Skip to content
Volume 65, Issue 1
  • ISSN: 2056-5135


Developing novel hydrogen evolution reaction (HER) catalysts with high activity, high stability and low cost is of great importance for the applications of hydrogen energy. In this work, iridium-nickel thin films were electrodeposited on a copper foam as electrocatalyst for HER, and electrodeposition mechanism of iridium-nickel film was studied. The morphology and chemical composition of thin films were determined by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), respectively. The electrocatalytic performances of the films were estimated by linear sweep voltammograms (LSV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The results show that iridium-nickel thin films were attached to the substrate of porous structure and hollow topography. The deposition of nickel was preferable in the electrolyte without the addition of additives, and the iridium-nickel thin film was alloyed, resulting in a high deposition rate for IrNi thin film, and subsequently an increase of iridium content in the thin films of IrNi and IrNi. Iridium-nickel thin films with Tafel slopes of 40–49 mV dec–1 exhibited highly efficient electrocatalytic activity for HER. The electrocatalytic activity of iridium-nickel thin films showed a loading dependence. As the solution temperature increased from 20°C to 60°C, the hydrogen evolution performance of iridium-nickel thin films improved. The apparent activation energy value of IrNi film was 7.1 kJ mol–1. Long-term hydrogen evolution tests exhibited excellent electrocatalytic stability in alkaline solution.


Article metrics loading...

Loading full text...

Full text loading...



  1. Orecchini F., Santiangeli A., and Dell’Era, A. J. Fuel Cell Sci. Technol., 2006, 3, (1), 75 LINK [Google Scholar]
  2. Antonia O., and Saur G. “Wind to Hydrogen in California: Case Study”, Technical Report NREL/TP-5600-53045, 1051927, National Renewable Energy Laboratory,Golden, USA,August, 2012, 28 pp LINK [Google Scholar]
  3. Gong M., Wang D.-Y., Chen C.-C., Hwang B.-J., and Dai H. Nano Res., 2016, 9, (1), 28 LINK [Google Scholar]
  4. Merki D., Fierro S., Vrubel H., and Hu X. Chem. Sci., 2011, 2, (7), 1262 LINK [Google Scholar]
  5. Solmaz R., and Kardaş G. Electrochim. Acta, 2009, 54, (14), 3726 LINK [Google Scholar]
  6. Anantharaj S., Karthick K., Venkatesh M., Simha T. V. S. V., Salunke A. S., Ma L., Liang H., and Kundu S. Nano Energy, 2017, 39, 30 LINK [Google Scholar]
  7. Chen Q., Cao Z., Du G., Kuang Q., Huang J., Xie Z., and Zheng L. Nano Energy, 2017, 39, 582 LINK [Google Scholar]
  8. Jiang L.-Y., Lin X.-X., Wang A.-J., Yuan J., Feng J.-J., and Li X.-S. Electrochim. Acta, 2017, 225, 525 LINK [Google Scholar]
  9. Isarain-Chávez E., Baró M. D., Alcantara C., Pané S., Sort J., and Pellicer E. ChemSusChem, 2018, 11, (2), 367 LINK [Google Scholar]
  10. Yang Y., Lun Z., Xia G., Zheng F., He M., and Chen Q. Energy Environ. Sci., 2015, 8, (12), 3563 LINK [Google Scholar]
  11. Safizadeh F., Ghali E., and Houlachi G. Int. J. Hydrogen Energy, 2015, 40, (1), 256 LINK [Google Scholar]
  12. Eftekhari A. Int. J. Hydrogen Energy, 2017, 42, (16), 11053 LINK [Google Scholar]
  13. Wu W. P., and Chen Z. F. Johnson Matthey Technol. Rev., 2017, 61, (1), 16 LINK [Google Scholar]
  14. Wu W. P., and Chen Z. F. Johnson Matthey Technol. Rev., 2017, 61, (2), 93 LINK [Google Scholar]
  15. Wu W. P., Chen Z. F., and Wang L. B. Protect. Metals. Phys. Chem. Surf., 2015, 51, (4), 607 LINK [Google Scholar]
  16. Özer E., Sinev I., Mingers A. M., Araujo J., Kropp T., Mavrikakis M., Mayrhofer K. J. J., Cuenya B. R., and Strasser P. Surfaces, 2018, 1, (1), 165 LINK [Google Scholar]
  17. He L., Huang Y., Liu X. Y., Li L., Wang A., Wang X., Mou C.-Y., and Zhang T. Appl. Catal. B: Environ., 2014, 147, 779 LINK [Google Scholar]
  18. Jović B. M., Jović V. D., Lačnjevac U. Č., Gajić-Krstajić Lj., Kovač J., and Krstajić N. V. Int. J. Hydrogen Energy, 2015, 40, (33), 10480 LINK [Google Scholar]
  19. Jović B. M., Lačnjevac U. Č., Jović V. D., Gajić-Krstajić Lj., Kovač J., Poleti D., and Krstajić N. V. Int. J. Hydrogen Energy, 2016, 41, (45), 20502 LINK [Google Scholar]
  20. Pfeifer V., Jones T. E., Wrabetz S., Massué C., Velasco Vélez J. J., Arrigo R., Scherzer M., Piccinin Si., Hävecker M., Knop-Gerick A., and Schlögl R. Chem. Sci., 2016, 7, (11), 6791 LINK [Google Scholar]
  21. Kuttiyiel K. A., Sasaki K., Chen W. F., Su D., and Adzic R. R. J. Mater. Chem. A, 2014, 2, (3), 591 LINK [Google Scholar]
  22. Vázquez-Gómez L., Cattarin S., Gerbasi R., Guerriero P., and Musiani M. J. Appl. Electrochem., 2009, 39, (11), 2165 LINK [Google Scholar]
  23. Sawy E. N. E., and Birss V. I. J. Mater. Chem., 2009, 19, (43), 8244 LINK [Google Scholar]
  24. Wu W. P. Appl. Phys. A, 2016, 122, (12), 1028 LINK [Google Scholar]
  25. Wu W. P., Eliaz N., and Gileadi E. Thin Solid Films, 2016, 616, 828 LINK [Google Scholar]
  26. Wu W. P. Electrochemistry, 2016, 84, (9), 699 LINK [Google Scholar]
  27. Wu W. P., Eliaz N., and Gileadi E. J. Electrochem. Soc., 2015, 162, (1), D20 LINK [Google Scholar]
  28. Wu W. P., Liu J. W., Zhang Y., Wang X., and Zhang Y. J. Appl. Electrochem., 2019, 49, (10), 1043 LINK [Google Scholar]
  29. Shervedani R. K., Torabi M., and Yaghoobi F. Electrochim. Acta, 2017, 244, 230 LINK [Google Scholar]
  30. Wu W. P., Jiang J. J., Jiang P., Wang Z. Z., Yuan N. Y., and Ding J. N. Appl. Surf. Sci., 2018, 434, 307 LINK [Google Scholar]
  31. Wu W. P., Wang Z. Z., Jiang P., and Tang Z. P. J. Electrochem. Soc., 2017, 164, (14), D985 LINK [Google Scholar]
  32. Wu W. P., Liu J. W., Johannes N., Zhang L., Zhang Y., Hua T. S., and Liu L. Catal. Lett., 2020, 150, (5), 1325 LINK [Google Scholar]
  33. Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I., Nørskov J. K., and Jaramillo T. F. Science, 2017, 355, (6321), eaad4998 LINK [Google Scholar]
  34. Pierozynski B., and Mikolajczyk T. Electrocatalysis, 2015, 6, (1), 51 LINK [Google Scholar]
  35. Devadas B., and Imae T. Electrochem. Commun., 2016, 72, 135 LINK [Google Scholar]
  36. McCrory C. C. L., Jung S., Ferrer I. M., Chatman S. M., Peters J. C., and Jaramillo T. F. J. Am. Chem. Soc., 2015, 137, (13), 4347 LINK [Google Scholar]
  37. Ohsaka T., Matsubara Y., Hirano K., and Ohishi T. Trans. Inst. Metal Finish., 2007, 85, (5), 265 LINK [Google Scholar]
  38. Pfeifer V., Jones T. E., Velasco Vélez J. J., Massué C., Arrigo R., Teschner D., Girgsdies F., Scherzer M., Greiner M. T., Allan J., Hashagen M., Weinberg G., Piccinin S., Hävecker M., Knop-Gericke A., and Schlög R. Surf. Interface Anal., 2016, 48, (5), 261 LINK [Google Scholar]
  39. Zhang R. L., Duan J. J., Han Z., Feng Ji.-J., Huang H., Zhang Q.-L., and Wanga A.-J. Appl. Surf. Sci., 2020, 506, 144791 LINK [Google Scholar]
  40. Chen Q., Wang Y., Wang M., Ma S., Wang P., Zhang G., Chen W., Ji H., Liu L., and Xu X. J. Coll. Interface Sci., 2020, 561, 372 LINK [Google Scholar]
  41. Chen H.-Y., Niu H.-J., Han Z., Feng J.-J., Huang H., and Wang A.-J. J. Coll. Interface Sci., 2020, 570, 205 LINK [Google Scholar]
  42. Benck J. D., Hellstern T. R., Kibsgaard J., Chakthranont P., and Jaramillo T. F. ACS Catal., 2014, 4, (11), 3957 LINK [Google Scholar]
  43. Murthy A. P., Theerthagiri J., and Madhavan J. J. Phys. Chem. C, 2018, 122, (42), 23943 LINK [Google Scholar]
  44. Tilak B. V., Ramamurthy A. C., and Conway B. E. J. Chem. Sci., 1986, 97, (3–4), 359 LINK [Google Scholar]
  45. Gao M. Y., Yang C., Zhang Q. B., Yu Y. W., Hua Y. X., Li Y., and Dong P. Electrochim. Acta, 2016, 215, 609 LINK [Google Scholar]
  46. Chen W.-F., Wang C.-H., Sasaki K., Marinkovic N., Xu W., Muckerman J. T., Zhu Y., and Adzic R. R. Energy Environ. Sci., 2013, 6, (3), 943 LINK [Google Scholar]
  47. Deng J., Ren P., Deng D., and Bao X. Angew. Chem. Int. Ed., 2015, 127, (7), 2128 LINK [Google Scholar]
  48. Li D. J., Maiti U. N., Lim J., Choi D. S., Lee W. J., Oh Y., Lee G. Y., and Kim S. O. Nano Lett., 2014, 14, (3), 1228 LINK [Google Scholar]
  49. Shibli S. M. A., and Dilimon V. S. Int. J. Hydrogen Energy, 2007, 32, (12), 1694 LINK [Google Scholar]
  50. Raj I. A., and Vasu K. I. J. Appl. Electrochem., 1990, 20, (1), 32 LINK [Google Scholar]
  51. Raj I. A. J. Mater. Sci., 1993, 28, (16), 4375 LINK [Google Scholar]
  52. Raj I. A. Appl. Surf. Sci., 1992, 59, (3–4), 245 LINK [Google Scholar]
  53. Raj I. A., and Venkatesan V. K. Int. J. Hydrogen Energy, 1988, 13, (4), 215 LINK [Google Scholar]
  54. Raj I. A. Bull. Electrochem., 1999, 15, (11), 519 LINK [Google Scholar]
  55. Raj I. A. Int. J. Hydrogen Energy, 1992, 17, (6), 413 LINK [Google Scholar]
  56. Raj I. A., and Vasu K. I. J. Appl. Electrochem., 1992, 22, (5), 471 LINK [Google Scholar]
  57. Shervedani R. K., Amini A., and Karevan M. J. New Mater. Electrochem. Sys., 2015, 18, (2), 63 LINK [Google Scholar]
  58. Shervedani R. K., and Lasia A. J. Electrochem. Soc., 1998, 145, (7), 2219 LINK [Google Scholar]
  59. Jakšića J. M., Vojnović M. V., and Krstajić N. V. Electrochim. Acta, 2000, 45, (25–26), 4151 LINK [Google Scholar]
  60. Kubisztal J., Budniok A., and Lasia A. Int. J. Hydrogen Energy, 2007, 32, (9), 1211 LINK [Google Scholar]
  61. Jeyasankar V., Mohan S., Kumar S. A., Suseendiran S. R., and Pavithra S. Int. J. Hydrogen Energy, 2013, 38, (25), 10208 LINK [Google Scholar]
  62. Song L. J., and Meng H. M. Int. J. Hydrogen Energy, 2010, 35, (19), 10060 LINK [Google Scholar]
  63. Shan Z., Liu Y., Chen Z., Warrender G., and Tiana J. Int. J. Hydrogen Energy, 2008, 33, (1), 28 LINK [Google Scholar]
  64. Yüce A. O., Döner A., and Kardaş G. Int. J. Hydrogen Energy, 2013, 38, (11), 4466 LINK [Google Scholar]
  65. Solmaz R., and Kardaş G. Int. J. Hydrogen Energy, 2011, 36, (19), 12079 LINK [Google Scholar]
  66. Shervedani R. K., and Lasia A. J. Electrochem. Soc., 1997, 144, (2), 511 LINK [Google Scholar]
  67. Kellenberger A., Vaszilcsin N., Brandl W., and Duteanu N. Int. J. Hydrogen Energy, 2007, 32, (15), 3258 LINK [Google Scholar]
  68. Giz M. J., Bento S. C., and Gonzalez E. R. Int. J. Hydrogen Energy, 2000, 25, (7), 621 LINK [Google Scholar]
  69. Han Q., Liu K., Chen J., and Wei X. Int. J. Hydrogen Energy, 2003, 28, (11), 1207 LINK [Google Scholar]
  70. Zheng Z., Li N., Wang C.-Q., Li D.-Y., Zhu Y.-M., and Wu G. Int. J. Hydrogen Energy, 2012, 37, (19), 13921 LINK [Google Scholar]
  71. Bocutti R., Saeki M. J., Florentino A. O., Oliveira C. L. F., and Ângelo A. C. D. Int. J. Hydrogen Energy, 2000, 25, (11), 1051 LINK [Google Scholar]
  72. Rosalbino F., Macciò D., Saccone A., and Scavino G. Int. J. Hydrogen Energy, 2014, 39, (24), 12448 LINK [Google Scholar]
  73. Jafarian M., Azizi O., Gobal F., and Mahjani M. G. Int. J. Hydrogen Energy, 2007, 32, (12), 1686 LINK [Google Scholar]
  74. Subramania A., Priya A. R. S., and Muralidharan V. S. Int. J. Hydrogen Energy, 2007, 32, (14), 2843 LINK [Google Scholar]
  75. Müller C. I., Rauscher T., Schmidt A, Schubert T., Weißgärber T., Kieback B., and Röntzsch L. Int. J. Hydrogen Energy, 2014, 39, (17), 8926 LINK [Google Scholar]
  76. Shibli S. M. A., and Sebeelamol J. N. Int. J. Hydrogen Energy, 2013, 38, (5), 2271 LINK [Google Scholar]
  77. Santos D. M. F., Sequeira C. A. C., Macciò D., Saccone A., and Figueiredo J. L. Int. J. Hydrogen Energy, 2013, 38, (8), 3137 LINK [Google Scholar]
  78. Mihailov L., Spassov T., and Bojinov M. Int. J. Hydrogen Energy, 2012, 37, (14), 10499 LINK [Google Scholar]
  79. Miousse D., Lasia A., and Borck V. J. Appl. Electrochem., 1995, 25, (6), 592 LINK [Google Scholar]
  80. Babar P., Lokhande A., Shin H. H., Pawar B., Gang M. G., Pawar S., and Kim J. H. Small, 2018, 14, (7), 1702568 LINK [Google Scholar]
  81. Vázquez-Gómez L., Cattarin S., Guerriero P., and Musiani M. Electrochim. Acta, 2008, 53, (28), 8310 LINK [Google Scholar]
  82. Gu L., Wang Y., Lu R., Wang W., Peng X., and Sha J. J. Power Sources, 2015, 273, 479 LINK [Google Scholar]
  83. Heakal F. E.-T., Abd-Ellatif W. R., Tantawy N. S., and Taha A. A. RSC Adv., 2018, 8, (7), 3816 LINK [Google Scholar]
  84. Alves V. A., da Silva L. A., Santos L. F. de F., Cestarolli D. T., Rossi A., and da Silva L. M. J. Appl. Electrochem., 2007, 37, (8), 961 LINK [Google Scholar]
  85. Chang B. Y., and Park S.-M. Ann. Rev. Anal. Chem., 2010, 3, 207 LINK [Google Scholar]
  86. Bard A. J., and Faulkner L. R. “Electrochemical Methods: Fundamentals and Applications”,1st Edn.,John Wiley & Sons, New York, USA, 1980, p. 87 [Google Scholar]
  87. Nikolic V. M., Maslovara S. Lj., Tasic G. S., Brdaric T. P., Lausevic P. Z., Radak B. B., and Kaninskia M. P. M. Appl. Catal. B: Environ., 2015, 179, 88 LINK [Google Scholar]
  88. Wang T., Wang X., Liu Y., Zheng J., and Li X. Nano Energy, 2016, 22, 111 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error