Skip to content
1887
Volume 65, Issue 1
  • ISSN: 2056-5135
  • oa Electrodeposition of Iridium-Nickel Thin Films on Copper Foam: Effects of Loading and Solution Temperature on Hydrogen Evolution Reaction Performance of Electrocatalyst in Alkaline Water

    Improved performance and stability of catalyst for hydrogen energy applications

  • Authors: Jianwen Liu1, Wangping Wu1, Xiang Wang1 and Yi Zhang1
  • Affiliations: 1 Electrochemistry and Corrosion Laboratory, School of Mechanical Engineering and Rail Transit, Changzhou UniversityChangzhou 213164China
  • Source: Johnson Matthey Technology Review, Volume 65, Issue 1, Jan 2021, p. 94 - 111
  • DOI: https://doi.org/10.1595/205651320X15911991747174
    • Published online: 01 Jan 2021

Abstract

Developing novel hydrogen evolution reaction (HER) catalysts with high activity, high stability and low cost is of great importance for the applications of hydrogen energy. In this work, iridium-nickel thin films were electrodeposited on a copper foam as electrocatalyst for HER, and electrodeposition mechanism of iridium-nickel film was studied. The morphology and chemical composition of thin films were determined by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), respectively. The electrocatalytic performances of the films were estimated by linear sweep voltammograms (LSV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The results show that iridium-nickel thin films were attached to the substrate of porous structure and hollow topography. The deposition of nickel was preferable in the electrolyte without the addition of additives, and the iridium-nickel thin film was alloyed, resulting in a high deposition rate for IrNi thin film, and subsequently an increase of iridium content in the thin films of IrNi and IrNi. Iridium-nickel thin films with Tafel slopes of 40–49 mV dec–1 exhibited highly efficient electrocatalytic activity for HER. The electrocatalytic activity of iridium-nickel thin films showed a loading dependence. As the solution temperature increased from 20°C to 60°C, the hydrogen evolution performance of iridium-nickel thin films improved. The apparent activation energy value of IrNi film was 7.1 kJ mol–1. Long-term hydrogen evolution tests exhibited excellent electrocatalytic stability in alkaline solution.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15911991747174
2021-01-01
2024-12-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/1/Wu-Liu_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15911991747174&mimeType=html&fmt=ahah

References

  1. F. Orecchini, A. Santiangeli, A. Dell’Era,, J. Fuel Cell Sci. Technol., 2006, 3, (1), 75 LINK https://doi.org/10.1115/1.2134740 [Google Scholar]
  2. O. Antonia, G. Saur, “Wind to Hydrogen in California: Case Study”, Technical Report NREL/TP-5600-53045, 1051927, National Renewable Energy Laboratory,Golden, USA,August, 2012, 28 pp LINK https://doi.org/10.2172/1051927 [Google Scholar]
  3. M. Gong, D.-Y. Wang, C.-C. Chen, B.-J. Hwang, H. Dai, Nano Res., 2016, 9, (1), 28 LINK https://doi.org/10.1007/s12274-015-0965-x [Google Scholar]
  4. D. Merki, S. Fierro, H. Vrubel, X. Hu, Chem. Sci., 2011, 2, (7), 1262 LINK https://doi.org/10.1039/C1SC00117E [Google Scholar]
  5. R. Solmaz, G. Kardaş, Electrochim. Acta, 2009, 54, (14), 3726 LINK https://doi.org/10.1016/j.electacta.2009.01.064 [Google Scholar]
  6. S. Anantharaj, K. Karthick, M. Venkatesh, T. V. S. V. Simha, A. S. Salunke, L. Ma, H. Liang, S. Kundu, Nano Energy, 2017, 39, 30 LINK https://doi.org/10.1016/j.nanoen.2017.06.027 [Google Scholar]
  7. Q. Chen, Z. Cao, G. Du, Q. Kuang, J. Huang, Z. Xie, L. Zheng, Nano Energy, 2017, 39, 582 LINK https://doi.org/10.1016/j.nanoen.2017.07.041 [Google Scholar]
  8. L.-Y. Jiang, X.-X. Lin, A.-J. Wang, J. Yuan, J.-J. Feng, X.-S. Li, Electrochim. Acta, 2017, 225, 525 LINK https://doi.org/10.1016/j.electacta.2016.12.123 [Google Scholar]
  9. E. Isarain-Chávez, M. D. Baró, C. Alcantara, S. Pané, J. Sort, E. Pellicer, ChemSusChem, 2018, 11, (2), 367 LINK https://doi.org/10.1002/cssc.201701938 [Google Scholar]
  10. Y. Yang, Z. Lun, G. Xia, F. Zheng, M. He, Q. Chen, Energy Environ. Sci., 2015, 8, (12), 3563 LINK https://doi.org/10.1039/C5EE02460A [Google Scholar]
  11. F. Safizadeh, E. Ghali, G. Houlachi, Int. J. Hydrogen Energy, 2015, 40, (1), 256 LINK https://doi.org/10.1016/j.ijhydene.2014.10.109 [Google Scholar]
  12. A. Eftekhari, Int. J. Hydrogen Energy, 2017, 42, (16), 11053 LINK https://doi.org/10.1016/j.ijhydene.2017.02.125 [Google Scholar]
  13. W. P. Wu, Z. F. Chen, Johnson Matthey Technol. Rev., 2017, 61, (1), 16 LINK https://www.technology.matthey.com/article/61/1/16-28/ [Google Scholar]
  14. W. P. Wu, Z. F. Chen, Johnson Matthey Technol. Rev., 2017, 61, (2), 93 LINK https://www.technology.matthey.com/article/61/2/93-110/ [Google Scholar]
  15. W. P. Wu, Z. F. Chen, L. B. Wang, Protect. Metals. Phys. Chem. Surf., 2015, 51, (4), 607 LINK https://doi.org/10.1134/S2070205115040358 [Google Scholar]
  16. E. Özer, I. Sinev, A. M. Mingers, J. Araujo, T. Kropp, M. Mavrikakis, K. J. J. Mayrhofer, B. R. Cuenya, P. Strasser, Surfaces, 2018, 1, (1), 165 LINK https://doi.org/10.3390/surfaces1010013 [Google Scholar]
  17. L. He, Y. Huang, X. Y. Liu, L. Li, A. Wang, X. Wang, C.-Y. Mou, T. Zhang, Appl. Catal. B: Environ., 2014, 147, 779 LINK https://doi.org/10.1016/j.apcatb.2013.10.022 [Google Scholar]
  18. B. M. Jović, V. D. Jović, U. Č. Lačnjevac, Lj. Gajić-Krstajić, J. Kovač, N. V. Krstajić, Int. J. Hydrogen Energy, 2015, 40, (33), 10480 LINK https://doi.org/10.1016/j.ijhydene.2015.06.127 [Google Scholar]
  19. B. M. Jović, U. Č. Lačnjevac, V. D. Jović, Lj. Gajić-Krstajić, J. Kovač, D. Poleti, N. V. Krstajić, Int. J. Hydrogen Energy, 2016, 41, (45), 20502 LINK https://doi.org/10.1016/j.ijhydene.2016.08.226 [Google Scholar]
  20. V. Pfeifer, T. E. Jones, S. Wrabetz, C. Massué, J. J. Velasco Vélez, R. Arrigo, M. Scherzer, Si. Piccinin, M. Hävecker, A. Knop-Gerick, R. Schlögl, Chem. Sci., 2016, 7, (11), 6791 LINK https://doi.org/10.1039/C6SC01860B [Google Scholar]
  21. K. A. Kuttiyiel, K. Sasaki, W. F. Chen, D. Su, R. R. Adzic, J. Mater. Chem. A, 2014, 2, (3), 591 LINK https://doi.org/10.1039/c3ta14301e [Google Scholar]
  22. L. Vázquez-Gómez, S. Cattarin, R. Gerbasi, P. Guerriero, M. Musiani, J. Appl. Electrochem., 2009, 39, (11), 2165 LINK https://doi.org/10.1007/s10800-009-9847-9 [Google Scholar]
  23. E. N. E. Sawy, V. I. Birss, J. Mater. Chem., 2009, 19, (43), 8244 LINK https://doi.org/10.1039/B914662H [Google Scholar]
  24. W. P. Wu, Appl. Phys. A, 2016, 122, (12), 1028 LINK https://doi.org/10.1007/s00339-016-0567-9 [Google Scholar]
  25. W. P. Wu, N. Eliaz, E. Gileadi, Thin Solid Films, 2016, 616, 828 LINK https://doi.org/10.1016/j.tsf.2016.10.012 [Google Scholar]
  26. W. P. Wu, Electrochemistry, 2016, 84, (9), 699 LINK https://doi.org/10.5796/electrochemistry.84.699 [Google Scholar]
  27. W. P. Wu, N. Eliaz, E. Gileadi, J. Electrochem. Soc., 2015, 162, (1), D20 LINK https://doi.org/10.1149/2.0281501jes [Google Scholar]
  28. W. P. Wu, J. W. Liu, Y. Zhang, X. Wang, Y. Zhang, J. Appl. Electrochem., 2019, 49, (10), 1043 LINK https://doi.org/10.1007/s10800-019-01348-5 [Google Scholar]
  29. R. K. Shervedani, M. Torabi, F. Yaghoobi, Electrochim. Acta, 2017, 244, 230 LINK https://doi.org/10.1016/j.electacta.2017.05.099 [Google Scholar]
  30. W. P. Wu, J. J. Jiang, P. Jiang, Z. Z. Wang, N. Y. Yuan, J. N. Ding, Appl. Surf. Sci., 2018, 434, 307 LINK https://doi.org/10.1016/j.apsusc.2017.10.180 [Google Scholar]
  31. W. P. Wu, Z. Z. Wang, P. Jiang, Z. P. Tang, J. Electrochem. Soc., 2017, 164, (14), D985 LINK https://doi.org/10.1149/2.0771714jes [Google Scholar]
  32. W. P. Wu, J. W. Liu, N. Johannes, L. Zhang, Y. Zhang, T. S. Hua, L. Liu, Catal. Lett., 2020, 150, (5), 1325 LINK https://doi.org/10.1007/s10562-019-03038-5 [Google Scholar]
  33. Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science, 2017, 355, (6321), eaad4998 LINK https://doi.org/10.1126/science.aad4998 [Google Scholar]
  34. B. Pierozynski, T. Mikolajczyk, Electrocatalysis, 2015, 6, (1), 51 LINK https://doi.org/10.1007/s12678-014-0216-z [Google Scholar]
  35. B. Devadas, T. Imae, Electrochem. Commun., 2016, 72, 135 LINK https://doi.org/10.1016/j.elecom.2016.09.022 [Google Scholar]
  36. C. C. L. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc., 2015, 137, (13), 4347 LINK https://doi.org/10.1021/ja510442p [Google Scholar]
  37. T. Ohsaka, Y. Matsubara, K. Hirano, T. Ohishi, Trans. Inst. Metal Finish., 2007, 85, (5), 265 LINK https://doi.org/10.1179/174591907X229635 [Google Scholar]
  38. V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, C. Massué, R. Arrigo, D. Teschner, F. Girgsdies, M. Scherzer, M. T. Greiner, J. Allan, M. Hashagen, G. Weinberg, S. Piccinin, M. Hävecker, A. Knop-Gericke, R. Schlög, Surf. Interface Anal., 2016, 48, (5), 261 LINK https://doi.org/10.1002/sia.5895 [Google Scholar]
  39. R. L. Zhang, J. J. Duan, Z. Han, Ji.-J. Feng, H. Huang, Q.-L. Zhang, A.-J. Wanga, Appl. Surf. Sci., 2020, 506, 144791 LINK https://doi.org/10.1016/j.apsusc.2019.144791 [Google Scholar]
  40. Q. Chen, Y. Wang, M. Wang, S. Ma, P. Wang, G. Zhang, W. Chen, H. Ji, L. Liu, X. Xu, J. Coll. Interface Sci., 2020, 561, 372 LINK https://doi.org/10.1016/j.jcis.2019.10.122 [Google Scholar]
  41. H.-Y. Chen, H.-J. Niu, Z. Han, J.-J. Feng, H. Huang, A.-J. Wang, J. Coll. Interface Sci., 2020, 570, 205 LINK https://doi.org/10.1016/j.jcis.2020.02.090 [Google Scholar]
  42. J. D. Benck, T. R. Hellstern, J. Kibsgaard, P. Chakthranont, T. F. Jaramillo, ACS Catal., 2014, 4, (11), 3957 LINK https://doi.org/10.1021/cs500923c [Google Scholar]
  43. A. P. Murthy, J. Theerthagiri, J. Madhavan, J. Phys. Chem. C, 2018, 122, (42), 23943 LINK https://doi.org/10.1021/acs.jpcc.8b07763 [Google Scholar]
  44. B. V. Tilak, A. C. Ramamurthy, B. E. Conway, J. Chem. Sci., 1986, 97, (3–4), 359 LINK https://www.ias.ac.in/article/fulltext/jcsc/097/03-04/0359-0393 [Google Scholar]
  45. M. Y. Gao, C. Yang, Q. B. Zhang, Y. W. Yu, Y. X. Hua, Y. Li, P. Dong, Electrochim. Acta, 2016, 215, 609 LINK http://dx.doi.org/10.1016/j.electacta.2016.08.145 [Google Scholar]
  46. W.-F. Chen, C.-H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, R. R. Adzic, Energy Environ. Sci., 2013, 6, (3), 943 LINK https://doi.org/10.1039/C2EE23891H [Google Scholar]
  47. J. Deng, P. Ren, D. Deng, X. Bao, Angew. Chem. Int. Ed., 2015, 127, (7), 2128 LINK https://doi.org/10.1002/ange.201409524 [Google Scholar]
  48. D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, S. O. Kim, Nano Lett., 2014, 14, (3), 1228 LINK https://doi.org/10.1021/nl404108a [Google Scholar]
  49. S. M. A. Shibli, V. S. Dilimon, Int. J. Hydrogen Energy, 2007, 32, (12), 1694 LINK https://doi.org/10.1016/j.ijhydene.2006.11.037 [Google Scholar]
  50. I. A. Raj, K. I. Vasu, J. Appl. Electrochem., 1990, 20, (1), 32 LINK https://doi.org/10.1007/BF01012468 [Google Scholar]
  51. I. A. Raj, J. Mater. Sci., 1993, 28, (16), 4375 LINK https://doi.org/10.1007/BF01154945 [Google Scholar]
  52. I. A. Raj, Appl. Surf. Sci., 1992, 59, (3–4), 245 LINK https://doi.org/10.1016/0169-4332(92)90124-G [Google Scholar]
  53. I. A. Raj, V. K. Venkatesan, Int. J. Hydrogen Energy, 1988, 13, (4), 215 LINK https://doi.org/10.1016/0360-3199(88)90088-2 [Google Scholar]
  54. I. A. Raj, Bull. Electrochem., 1999, 15, (11), 519 LINK http://cecri.csircentral.net/id/eprint/1255 [Google Scholar]
  55. I. A. Raj, Int. J. Hydrogen Energy, 1992, 17, (6), 413 LINK https://doi.org/10.1016/0360-3199(92)90185-Y [Google Scholar]
  56. I. A. Raj, K. I. Vasu, J. Appl. Electrochem., 1992, 22, (5), 471 LINK https://doi.org/10.1007/BF01077551 [Google Scholar]
  57. R. K. Shervedani, A. Amini, M. Karevan, J. New Mater. Electrochem. Sys., 2015, 18, (2), 63 LINK https://doi.org/10.14447/jnmes.v18i2.376 [Google Scholar]
  58. R. K. Shervedani, A. Lasia, J. Electrochem. Soc., 1998, 145, (7), 2219 LINK https://doi.org/10.1149/1.1838623 [Google Scholar]
  59. J. M. Jakšića, M. V. Vojnović, N. V. Krstajić, Electrochim. Acta, 2000, 45, (25–26), 4151 LINK https://doi.org/10.1016/S0013-4686(00)00549-1 [Google Scholar]
  60. J. Kubisztal, A. Budniok, A. Lasia, Int. J. Hydrogen Energy, 2007, 32, (9), 1211 LINK https://doi.org/10.1016/j.ijhydene.2006.11.020 [Google Scholar]
  61. V. Jeyasankar, S. Mohan, S. A. Kumar, S. R. Suseendiran, S. Pavithra, Int. J. Hydrogen Energy, 2013, 38, (25), 10208 LINK https://doi.org/10.1016/j.ijhydene.2013.06.068 [Google Scholar]
  62. L. J. Song, H. M. Meng, Int. J. Hydrogen Energy, 2010, 35, (19), 10060 LINK https://doi.org/10.1016/j.ijhydene.2010.08.003 [Google Scholar]
  63. Z. Shan, Y. Liu, Z. Chen, G. Warrender, J. Tiana, Int. J. Hydrogen Energy, 2008, 33, (1), 28 LINK https://doi.org/10.1016/j.ijhydene.2007.08.026 [Google Scholar]
  64. A. O. Yüce, A. Döner, G. Kardaş, Int. J. Hydrogen Energy, 2013, 38, (11), 4466 LINK https://doi.org/10.1016/j.ijhydene.2013.01.160 [Google Scholar]
  65. R. Solmaz, G. Kardaş, Int. J. Hydrogen Energy, 2011, 36, (19), 12079 LINK https://doi.org/10.1016/j.ijhydene.2011.06.101 [Google Scholar]
  66. R. K. Shervedani, A. Lasia, J. Electrochem. Soc., 1997, 144, (2), 511 LINK https://doi.org/10.1149/1.1837441 [Google Scholar]
  67. A. Kellenberger, N. Vaszilcsin, W. Brandl, N. Duteanu, Int. J. Hydrogen Energy, 2007, 32, (15), 3258 LINK https://doi.org/10.1016/j.ijhydene.2007.02.028 [Google Scholar]
  68. M. J. Giz, S. C. Bento, E. R. Gonzalez, Int. J. Hydrogen Energy, 2000, 25, (7), 621 LINK https://doi.org/10.1016/S0360-3199(99)00084-1 [Google Scholar]
  69. Q. Han, K. Liu, J. Chen, X. Wei, Int. J. Hydrogen Energy, 2003, 28, (11), 1207 LINK https://doi.org/10.1016/S0360-3199(02)00283-5 [Google Scholar]
  70. Z. Zheng, N. Li, C.-Q. Wang, D.-Y. Li, Y.-M. Zhu, G. Wu, Int. J. Hydrogen Energy, 2012, 37, (19), 13921 LINK https://doi.org/10.1016/j.ijhydene.2012.07.102 [Google Scholar]
  71. R. Bocutti, M. J. Saeki, A. O. Florentino, C. L. F. Oliveira, A. C. D. Ângelo, Int. J. Hydrogen Energy, 2000, 25, (11), 1051 LINK https://doi.org/10.1016/S0360-3199(00)00026-4 [Google Scholar]
  72. F. Rosalbino, D. Macciò, A. Saccone, G. Scavino, Int. J. Hydrogen Energy, 2014, 39, (24), 12448 LINK https://doi.org/10.1016/j.ijhydene.2014.06.082 [Google Scholar]
  73. M. Jafarian, O. Azizi, F. Gobal, M. G. Mahjani, Int. J. Hydrogen Energy, 2007, 32, (12), 1686 LINK https://doi.org/10.1016/j.ijhydene.2006.09.030 [Google Scholar]
  74. A. Subramania, A. R. S. Priya, V. S. Muralidharan, Int. J. Hydrogen Energy, 2007, 32, (14), 2843 LINK https://doi.org/10.1016/j.ijhydene.2006.12.027 [Google Scholar]
  75. C. I. Müller, T. Rauscher, A Schmidt, T. Schubert, T. Weißgärber, B. Kieback, L. Röntzsch, Int. J. Hydrogen Energy, 2014, 39, (17), 8926 LINK https://doi.org/10.1016/j.ijhydene.2014.03.151 [Google Scholar]
  76. S. M. A. Shibli, J. N. Sebeelamol, Int. J. Hydrogen Energy, 2013, 38, (5), 2271 LINK https://doi.org/10.1016/j.ijhydene.2012.12.009 [Google Scholar]
  77. D. M. F. Santos, C. A. C. Sequeira, D. Macciò, A. Saccone, J. L. Figueiredo, Int. J. Hydrogen Energy, 2013, 38, (8), 3137 LINK https://doi.org/10.1016/j.ijhydene.2012.12.102 [Google Scholar]
  78. L. Mihailov, T. Spassov, M. Bojinov, Int. J. Hydrogen Energy, 2012, 37, (14), 10499 LINK https://doi.org/10.1016/j.ijhydene.2012.04.042 [Google Scholar]
  79. D. Miousse, A. Lasia, V. Borck, J. Appl. Electrochem., 1995, 25, (6), 592 LINK https://doi.org/10.1007/BF00573217 [Google Scholar]
  80. P. Babar, A. Lokhande, H. H. Shin, B. Pawar, M. G. Gang, S. Pawar, J. H. Kim, Small, 2018, 14, (7), 1702568 LINK https://doi.org/10.1002/smll.201702568 [Google Scholar]
  81. L. Vázquez-Gómez, S. Cattarin, P. Guerriero, M. Musiani, Electrochim. Acta, 2008, 53, (28), 8310 LINK https://doi.org/10.1016/j.electacta.2008.06.056 [Google Scholar]
  82. L. Gu, Y. Wang, R. Lu, W. Wang, X. Peng, J. Sha, J. Power Sources, 2015, 273, 479 LINK https://doi.org/10.1016/j.jpowsour.2014.09.113 [Google Scholar]
  83. F. E.-T. Heakal, W. R. Abd-Ellatif, N. S. Tantawy, A. A. Taha, RSC Adv., 2018, 8, (7), 3816 LINK https://doi.org/10.1039/C7RA12723E [Google Scholar]
  84. V. A. Alves, L. A. da Silva, L. F. de F. Santos, D. T. Cestarolli, A. Rossi, L. M. da Silva, J. Appl. Electrochem., 2007, 37, (8), 961 LINK https://doi.org/10.1007/s10800-007-9336-y [Google Scholar]
  85. B. Y. Chang, S.-M. Park, Ann. Rev. Anal. Chem., 2010, 3, 207 LINK https://doi.org/10.1146/annurev.anchem.012809.102211 [Google Scholar]
  86. A. J. Bard, L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications”,1st Edn.,John Wiley & Sons, New York, USA, 1980, p. 87 [Google Scholar]
  87. V. M. Nikolic, S. Lj. Maslovara, G. S. Tasic, T. P. Brdaric, P. Z. Lausevic, B. B. Radak, M. P. M. Kaninskia, Appl. Catal. B: Environ., 2015, 179, 88 LINK https://doi.org/10.1016/j.apcatb.2015.05.012 [Google Scholar]
  88. T. Wang, X. Wang, Y. Liu, J. Zheng, X. Li, Nano Energy, 2016, 22, 111 LINK https://doi.org/10.1016/j.nanoen.2016.02.023 [Google Scholar]
/content/journals/10.1595/205651320X15911991747174
Loading
/content/journals/10.1595/205651320X15911991747174
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test