Skip to content
1887
Volume 64, Issue 3
  • ISSN: 2056-5135
  • oa Adaptable Reactors for Resource- and Energy-Efficient Methane Valorisation (ADREM)

    Benchmarking modular technologies

  • Authors: Emmanouela Korkakaki1, Stéphane Walspurger1, Koos Overwater1, Hakan Nigar2, Ignacio Julian3, Georgios D. Stefanidis4, Saashwath Swaminathan Tharakaraman5 and Damjan Lašič Jurković6
  • Affiliations: 1 TechnipFMC Process TechnologyPO Box 86, 2700 AB ZoetermeerThe Netherlands 2 Process & Energy Department, Delft University of TechnologyLeeghwaterstraat 39, 2628 CB DelftThe Netherlands 3 Institute of Nanoscience of Aragón and Department of Chemical and Environmental Engineering, University of ZaragozaCampus Río Ebro, I+D+i Building, 50018 ZaragozaSpain 4 Process Engineering for Sustainable Systems (ProcESS), Department of Chemical EngineeringKU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, LeuvenBelgium 5 Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical EngineeringTechnologiepark 125, 9052 GhentBelgium 6 Department of Catalysis and Chemical Reaction Engineering, National Institute of ChemistryHajdrihova 19, SI-1001 LjubljanaSlovenia
  • Source: Johnson Matthey Technology Review, Volume 64, Issue 3, Jul 2020, p. 298 - 306
  • DOI: https://doi.org/10.1595/205651320X15886749783532
    • Published online: 01 Jan 2020

Abstract

Following the global trend towards increased energy demand together with requirements for low greenhouse gas emissions, Adaptable Reactors for Resource- and Energy-Efficient Methane Valorisation (ADREM) focused on the development of modular reactors that can upgrade methane‐rich sources to chemicals. Herein we summarise the main findings of the project, excluding in‐depth technical analysis. The ADREM reactors include microwave technology for conversion of methane to benzene, toluene and xylenes (BTX) and ethylene; plasma for methane to ethylene; plasma dry methane reforming to syngas; and the gas solid vortex reactor (GSVR) for methane to ethylene. Two of the reactors (microwave to BTX and plasma to ethylene) have been tested at technology readiness level 5 (TRL 5). Compared to flaring, all the concepts have a clear environmental benefit, reducing significantly the direct carbon dioxide emissions. Their energy efficiency is still relatively low compared to conventional processes, and the costly and energy-demanding downstream processing should be replaced by scalable energy efficient alternatives. However, considering the changing market conditions with electrification becoming more relevant and the growing need to decrease greenhouse gas emissions, the ADREM technologies, utilising mostly electricity to achieve methane conversion, are promising candidates in the field of gas monetisation.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15886749783532
2020-01-01
2025-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/3/ADREM_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15886749783532&mimeType=html&fmt=ahah

References

  1. N. Z. Muradov, T. N. Veziroğlu, Int. J. Hydrogen Energy, 2008, 33, (23), 6804 LINK https://doi.org/10.1016/j.ijhydene.2008.08.054 [Google Scholar]
  2. S. Sgouridis, D. Csala, U. Bardi, Environ. Res. Lett., 2016, 11, (9), 094009 LINK https://doi.org/10.1088/1748-9326/11/9/094009 [Google Scholar]
  3. ‘Global Gas Flaring Reduction Partnership (GGFR): Improving energy efficiency & Mitigating Impact on Climate Change’, The World Bank, Washington, DC, USA, 2011 [Google Scholar]
  4. T. A. Boden, G. Marland, R. J. Andres, ‘Global, Regional, and National Fossil-Fuel CO2 Emissions’, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 2010 LINK https://doi.org/10.3334/CDIAC/00001_V2010 [Google Scholar]
  5. H. Ritchie, M. Roser, ‘CO2 and Greenhouse Gas Emissions’, Our World in Data, Oxford, UK, May, 2017 LINK https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions [Google Scholar]
  6. I. Julian, H. Ramirez, J. L. Hueso, R. Mallada, J. Santamaria, Chem. Eng. J., 2019, 377, 119764 LINK https://doi.org/10.1016/j.cej.2018.08.150 [Google Scholar]
  7. A. Stankiewicz, “Alternative Energy Sources for Green Chemistry”, eds. G. Stefanidis, The Royal Society of Chemistry, Cambridge, UK, 2016, 411pp LINK https://doi.org/10.1039/9781782623632 [Google Scholar]
  8. A. Stankiewicz, F. E. Sarabi, A. Baubaid, P. Yan, H. Nigar, Chem. Rec., 2019, 19, (1), 40 LINK https://doi.org/10.1002/tcr.201800070 [Google Scholar]
  9. M. Scapinello, E. Delikonstantis, G. D. Stefanidis, Fuel, 2018, 222, 705 LINK https://doi.org/10.1016/j.fuel.2018.03.017 [Google Scholar]
  10. E. Delikonstantis, M. Scapinello, G. D. Stefanidis, Fuel Process. Technol., 2018, 176, 33 LINK https://doi.org/10.1016/j.fuproc.2018.03.011 [Google Scholar]
  11. E. Delikonstantis, M. Scapinello, O. Van Geenhoven, G. D. Stefanidis, Chem. Eng. J., 2020, 380, 122477 LINK https://doi.org/10.1016/j.cej.2019.122477 [Google Scholar]
  12. A. Gonzalez-Quiroga, P. A. Reyniers, S. R. Kulkarni, M. M. Torregrosa, P. Perreault, G. J. Heynderickx, K. M. Van Geem, G. B. Marin, Chem. Eng. J., 2017, 329, 198 LINK https://doi.org/10.1016/j.cej.2017.06.003 [Google Scholar]
  13. L. A. Vandewalle, I. Lengyel, D. H. West, K. M. Van Geem, G. B. Marin, Chem. Eng. Sci., 2019, 199, 635 LINK https://doi.org/10.1016/j.ces.2018.08.053 [Google Scholar]
  14. M. Rungtha, C. Zhang, W. J. Koros, L. Xu, AIChE J., 2013, 59, (9), 3475 LINK https://doi.org/10.1002/aic.14105 [Google Scholar]
/content/journals/10.1595/205651320X15886749783532
Loading
/content/journals/10.1595/205651320X15886749783532
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test