Skip to content
Volume 64, Issue 3
  • ISSN: 2056-5135


With the electric vehicle (EV) market set to grow rapidly over the coming years, the industry faces a challenging ramp-up of volume and material performance demands. From the current trend towards high-energy high-nickel cathode materials, driven in-part by consumer range anxiety, to the emergence of solid-state and beyond lithium-ion technologies, herein we review the changing requirements for active materials in automotive Li-ion battery (LIB) applications, and how science and industry are set to respond.


Article metrics loading...

Loading full text...

Full text loading...



  1. ‘Air Pollution’, World Health Organisation, Geneva, Switzerland: (Accessed on 20th April 2020) [Google Scholar]
  2. Andre D., Hain H., Lamp P., Maglia F., and Stiaszny B. J. Mater. Chem. A, 2017, 5, (33), 17174 LINK [Google Scholar]
  3. Andre D., Kim S.-J., Lamp P., Lux S. F., Maglia F., Paschos O., and Stiaszny B. J. Mater. Chem. A, 2015, 3, (13), 6709 LINK [Google Scholar]
  4. Myung S.-T., Maglia F., Park K.-J., Yoon C. S., Lamp P., Kim S.-J., and Sun Y.-K. ACS Energy Lett., 2017, 2, (1), 196 LINK [Google Scholar]
  5. Harrop P., Collins R., Gear L., Jiao N., Wyatt D., and Edmondson J. “Electric Vehicles 2020-2030: Markets, Technology, Manufacturers, Opportunities. Land, Water, Air: Unique Detail”,IDTechEx, Cambridge, UK, 2019 LINK [Google Scholar]
  6. Patry G., Romagny A., Martinet S., and Froelich D. Energy Sci. Eng., 2015, 3, (1), 71 LINK [Google Scholar]
  7. Ahmed S., Trask S. E., Dees D. W., Nelson P. A., Lu W., Dunlop A. R., Polzin B. J., and Jansen A. N. J. Power Sources, 2018, 403, 56 LINK [Google Scholar]
  8. Broussely M., Perton F., Biensan P., Bodet J. M., Labat J., Lecerf A., Delmas C., Rougier A., and Pérès J. P. J. Power Sources, 1995, 54, (1), 109 LINK [Google Scholar]
  9. Dahn J. R., von Sacken U., and Michal C. A. Solid State Ionics, 1990, 44, (1–2), 87 LINK [Google Scholar]
  10. Dahn J. R., von Sacken U., Juzkow M. W., and Al-Janaby H. J. Electrochem. Soc., 1991, 138, (8), 2207 LINK [Google Scholar]
  11. Ohzuku T., Komori H., Nagayama M., Sawai K., and Hirai T. Chem. Express 1991, 6, (3), 161 [Google Scholar]
  12. Ohzuku T., Ueda A., and Nagayama M. J. Electrochem. Soc., 1993, 140, (7), 1862 LINK [Google Scholar]
  13. Pauling L. “The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry”, 3rd Edn.,Cornell University Press, New York, USA, 1960 [Google Scholar]
  14. Saadoune I., Dahbi M., Wikberg M., Gustafsson T., Svedlindh P., and Edström K. Solid State Ionics, 2008, 178, (31–32), 1668 LINK [Google Scholar]
  15. Arai H., Okada S., Sakurai Y., and Yamaki J. Solid State Ionics, 1997, 95, (3–4), 275 LINK [Google Scholar]
  16. Delmas C., Ménétrier M., Croguennec L., Saadoune I., Rougier A., Pouillerie C., Prado G., Grüne M., and Fournès L. Electrochim. Acta, 1999, 45, (1–2), 243 LINK [Google Scholar]
  17. Guilmard M., Croguennec L., and Delmas C. J. Electrochem. Soc., 2003, 150, (10), A1287 LINK [Google Scholar]
  18. Guilmard M., Croguennec L., Denux D., and Delmas C. Chem. Mater., 2003, 15, (23), 4476 LINK [Google Scholar]
  19. Park S. H., Park K. S., Sun Y. K., Nahm K. S., Lee Y. S., and Yoshio M. Electrochim. Acta, 2001, 46, (8), 1215 LINK [Google Scholar]
  20. Croguennec L., Shao-Horn Y., Gloter A., Colliex C., Guilmard M., Fauth F., and Delmas C. Chem. Mater., 2009, 21, (6), 1051 LINK [Google Scholar]
  21. Jung R., Metzger M., Maglia F., Stinner C., and Gasteiger H. A. J. Electrochem. Soc., 2017, 164, (7), A 1361 LINK [Google Scholar]
  22. Yoon C. S., Jun D.-W., Myung S.-T., and Sun Y.-K. ACS Energy Lett., 2017, 2, (5), 1150 LINK [Google Scholar]
  23. Yoon W.-S., Chung K. Y., McBreen J., and Yang X.-Q. Electrochem. Commun., 2006, 8, (8), 1257 LINK [Google Scholar]
  24. Li H., Zhou P., Liu F., Li H., Cheng F., and Chen J. Chem. Sci., 2019, 10, (5), 1374 LINK [Google Scholar]
  25. Wu F., Liu N., Chen L., Su Y., Tan G., Bao L., Zhang Q., Lua Y., Wang J., Chen S., and Tan J. Nano Energy, 2019, 59, 50 LINK [Google Scholar]
  26. Yoon C. S., Ryu H.-H., Park G.-T., Kim J.-H., Kim K.-H., and Sun Y.-K. J. Mater. Chem. A, 2018, 6, (9), 4126 LINK [Google Scholar]
  27. Aurbach D., Zaban A., Schechter A., Ein-Eli Y., Zinigrad E., and Markovsky B. J. Electrochem. Soc., 1995, 142, (9), 2873 LINK [Google Scholar]
  28. Cho D.-H., Jo C.-H., Cho W., Kim Y.-J., Yashiro H., Sun Y.-K., and Myung S.-T. J. Electrochem. Soc., 2014, 161, (6), A 920 LINK [Google Scholar]
  29. Tasaki K., Goldberg A., Lian J.-J., Walker M., Timmons A., and Harris S. J. J. Electrochem. Soc., 2009, 156, (12), A1019 LINK [Google Scholar]
  30. Kobayashi H., Shikano M., Koike S., Sakaebe H., and Tatsumi K. J. Power Sources, 2007, 174, (2), 380 LINK [Google Scholar]
  31. Jung Y. S., Lu P., Cavanagh A. S., Ban C., Kim G.-H., Lee S.-H., George S. M., Harris S. J., and Dillon A. C. Adv. Energy Mater., 2013, 3, (2), 213 LINK [Google Scholar]
  32. Abraham D. P., Twesten R. D., Balasubramanian M., Petrov I., McBreen J., and Amine K. Electrochem. Commun., 2002, 4, (8), 620 LINK [Google Scholar]
  33. Cho Y., Oh P., and Cho J. Nano Lett., 2013, 13, (3), 1145 LINK [Google Scholar]
  34. Myung S.-T., Izumi K., Komaba S., Sun Y.-K., Yashiro H., and Kumagai N. Chem. Mater., 2005, 17, (14), 3695 LINK [Google Scholar]
  35. Sun Y.-K., Myung S.-T., Kim M.-H., Prakash J., and Amine K. J. Am. Chem. Soc., 2005, 127, (38), 13411 LINK [Google Scholar]
  36. Sun Y.-K., Chen Z., Noh H.-J., Lee D.-J., Jung H.-G., Ren Y., Wang S., Yoon C. S., Myung S.-T., and Amine K. Nature Mater., 2012, 11, (11), 942 LINK [Google Scholar]
  37. Lim B.-B., Yoon S.-J., Park K.-J., Yoon C. S., Kim S.-J., Lee J. J., and Sun Y.-K. Adv. Funct. Mater., 2015, 25, (29), 4673 LINK [Google Scholar]
  38. Sun Y.-K., Lee B.-R., Noh H.-J., Wu H., Myung S.-T., and Amine K. J. Mater. Chem., 2011, 21, (27), 10108 LINK [Google Scholar]
  39. Ju J.-W., Lee E.-J., Yoon C. S., Myung S.-T., and Sun Y.-K. J. Phys. Chem. C, 2014, 118, (1), 175 LINK [Google Scholar]
  40. Lee M.-J., Noh M., Park M.-H., Jo M., Kim H., Nam H., and Cho J. J. Mater. Chem. A, 2015, 3, (25), 13453 LINK [Google Scholar]
  41. Cho Y., Lee S., Lee Y., Hong T., and Cho J. Adv. Energy Mater., 2011, 1, (5), 821 LINK [Google Scholar]
  42. Li H., Li J., Ma X., and Dahn J. R. J. Electrochem. Soc., 2018, 165, (5), A 1038 LINK [Google Scholar]
  43. Li J., Cameron A. R., Li H., Glazier S., Xiong D., Chatzidakis M., Allen J., Botton G. A., and Dahn J. R. J. Electrochem. Soc., 2017, 164, (7), A 1534 LINK [Google Scholar]
  44. Zhu J., and Chen G. J. Mater. Chem. A, 2019, 7, (10), 5463 LINK [Google Scholar]
  45. ‘Presentation of Results for the Year Ended 31st March 2019’, Johnson Matthey, London, UK, 30th May, 2019 LINK [Google Scholar]
  46. Gonzalez A. F., Yang N.-H., and Liu R.-S. J. Phys. Chem. C, 2017, 121, (50), 27775 LINK [Google Scholar]
  47. Fehrenbacher K. ‘Why Tesla’s New Battery Pack is Important’, Fortune, New York, USA, 24th August, 2016 LINK [Google Scholar]
  48. Chen T., Wu J., Zhang Q., and Su X. J. Power Sources, 2017, 363, 126 LINK [Google Scholar]
  49. Su X., Wu Q., Li J., Xiao X., Lott A., Lu W., Sheldon B. W., and Wu J. Adv. Energy Mater., 2014, 4, (1), 1300882 LINK [Google Scholar]
  50. Lee J. K., Oh C., Kim N., Hwang J.-Y., and Sun Y.-K. J. Mater. Chem. A, 2016, 4, (15), 5366 LINK [Google Scholar]
  51. Higgins T. M., Park S.-H., King P. J., Zhang C., McEvoy N., Berner N. C., Daly D., Shmeliov A., Khan U., Duesberg G., Nicolosi V., and Coleman J. N. ACS Nano, 2016, 10, (3), 3702 LINK [Google Scholar]
  52. Krause L. J., Chevrier V. L., Jensen L. D., and Brandt T. J. Electrochem. Soc., 2017, 164, (12), A 2527 LINK [Google Scholar]
  53. Qi W., Shapter J. G., Wu Q., Yin T., Gao G., and Cui D. J. Mater. Chem. A, 2017, 5, (37), 19521 LINK [Google Scholar]
  54. Ashuri M., He Q., and Shaw L. L. Nanoscale, 2016, 8, (1), 74 LINK [Google Scholar]
  55. Jarvis C. R., Lain M. J., Gao Y., and Yakovleva M. J. Power Sources, 2005, 146, (1–2), 331 LINK [Google Scholar]
  56. Yang X., Wen Z., Xu X., Lin B., and Huang S. J. Power Sources, 2007, 164, (2), 880 LINK [Google Scholar]
  57. Jouybari Y. H., and Berkemeier F. Electrochim. Acta, 2016, 217, 171 LINK [Google Scholar]
  58. Jeong M.-G., Islam M., Du H. L., Lee Y.-S., Sun H.-H., Choi W., Lee J. K., Chung K. Y., and Jung H.-G. Electrochim. Acta, 2016, 209, 299 LINK [Google Scholar]
  59. Etacheri V., Haik O., Goffer Y., Roberts G. A., Stefan I. C., Fasching R., and Aurbach D. Langmuir, 2012, 28, (1), 965 LINK [Google Scholar]
  60. Ryu J. H., Kim J. W., Sung Y.-E., and Oh S. M. Electrochem. Solid-State Lett., 2004, 7, (10), A 306 LINK [Google Scholar]
  61. Deng Y., Ma L., Li T., Li J., and Yuan C. ACS Sustain. Chem. Eng., 2019, 7, (1), 599 LINK [Google Scholar]
  62. Armand M., and Tarascon J.-M. Nature, 2008, 451, (7179), 652 LINK [Google Scholar]
  63. Zheng F., Kotobuki M., Song S., Lai M. O., and Lu L. J. Power Sources, 2018, 389, 198 LINK [Google Scholar]
  64. Albertus P., Babinec S., Litzelman S., and Newman A. Nature Energy, 2018, 3, 16 LINK [Google Scholar]
  65. Fenton D. E., Parker J. M., and Wright P. V Polymer, 1973, 14, (11), 589 LINK [Google Scholar]
  66. Armand M. B., Chabagno J. M., Duclot M., Vashista P., Mundy J. N., and Shenoy G. K. Fast Ion Transport in Solids: Electrodes and Electrolytes Conference, 21st–25th May 1979, Lake Geneva, USA, eds. Elsevier, New-Holland, Amsterdam, 1979 [Google Scholar]
  67. Liu W., Liu N., Sun J., Hsu P.-C., Li Y., Lee H.-W., and Cui Y. Nano Lett., 2015, 15, (4), 2740 LINK [Google Scholar]
  68. Tikekar M. D., Archer L. A., and Kochk D. L. Sci. Adv., 2016, 2, (7), e1600320 LINK [Google Scholar]
  69. Zhou W., Wang S., Li Y., Xin S., Manthiram A., and Goodenough J. B. J. Am. Chem. Soc., 2016, 138, (30), 9385 LINK [Google Scholar]
  70. Zhao Y., Huang Z., Chen S., Chen B., Yang J., Zhang Q., Ding F., Chen Y., and Xu X. Solid State Ionics, 2016, 295, 65 LINK [Google Scholar]
  71. Bachman J. C., Muy S., Grimaud A., Chang H.-H., Pour N., Lux S. F., Paschos O., Maglia F., Lupart S., Lamp P., Giordano L., and Shao-Horn Y. Chem. Rev., 2016, 116, (1), 140 LINK [Google Scholar]
  72. Fan L., Wei S., Li S., Li Q., and Lu Y. Adv. Energy Mater., 2018, 8, (11), 1702657 LINK [Google Scholar]
  73. Han X., Gong Y., Fu K., He X., Hitz G. T., Dai J., Pearse A., Liu B., Wang H., Rubloff G., Mo Y., Thangadurai V., Wachsman E. D., and Hu L. Nature Mater., 2017, 16, (5), 572 LINK [Google Scholar]
  74. Marbella L. E., Zekoll S., Kasemchainan J., Emge S. P., Bruce P. G., and Grey C. P. Chem. Mater., 2019, 31, (8), 2762 LINK [Google Scholar]
  75. Kim Y., Yoo A., Schmidt R., Sharafi A., Lee H., Wolfenstine J., and Sakamoto J. Front. Energy Res., 2016, 4, 20 LINK [Google Scholar]
  76. Geiger C. A., Alekseev E., Lazic B., Fisch M., Armbruster T., Langner R., Fechtelkord M., Kim N., Pettke T., and Weppner W. Inorg. Chem., 2011, 50, (3), 1089 LINK [Google Scholar]
  77. Larraz G., Orera A., and Sanjuán M. L. J. Mater. Chem. A, 2013, 1, (37), 11419 LINK [Google Scholar]
  78. Schnell J., Tietz F., Singer C., Hofer A., Billot N., and Reinhart G. Energy Environ. Sci., 2019, 12, (6), 1818 LINK [Google Scholar]
  79. Cheng L., Chen W., Kunz M., Persson K., Tamura N., Chen G., and Doeff M. ACS Appl. Mater. Interfaces, 2015, 7, (3), 2073 LINK [Google Scholar]
  80. Schnell J., Günther T., Knoche T., Vieider C., Köhler L., Just A., Keller M., Passerini S., and Reinhart G. J. Power Sources, 2018, 382, 160 LINK [Google Scholar]
  81. Tsai C.-L., Roddatis V., Chandran C. V., Ma Q., Uhlenbruck S., Bram M., Heitjans P., and Guillon O. ACS Appl. Mater. Interfaces, 2016, 8, (16), 10617 LINK [Google Scholar]
  82. Yamada H., Ito T., and Basappa R. H. Electrochim. Acta, 2016, 222, 648 LINK [Google Scholar]
  83. Baek S.-W., Lee J.-M., Kim T. Y., Song M.-S., and Park Y. J. Power Sources, 2014, 249, 197 LINK [Google Scholar]
  84. Zha W., Xu Y., Chen F., Shen Q., and Zhang L. Solid State Ionics, 2019, 330, 54 LINK [Google Scholar]
  85. Zhang Y., Chen F., Tu R., Shen Q., and Zhang L. J. Power Sources, 2014, 268, 960 LINK [Google Scholar]
  86. Manthiram A., Fu Y., Chung S.-H., Zu C., and Su Y.-S. Chem. Rev., 2014, 114, (23), 11751 LINK [Google Scholar]
  87. Li F., Liu Q., Hu J., Feng Y., He P., and Ma J. Nanoscale, 2019, 11, (33), 15418 LINK [Google Scholar]
  88. Yang Y., Zheng G., and Cui Y. Chem. Soc. Rev., 2013, 42, (7), 3018 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error