Skip to content
Volume 64, Issue 3
  • ISSN: 2056-5135


Following the global trend towards increased energy demand together with requirements for low greenhouse gas emissions, Adaptable Reactors for Resource- and Energy-Efficient Methane Valorisation (ADREM) focused on the development of modular reactors that can upgrade methane‐rich sources to chemicals. Herein we summarise the main findings of the project, excluding in‐depth technical analysis. The ADREM reactors include microwave technology for conversion of methane to benzene, toluene and xylenes (BTX) and ethylene; plasma for methane to ethylene; plasma dry methane reforming to syngas; and the gas solid vortex reactor (GSVR) for methane to ethylene. Two of the reactors (microwave to BTX and plasma to ethylene) have been tested at technology readiness level 5 (TRL 5). Compared to flaring, all the concepts have a clear environmental benefit, reducing significantly the direct carbon dioxide emissions. Their energy efficiency is still relatively low compared to conventional processes, and the costly and energy-demanding downstream processing should be replaced by scalable energy efficient alternatives. However, considering the changing market conditions with electrification becoming more relevant and the growing need to decrease greenhouse gas emissions, the ADREM technologies, utilising mostly electricity to achieve methane conversion, are promising candidates in the field of gas monetisation.


Article metrics loading...

Loading full text...

Full text loading...



  1. Muradov N. Z., and Veziroğlu T. N. Int. J. Hydrogen Energy, 2008, 33, (23), 6804 LINK [Google Scholar]
  2. Sgouridis S., Csala D., and Bardi U. Environ. Res. Lett., 2016, 11, (9), 094009 LINK [Google Scholar]
  3. ‘Global Gas Flaring Reduction Partnership (GGFR): Improving energy efficiency & Mitigating Impact on Climate Change’, The World Bank, Washington, DC, USA, 2011 [Google Scholar]
  4. Boden T. A., Marland G., and Andres R. J. ‘Global, Regional, and National Fossil-Fuel CO2 Emissions’, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 2010 LINK [Google Scholar]
  5. Ritchie H., and Roser M. ‘CO2 and Greenhouse Gas Emissions’, Our World in Data, Oxford, UK, May, 2017 LINK [Google Scholar]
  6. Julian I., Ramirez H., Hueso J. L., Mallada R., and Santamaria J. Chem. Eng. J., 2019, 377, 119764 LINK [Google Scholar]
  7. and Stankiewicz A. “Alternative Energy Sources for Green Chemistry”, eds. Stefanidis G., The Royal Society of Chemistry, Cambridge, UK, 2016, 411pp LINK [Google Scholar]
  8. Stankiewicz A., Sarabi F. E., Baubaid A., Yan P., and Nigar H. Chem. Rec., 2019, 19, (1), 40 LINK [Google Scholar]
  9. Scapinello M., Delikonstantis E., and Stefanidis G. D. Fuel, 2018, 222, 705 LINK [Google Scholar]
  10. Delikonstantis E., Scapinello M., and Stefanidis G. D. Fuel Process. Technol., 2018, 176, 33 LINK [Google Scholar]
  11. Delikonstantis E., Scapinello M., Van Geenhoven O., and Stefanidis G. D. Chem. Eng. J., 2020, 380, 122477 LINK [Google Scholar]
  12. Gonzalez-Quiroga A., Reyniers P. A., Kulkarni S. R., Torregrosa M. M., Perreault P., Heynderickx G. J., Van Geem K. M., and Marin G. B. Chem. Eng. J., 2017, 329, 198 LINK [Google Scholar]
  13. Vandewalle L. A., Lengyel I., West D. H., Van Geem K. M., and Marin G. B. Chem. Eng. Sci., 2019, 199, 635 LINK [Google Scholar]
  14. Rungtha M., Zhang C., Koros W. J., and Xu L. AIChE J., 2013, 59, (9), 3475 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error