Skip to content
1887
Volume 64, Issue 3
  • ISSN: 2056-5135

Abstract

With the electric vehicle (EV) market set to grow rapidly over the coming years, the industry faces a challenging ramp-up of volume and material performance demands. From the current trend towards high-energy high-nickel cathode materials, driven in-part by consumer range anxiety, to the emergence of solid-state and beyond lithium-ion technologies, herein we review the changing requirements for active materials in automotive Li-ion battery (LIB) applications, and how science and industry are set to respond.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15783059820413
2020-01-01
2024-02-28
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/3/Clark_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15783059820413&mimeType=html&fmt=ahah

References

  1. ‘Air Pollution’, World Health Organisation, Geneva, Switzerland:https://www.who.int/airpollution/en/ (Accessed on 20th April 2020) [Google Scholar]
  2. Andre D., Hain H., Lamp P., Maglia F., and Stiaszny B. J. Mater. Chem. A, 2017, 5, (33), 17174 LINK https://doi.org/10.1039/c7ta03108d [Google Scholar]
  3. Andre D., Kim S.-J., Lamp P., Lux S. F., Maglia F., Paschos O., and Stiaszny B. J. Mater. Chem. A, 2015, 3, (13), 6709 LINK https://doi.org/10.1039/c5ta00361j [Google Scholar]
  4. Myung S.-T., Maglia F., Park K.-J., Yoon C. S., Lamp P., Kim S.-J., and Sun Y.-K. ACS Energy Lett., 2017, 2, (1), 196 LINK https://doi.org/10.1021/acsenergylett.6b00594 [Google Scholar]
  5. Harrop P., Collins R., Gear L., Jiao N., Wyatt D., and Edmondson J. “Electric Vehicles 2020-2030: Markets, Technology, Manufacturers, Opportunities. Land, Water, Air: Unique Detail”,IDTechEx, Cambridge, UK, 2019 LINK https://www.idtechex.com/en/research-report/electric-vehicles-2020-2030/670 [Google Scholar]
  6. Patry G., Romagny A., Martinet S., and Froelich D. Energy Sci. Eng., 2015, 3, (1), 71 LINK https://doi.org/10.1002/ese3.47 [Google Scholar]
  7. Ahmed S., Trask S. E., Dees D. W., Nelson P. A., Lu W., Dunlop A. R., Polzin B. J., and Jansen A. N. J. Power Sources, 2018, 403, 56 LINK https://doi.org/10.1016/j.jpowsour.2018.09.037 [Google Scholar]
  8. Broussely M., Perton F., Biensan P., Bodet J. M., Labat J., Lecerf A., Delmas C., Rougier A., and Pérès J. P. J. Power Sources, 1995, 54, (1), 109 LINK https://doi.org/10.1016/0378-7753(94)02049-9 [Google Scholar]
  9. Dahn J. R., von Sacken U., and Michal C. A. Solid State Ionics, 1990, 44, (1–2), 87 LINK https://doi.org/10.1016/0167-2738(90)90049-w [Google Scholar]
  10. Dahn J. R., von Sacken U., Juzkow M. W., and Al-Janaby H. J. Electrochem. Soc., 1991, 138, (8), 2207 LINK https://doi.org/10.1149/1.2085950 [Google Scholar]
  11. Ohzuku T., Komori H., Nagayama M., Sawai K., and Hirai T. Chem. Express 1991, 6, (3), 161 [Google Scholar]
  12. Ohzuku T., Ueda A., and Nagayama M. J. Electrochem. Soc., 1993, 140, (7), 1862 LINK https://doi.org/10.1149/1.2220730 [Google Scholar]
  13. Pauling L. “The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry”, 3rd Edn.,Cornell University Press, New York, USA, 1960 [Google Scholar]
  14. Saadoune I., Dahbi M., Wikberg M., Gustafsson T., Svedlindh P., and Edström K. Solid State Ionics, 2008, 178, (31–32), 1668 LINK https://doi.org/10.1016/j.ssi.2007.10.019 [Google Scholar]
  15. Arai H., Okada S., Sakurai Y., and Yamaki J. Solid State Ionics, 1997, 95, (3–4), 275 LINK https://doi.org/10.1016/s0167-2738(96)00598-x [Google Scholar]
  16. Delmas C., Ménétrier M., Croguennec L., Saadoune I., Rougier A., Pouillerie C., Prado G., Grüne M., and Fournès L. Electrochim. Acta, 1999, 45, (1–2), 243 LINK https://doi.org/10.1016/s0013-4686(99)00208-x [Google Scholar]
  17. Guilmard M., Croguennec L., and Delmas C. J. Electrochem. Soc., 2003, 150, (10), A1287 LINK https://doi.org/10.1149/1.1601227 [Google Scholar]
  18. Guilmard M., Croguennec L., Denux D., and Delmas C. Chem. Mater., 2003, 15, (23), 4476 LINK https://doi.org/10.1021/cm030059f [Google Scholar]
  19. Park S. H., Park K. S., Sun Y. K., Nahm K. S., Lee Y. S., and Yoshio M. Electrochim. Acta, 2001, 46, (8), 1215 LINK https://doi.org/10.1016/s0013-4686(00)00710-6 [Google Scholar]
  20. Croguennec L., Shao-Horn Y., Gloter A., Colliex C., Guilmard M., Fauth F., and Delmas C. Chem. Mater., 2009, 21, (6), 1051 LINK https://doi.org/10.1021/cm802954g [Google Scholar]
  21. Jung R., Metzger M., Maglia F., Stinner C., and Gasteiger H. A. J. Electrochem. Soc., 2017, 164, (7), A 1361 LINK https://doi.org/10.1149/2.0021707jes [Google Scholar]
  22. Yoon C. S., Jun D.-W., Myung S.-T., and Sun Y.-K. ACS Energy Lett., 2017, 2, (5), 1150 LINK https://doi.org/10.1021/acsenergylett.7b00304 [Google Scholar]
  23. Yoon W.-S., Chung K. Y., McBreen J., and Yang X.-Q. Electrochem. Commun., 2006, 8, (8), 1257 LINK https://doi.org/10.1016/j.elecom.2006.06.005 [Google Scholar]
  24. Li H., Zhou P., Liu F., Li H., Cheng F., and Chen J. Chem. Sci., 2019, 10, (5), 1374 LINK https://doi.org/10.1039/c8sc03385d [Google Scholar]
  25. Wu F., Liu N., Chen L., Su Y., Tan G., Bao L., Zhang Q., Lua Y., Wang J., Chen S., and Tan J. Nano Energy, 2019, 59, 50 LINK https://doi.org/10.1016/j.nanoen.2019.02.027 [Google Scholar]
  26. Yoon C. S., Ryu H.-H., Park G.-T., Kim J.-H., Kim K.-H., and Sun Y.-K. J. Mater. Chem. A, 2018, 6, (9), 4126 LINK https://doi.org/10.1039/c7ta11346c [Google Scholar]
  27. Aurbach D., Zaban A., Schechter A., Ein-Eli Y., Zinigrad E., and Markovsky B. J. Electrochem. Soc., 1995, 142, (9), 2873 LINK https://doi.org/10.1149/1.2048658 [Google Scholar]
  28. Cho D.-H., Jo C.-H., Cho W., Kim Y.-J., Yashiro H., Sun Y.-K., and Myung S.-T. J. Electrochem. Soc., 2014, 161, (6), A 920 LINK https://doi.org/10.1149/2.042406jes [Google Scholar]
  29. Tasaki K., Goldberg A., Lian J.-J., Walker M., Timmons A., and Harris S. J. J. Electrochem. Soc., 2009, 156, (12), A1019 LINK https://doi.org/10.1149/1.3239850 [Google Scholar]
  30. Kobayashi H., Shikano M., Koike S., Sakaebe H., and Tatsumi K. J. Power Sources, 2007, 174, (2), 380 LINK https://doi.org/10.1016/j.jpowsour.2007.06.134 [Google Scholar]
  31. Jung Y. S., Lu P., Cavanagh A. S., Ban C., Kim G.-H., Lee S.-H., George S. M., Harris S. J., and Dillon A. C. Adv. Energy Mater., 2013, 3, (2), 213 LINK https://doi.org/10.1002/aenm.201200370 [Google Scholar]
  32. Abraham D. P., Twesten R. D., Balasubramanian M., Petrov I., McBreen J., and Amine K. Electrochem. Commun., 2002, 4, (8), 620 LINK https://doi.org/10.1016/s1388-2481(02)00388-0 [Google Scholar]
  33. Cho Y., Oh P., and Cho J. Nano Lett., 2013, 13, (3), 1145 LINK https://doi.org/10.1021/nl304558t [Google Scholar]
  34. Myung S.-T., Izumi K., Komaba S., Sun Y.-K., Yashiro H., and Kumagai N. Chem. Mater., 2005, 17, (14), 3695 LINK https://doi.org/10.1021/cm050566s [Google Scholar]
  35. Sun Y.-K., Myung S.-T., Kim M.-H., Prakash J., and Amine K. J. Am. Chem. Soc., 2005, 127, (38), 13411 LINK https://doi.org/10.1021/ja053675g [Google Scholar]
  36. Sun Y.-K., Chen Z., Noh H.-J., Lee D.-J., Jung H.-G., Ren Y., Wang S., Yoon C. S., Myung S.-T., and Amine K. Nature Mater., 2012, 11, (11), 942 LINK https://doi.org/10.1038/nmat3435 [Google Scholar]
  37. Lim B.-B., Yoon S.-J., Park K.-J., Yoon C. S., Kim S.-J., Lee J. J., and Sun Y.-K. Adv. Funct. Mater., 2015, 25, (29), 4673 LINK https://doi.org/10.1002/adfm.201501430 [Google Scholar]
  38. Sun Y.-K., Lee B.-R., Noh H.-J., Wu H., Myung S.-T., and Amine K. J. Mater. Chem., 2011, 21, (27), 10108 LINK https://doi.org/10.1039/c0jm04242k [Google Scholar]
  39. Ju J.-W., Lee E.-J., Yoon C. S., Myung S.-T., and Sun Y.-K. J. Phys. Chem. C, 2014, 118, (1), 175 LINK https://doi.org/10.1021/jp4097887 [Google Scholar]
  40. Lee M.-J., Noh M., Park M.-H., Jo M., Kim H., Nam H., and Cho J. J. Mater. Chem. A, 2015, 3, (25), 13453 LINK https://doi.org/10.1039/c5ta01571e [Google Scholar]
  41. Cho Y., Lee S., Lee Y., Hong T., and Cho J. Adv. Energy Mater., 2011, 1, (5), 821 LINK https://doi.org/10.1002/aenm.201100239 [Google Scholar]
  42. Li H., Li J., Ma X., and Dahn J. R. J. Electrochem. Soc., 2018, 165, (5), A 1038 LINK https://doi.org/10.1149/2.0951805jes [Google Scholar]
  43. Li J., Cameron A. R., Li H., Glazier S., Xiong D., Chatzidakis M., Allen J., Botton G. A., and Dahn J. R. J. Electrochem. Soc., 2017, 164, (7), A 1534 LINK https://doi.org/10.1149/2.0991707jes [Google Scholar]
  44. Zhu J., and Chen G. J. Mater. Chem. A, 2019, 7, (10), 5463 LINK https://doi.org/10.1039/c8ta10329a [Google Scholar]
  45. ‘Presentation of Results for the Year Ended 31st March 2019’, Johnson Matthey, London, UK, 30th May, 2019 LINK https://matthey.com/-/media/files/investors/presentation-fy-1819-results.pdf?la=en&hash=5E34C55B76F463BFD9C67BB81C1071FCE29EC3F5 [Google Scholar]
  46. Gonzalez A. F., Yang N.-H., and Liu R.-S. J. Phys. Chem. C, 2017, 121, (50), 27775 LINK https://doi.org/10.1021/acs.jpcc.7b07793 [Google Scholar]
  47. Fehrenbacher K. ‘Why Tesla’s New Battery Pack is Important’, Fortune, New York, USA, 24th August, 2016 LINK http://fortune.com/2016/08/24/tesla-100kWh-battery-pack [Google Scholar]
  48. Chen T., Wu J., Zhang Q., and Su X. J. Power Sources, 2017, 363, 126 LINK https://doi.org/10.1016/j.jpowsour.2017.07.073 [Google Scholar]
  49. Su X., Wu Q., Li J., Xiao X., Lott A., Lu W., Sheldon B. W., and Wu J. Adv. Energy Mater., 2014, 4, (1), 1300882 LINK https://doi.org/10.1002/aenm.201300882 [Google Scholar]
  50. Lee J. K., Oh C., Kim N., Hwang J.-Y., and Sun Y.-K. J. Mater. Chem. A, 2016, 4, (15), 5366 LINK https://doi.org/10.1039/c6ta00265j [Google Scholar]
  51. Higgins T. M., Park S.-H., King P. J., Zhang C., McEvoy N., Berner N. C., Daly D., Shmeliov A., Khan U., Duesberg G., Nicolosi V., and Coleman J. N. ACS Nano, 2016, 10, (3), 3702 LINK https://doi.org/10.1021/acsnano.6b00218 [Google Scholar]
  52. Krause L. J., Chevrier V. L., Jensen L. D., and Brandt T. J. Electrochem. Soc., 2017, 164, (12), A 2527 LINK https://doi.org/10.1149/2.1121712jes [Google Scholar]
  53. Qi W., Shapter J. G., Wu Q., Yin T., Gao G., and Cui D. J. Mater. Chem. A, 2017, 5, (37), 19521 LINK https://doi.org/10.1039/c7ta05283a [Google Scholar]
  54. Ashuri M., He Q., and Shaw L. L. Nanoscale, 2016, 8, (1), 74 LINK https://doi.org/10.1039/c5nr05116a [Google Scholar]
  55. Jarvis C. R., Lain M. J., Gao Y., and Yakovleva M. J. Power Sources, 2005, 146, (1–2), 331 LINK https://doi.org/10.1016/j.jpowsour.2005.03.023 [Google Scholar]
  56. Yang X., Wen Z., Xu X., Lin B., and Huang S. J. Power Sources, 2007, 164, (2), 880 LINK https://doi.org/10.1016/j.jpowsour.2006.11.010 [Google Scholar]
  57. Jouybari Y. H., and Berkemeier F. Electrochim. Acta, 2016, 217, 171 LINK https://doi.org/10.1016/j.electacta.2016.09.040 [Google Scholar]
  58. Jeong M.-G., Islam M., Du H. L., Lee Y.-S., Sun H.-H., Choi W., Lee J. K., Chung K. Y., and Jung H.-G. Electrochim. Acta, 2016, 209, 299 LINK https://doi.org/10.1016/j.electacta.2016.05.080 [Google Scholar]
  59. Etacheri V., Haik O., Goffer Y., Roberts G. A., Stefan I. C., Fasching R., and Aurbach D. Langmuir, 2012, 28, (1), 965 LINK https://doi.org/10.1021/la203712s [Google Scholar]
  60. Ryu J. H., Kim J. W., Sung Y.-E., and Oh S. M. Electrochem. Solid-State Lett., 2004, 7, (10), A 306 LINK https://doi.org/10.1149/1.1792242 [Google Scholar]
  61. Deng Y., Ma L., Li T., Li J., and Yuan C. ACS Sustain. Chem. Eng., 2019, 7, (1), 599 LINK https://doi.org/10.1021/acssuschemeng.8b04136 [Google Scholar]
  62. Armand M., and Tarascon J.-M. Nature, 2008, 451, (7179), 652 LINK https://doi.org/10.1038/451652a [Google Scholar]
  63. Zheng F., Kotobuki M., Song S., Lai M. O., and Lu L. J. Power Sources, 2018, 389, 198 LINK https://doi.org/10.1016/j.jpowsour.2018.04.022 [Google Scholar]
  64. Albertus P., Babinec S., Litzelman S., and Newman A. Nature Energy, 2018, 3, 16 LINK https://doi.org/10.1038/s41560-017-0047-2 [Google Scholar]
  65. Fenton D. E., Parker J. M., and Wright P. V Polymer, 1973, 14, (11), 589 LINK https://doi.org/10.1016/0032-3861(73)90146-8 [Google Scholar]
  66. Armand M. B., Chabagno J. M., Duclot M., Vashista P., Mundy J. N., and Shenoy G. K. Fast Ion Transport in Solids: Electrodes and Electrolytes Conference, 21st–25th May 1979, Lake Geneva, USA, eds. Elsevier, New-Holland, Amsterdam, 1979 [Google Scholar]
  67. Liu W., Liu N., Sun J., Hsu P.-C., Li Y., Lee H.-W., and Cui Y. Nano Lett., 2015, 15, (4), 2740 LINK https://doi.org/10.1021/acs.nanolett.5b00600 [Google Scholar]
  68. Tikekar M. D., Archer L. A., and Kochk D. L. Sci. Adv., 2016, 2, (7), e1600320 LINK https://doi.org/10.1126/sciadv.1600320 [Google Scholar]
  69. Zhou W., Wang S., Li Y., Xin S., Manthiram A., and Goodenough J. B. J. Am. Chem. Soc., 2016, 138, (30), 9385 LINK https://doi.org/10.1021/jacs.6b05341 [Google Scholar]
  70. Zhao Y., Huang Z., Chen S., Chen B., Yang J., Zhang Q., Ding F., Chen Y., and Xu X. Solid State Ionics, 2016, 295, 65 LINK https://doi.org/10.1016/j.ssi.2016.07.013 [Google Scholar]
  71. Bachman J. C., Muy S., Grimaud A., Chang H.-H., Pour N., Lux S. F., Paschos O., Maglia F., Lupart S., Lamp P., Giordano L., and Shao-Horn Y. Chem. Rev., 2016, 116, (1), 140 LINK https://doi.org/10.1021/acs.chemrev.5b00563 [Google Scholar]
  72. Fan L., Wei S., Li S., Li Q., and Lu Y. Adv. Energy Mater., 2018, 8, (11), 1702657 LINK https://doi.org/10.1002/aenm.201702657 [Google Scholar]
  73. Han X., Gong Y., Fu K., He X., Hitz G. T., Dai J., Pearse A., Liu B., Wang H., Rubloff G., Mo Y., Thangadurai V., Wachsman E. D., and Hu L. Nature Mater., 2017, 16, (5), 572 LINK https://doi.org/10.1038/nmat4821 [Google Scholar]
  74. Marbella L. E., Zekoll S., Kasemchainan J., Emge S. P., Bruce P. G., and Grey C. P. Chem. Mater., 2019, 31, (8), 2762 LINK https://doi.org/10.1021/acs.chemmater.8b04875 [Google Scholar]
  75. Kim Y., Yoo A., Schmidt R., Sharafi A., Lee H., Wolfenstine J., and Sakamoto J. Front. Energy Res., 2016, 4, 20 LINK https://doi.org/10.3389/fenrg.2016.00020 [Google Scholar]
  76. Geiger C. A., Alekseev E., Lazic B., Fisch M., Armbruster T., Langner R., Fechtelkord M., Kim N., Pettke T., and Weppner W. Inorg. Chem., 2011, 50, (3), 1089 LINK https://doi.org/10.1021/ic101914e [Google Scholar]
  77. Larraz G., Orera A., and Sanjuán M. L. J. Mater. Chem. A, 2013, 1, (37), 11419 LINK https://doi.org/10.1039/c3ta11996c [Google Scholar]
  78. Schnell J., Tietz F., Singer C., Hofer A., Billot N., and Reinhart G. Energy Environ. Sci., 2019, 12, (6), 1818 LINK https://doi.org/10.1039/c8ee02692k [Google Scholar]
  79. Cheng L., Chen W., Kunz M., Persson K., Tamura N., Chen G., and Doeff M. ACS Appl. Mater. Interfaces, 2015, 7, (3), 2073 LINK https://doi.org/10.1021/am508111r [Google Scholar]
  80. Schnell J., Günther T., Knoche T., Vieider C., Köhler L., Just A., Keller M., Passerini S., and Reinhart G. J. Power Sources, 2018, 382, 160 LINK https://doi.org/10.1016/j.jpowsour.2018.02.062 [Google Scholar]
  81. Tsai C.-L., Roddatis V., Chandran C. V., Ma Q., Uhlenbruck S., Bram M., Heitjans P., and Guillon O. ACS Appl. Mater. Interfaces, 2016, 8, (16), 10617 LINK https://doi.org/10.1021/acsami.6b00831 [Google Scholar]
  82. Yamada H., Ito T., and Basappa R. H. Electrochim. Acta, 2016, 222, 648 LINK https://doi.org/10.1016/j.electacta.2016.11.020 [Google Scholar]
  83. Baek S.-W., Lee J.-M., Kim T. Y., Song M.-S., and Park Y. J. Power Sources, 2014, 249, 197 LINK https://doi.org/10.1016/j.jpowsour.2013.10.089 [Google Scholar]
  84. Zha W., Xu Y., Chen F., Shen Q., and Zhang L. Solid State Ionics, 2019, 330, 54 LINK https://doi.org/10.1016/j.ssi.2018.12.008 [Google Scholar]
  85. Zhang Y., Chen F., Tu R., Shen Q., and Zhang L. J. Power Sources, 2014, 268, 960 LINK https://doi.org/10.1016/j.jpowsour.2014.03.148 [Google Scholar]
  86. Manthiram A., Fu Y., Chung S.-H., Zu C., and Su Y.-S. Chem. Rev., 2014, 114, (23), 11751 LINK https://doi.org/10.1021/cr500062v [Google Scholar]
  87. Li F., Liu Q., Hu J., Feng Y., He P., and Ma J. Nanoscale, 2019, 11, (33), 15418 LINK https://doi.org/10.1039/c9nr04415a [Google Scholar]
  88. Yang Y., Zheng G., and Cui Y. Chem. Soc. Rev., 2013, 42, (7), 3018 LINK https://doi.org/10.1039/c2cs35256g [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651320X15783059820413
Loading
/content/journals/10.1595/205651320X15783059820413
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error