Skip to content
1887
Volume 65, Issue 1
  • ISSN: 2056-5135

Abstract

Platinum-20% rhodium strengthened by oxides of zirconium and yttrium were prepared by solidification of platinum-rhodium-(zirconium)-yttrium powder which had been internally oxidised. After forging, rolling and annealing, 1 mm plates were obtained. Then the plates were mechanically ground to 50–70 μm from rolling-normal direction, followed by argon ion milling until a hole appeared on the centre of the foil to obtain samples which were characterised by transmission electron microscopy (TEM), combined with thermodynamic analysis. The existence of spherical ZrO and YO particles was verified with platinum and rhodium present as pure metals at the same time. It was found that the deformation behaviour of ZrO and YO particles was quite different during processing, where the former basically maintain their spherical shape and were bonded tightly to matrix, while the latter were compressed along normal direction and form two cracks on both sides of YO particles along the rolling direction. The differences in hardness and interface bonding properties of these two types of particles are supposed to be the main causes of different deformation behaviour during hot forging and cold rolling.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15959517568861
2021-01-01
2024-02-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/1/Wang_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15959517568861&mimeType=html&fmt=ahah

References

  1. Chen H., Xie W., Liu W., Wang Z., Yang Z., Tang H., Dai Y., Wei G., and Xie W. Vacuum, 2019, 160, 445 LINK https://doi.org/10.1016/j.vacuum.2018.12.012 [Google Scholar]
  2. Pearce J. V., Edler F., Elliott C. J., Greenen A., Harris P. M., Izquierdo C. G., Kim Y.-G., Martin M. J., Smith I. M., Tucker D., and Veltcheva R. I. Metrologia, 2018, 55, (4), 558 LINK https://doi.org/10.1088/1681-7575/aacbf7 [Google Scholar]
  3. Hu B. X., Ning Y., Chen L., Shi Q., and Jia C. Platinum Metals Rev., 2012, 56, (1), 40 LINK https://www.technology.matthey.com/article/56/1/40-46/ [Google Scholar]
  4. Xie Z., Lu F., and Wang J. Precious Met., 1996, 20, 10 LINK http://en.cnki.com.cn/Article_en/CJFDTotal-GJSZ603.001.htm [Google Scholar]
  5. Teichmann K., Liebscher C. H., Völkl R., Vorberg S., and Glatzel U. Platinum Metals Rev., 2011, 55, (4), 217 LINK https://www.technology.matthey.com/article/55/4/217-224/ [Google Scholar]
  6. Selman G. L., Day J. G., and Bourne A. A. Platinum Metals Rev., 1974, 18, (2), 46 LINK https://www.technology.matthey.com/article/18/2/46-57/ [Google Scholar]
  7. Selman G. L., and Bourne A. A. Platinum Metals Rev., 1976, 20, (3), 86 LINK https://www.technology.matthey.com/article/20/3/86-90/ [Google Scholar]
  8. Dai Y., Ma Q., Liu W., Hu F., Zhang Y., and Yang Z. Mater. Sci. Technol., 2018, 34, (6), 654 LINK https://doi.org/10.1080/02670836.2017.1410355 [Google Scholar]
  9. Fischer B., Freund D., Behrends A., Lupton D., and Merker J. Precious Met., 1998, 22, 333 [Google Scholar]
  10. Stokes J. Platinum Metals Rev., 1987, 31, (2) 54 LINK https://www.technology.matthey.com/article/31/2/54-62/ [Google Scholar]
  11. Rowe M. S., and Heywood A. E. Mater. Design, 1984, 5, (1), 30 LINK https://doi.org/10.1016/0261-3069(84)90173-0 [Google Scholar]
  12. Hu F., Yu T., Liu W., Yang Y., Wei G., Luo X., Tang H., Hansen N., Huang X., and Xie W. Mater. Sci. Eng. A, 2019, 765, 138305 LINK https://doi.org/10.1016/j.msea.2019.138305 [Google Scholar]
  13. Selman G. L, and Darling A. S. Johnson Matthey Plc, ‘Dispersion Strengthening of Platinum Group Metals and Alloys’, US Patent 3709667A; 1973
  14. Karak S. K., Chudoba T., Witczak Z., Lojkowski W., and Manna I. Mater. Sci. Eng. A, 2011, 528, (25–26), 7475 LINK https://doi.org/10.1016/j.msea.2011.06.039 [Google Scholar]
  15. Maruyama K., Yamasaki H., and Hamada T. Mater. Sci. Eng. A, 2009, 510511, 312 LINK https://doi.org/10.1016/j.msea.2008.08.051 [Google Scholar]
  16. Sekido N., Hoshino A., Fukuzaki M., Yamabe-Mitarai Y., and Maruko T. Mater. Sci. Eng. A, 2011, 528, (29–30), 8451 LINK https://doi.org/10.1016/j.msea.2011.08.011 [Google Scholar]
  17. Gorbunova Yu. E., Ilyukhin V. V., Kuznetsov V. G., Lavrov A. V., and Linde S. A. Doklady Akademii Nauk SSSR, 1977, 234, (3), 628 [Google Scholar]
  18. Katz G. J. Am. Ceram. Soc., 1971, 54, (10), 531 LINK https://doi.org/10.1111/j.1151-2916.1971.tb12197.x [Google Scholar]
  19. Frey F., Boysen H., and Vogt T. Acta Cryst., 1990, B46, 724 LINK https://doi.org/10.1107/s0108768190007509 [Google Scholar]
  20. Huang K., Marthinsen K., Zhao Q., and Logé R. E. Prog. Mater. Sci., 2018, 92, 284 LINK https://doi.org/10.1016/j.pmatsci.2017.10.004 [Google Scholar]
  21. Yamazaki H. Japanese Patent 163069; 2005
  22. Gove K. B., and Charles J. A. Met. Technol., 1974, 1, (1), 425 LINK https://doi.org/10.1179/030716974803287366 [Google Scholar]
  23. Baker T. J., Gave K. B., and Charles J. A. Met. Technol., 1976, 3, (1), 183 LINK https://doi.org/10.1179/030716976803391656 [Google Scholar]
  24. Waudby P. E., Salter W. J. M., and Pickering F. B. J. Iron Steel Inst., 1973, 211, (7), 486 [Google Scholar]
  25. Luo C. Comput. Mater. Sci., 2001, 21, (3), 360 LINK https://doi.org/10.1016/s0927-0256(01)00149-5 [Google Scholar]
  26. Luo C., and Ståhlberg U. J. Mater. Proc. Technol., 2001, 114, (1), 87 LINK https://doi.org/10.1016/S0924-0136(01)00576-3 [Google Scholar]
  27. Zhang Z., and Pantleon W. Acta Mater., 2018, 149, 235 LINK https://doi.org/10.1016/j.actamat.2018.02.042 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651320X15959517568861
Loading
/content/journals/10.1595/205651320X15959517568861
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error