydene.2015.03.088 [Google Scholar]
  16. Chen W.-H., Syu W.-Z., and Hung C.-I. Int. J. Hydrogen Energy, 2011, 36, (22), 14734 LINK https://doi.org/10.1016/j.ijhydene.2011.08.043 [Google Scholar]
  17. Nekhamkina O., and Sheintuch M. J. Membr. Sci., 2016, 500, 136 LINK https://doi.org/10.1016/j.memsci.2015.11.027 [Google Scholar]
  18. Kian K., Woodall C. M., Wilcox J., and Liguori S. Environments, 2018, 5, (12), 128 LINK https://doi.org/10.3390/environments5120128 [Google Scholar]
  19. Helmi A., Voncken R. J. W., Raijmakers A. J., Roghair I., Gallucci F., and van Sint Annaland M. Chem. Eng. J., 2018, 332, 464 LINK https://doi.org/10.1016/j.cej.2017.09.045 [Google Scholar]
  20. Caravella A., Melone L., Sun Y., Brunetti A., Drioli E., and Barbieri G. Int. J. Hydrogen Energy, 2016, 41, (4), 2660 LINK https://doi.org/10.1016/j.ijhydene.2015.12.141 [Google Scholar]
  21. Helmi A., Fernandez E., Melendez J., Tanaka D. A. P., Gallucci F., and van Sint Annaland M. Molecules, 2016, 21, (3), 376 LINK https://doi.org/10.3390/molecules21030376 [Google Scholar]
  22. Peters T. A., Polfus J. M., Stange M., Veenstra P., Nijmeijer A., and Bredesen R. Fuel Process. Technol., 2016, 152, 259 LINK https://doi.org/10.1016/j.fuproc.2016.06.012 [Google Scholar]
  23. Mejdell A. L., Jøndahl M., Peters T. A., Bredesen R., and Venvik H. J. J. Membr. Sci., 2009, 327, (1–2), 6 LINK https://doi.org/10.1016/j.memsci.2008.11.028 [Google Scholar]
  24. Boeltken T., Belimov M., Pfeifer P., Peters T. A., Bredesen R., and Dittmeyer R. Chem. Eng. Process.: Process Intensif., 2013, 67, 136 LINK https://doi.org/10.1016/j.cep.2012.06.009 [Google Scholar]
  25. Peters T. A., Rørvik P. M., Sunde T. O., Stange M., Roness F., Reinertsen T. R., Ræder J. H., Larring Y., and Bredesen R. Energy Proc., 2017, 114, 37 LINK https://doi.org/10.1016/j.egypro.2017.03.1144 [Google Scholar]
  26. Wunsch A., Kant P., Mohr M., Haas-Santo K., Pfeifer P., and Dittmeyer R. Membranes, 2018, 8, (4), 107 LINK https://doi.org/10.3390/membranes8040107 [Google Scholar]
  27. Chen S. C., Hung C. C. Y., Tu G. C., and Rei M. H. Int. J. Hydrogen Energy, 2008, 33, (7), 1880 LINK https://doi.org/10.1016/j.ijhydene.2007.12.016 [Google Scholar]
  28. Caravella A., Barbieri G., and Drioli E. Sep. Purif. Technol., 2009, 66, (3), 613 LINK https://doi.org/10.1016/j.seppur.2009.01.008 [Google Scholar]
  29. Caravella A., Barbieri G., and Drioli E. Chem. Eng. Sci., 2008, 63, (8), 2149 LINK https://doi.org/10.1016/j.ces.2008.01.009 [Google Scholar]
  30. Caravella A., and Sun Y. Int. J. Hydrogen Energy, 2016, 41, (27), 11653 LINK https://doi.org/10.1016/j.ijhydene.2015.12.068 [Google Scholar]
  31. Caravella A., Scura F., Barbieri G., and Drioli E. J. Phys. Chem. B, 2010, 114, (38), 12264 LINK https://doi.org/10.1021/jp104767q [Google Scholar]
  32. Mourgues A., and Sanchez J. J. Membr. Sci., 2005, 252, (1–2), 133 LINK https://doi.org/10.1016/j.memsci.2004.11.024 [Google Scholar]
  33. Faizal H. M., Kuwabara M., Kizu R., Yokomori T., and Ueda T. J. Therm. Sci. Technol., 2012, 7, (1), 135 LINK https://doi.org/10.1299/jtst.7.135 [Google Scholar]
  34. Arstad B., Venvik H., Klette H., Walmsley J. C., Tucho W. M., Holmestad R., Holmen A., and Bredesen R. Catal. Today, 2006, 118, (1–2), 63 LINK https://doi.org/10.1016/j.cattod.2006.01.041 [Google Scholar]
  35. Unemoto A., Kaimai A., Sato K., Otake T., Yashiro K., Mizusaki J., Kawada T., Tsuneki T., Shirasaki Y., and Yasuda I. Int. J. Hydrogen Energy, 2007, 32, (14), 2881 LINK https://doi.org/10.1016/j.ijhydene.2007.03.037 [Google Scholar]
  36. Damle A. S. J. Power Sources, 2009, 186, (1), 167 LINK https://doi.org/10.1016/j.jpowsour.2008.09.059 [Google Scholar]
  37. Faizal H. M., Nyakuma B. B., Rahman M. R. A., Rahman Md. Mizanur, Kamaruzaman N. B., and Syahrullail S. Johnson Matthey Technol. Rev., 2021, 65, (1), 64 LINK https://www.technology.matthey.com/article/65/1/64-76/ [Google Scholar]
  38. Xie D., Lu N., Wang F., and Fan S. Int. J. Hydrogen Energy, 2013, 38, (25), 10802 LINK https://doi.org/10.1016/j.ijhydene.2013.01.018 [Google Scholar]
  39. Sheintuch M. Chem. Eng. J., 2015, 278, 363 LINK https://doi.org/10.1016/j.cej.2014.11.100 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651321X16019176538189
Loading
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error