Skip to content
1887
Volume 65, Issue 2
  • ISSN: 2056-5135

Abstract

Biofilms in industrial cooling tower systems are an important problem. The importance of the surface material in the response to an oxidising biocide (chloramine T trihydrate) was substantiated in our study. Polyvinyl chloride (PVC) cooling tower fill material, stainless steel cooling tower construction material and glass surfaces were compared by evaluating the bacterial loads on materials before and after biocidal treatment. The greatest logarithmic decrease in bacterial load was recorded as >3 log for glass after the first two months and for PVC after the second month. Actively respiring bacterial counts and adenosine triphosphate (ATP) measurements showed that there was no significant difference in the sensitivity of biofilm-associated cells to the biocide on the different surfaces. In addition, the effect of the biocidal treatment decreased with increasing biofilm age, regardless of the material.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15994793725735
2021-01-01
2024-11-25
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/2/Sanli_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15994793725735&mimeType=html&fmt=ahah

References

  1. I. Schlei-Peters, M. G. Wichmann, I.-G. Matthes, F.-W. Gundlach, T. S. Spengler, J. Ind. Ecol., 2018, 22, (1), 41 LINK https://doi.org/10.1111/jiec.12540 [Google Scholar]
  2. C. Schulze, B. Raabe, C. Herrmann, S. Thiede, Procedia CIRP, 2018, 69, 277 LINK https://doi.org/10.1016/j.procir.2017.11.034 [Google Scholar]
  3. T. V. Wagner, R. Helmus, E. Becker, H. H. M. Rijnaarts, P. de Voogt, A. A. M. Langenhoff, J. R. Parsons, Environ. Sci.: Water Res. Technol., 2020, 6, (4), 1058 LINK https://doi.org/10.1039/C9EW01018A [Google Scholar]
  4. S.-Y. Pan, S. W. Snyder, A. I. Packman, Y. J. Lin, P.-C. Chiang, Water-Energy Nexus, 2018, 1, (1), 26 LINK https://doi.org/10.1016/j.wen.2018.04.002 [Google Scholar]
  5. M. Simões, M. O. Pereira, M. J. Vieira, Water Res., 2005, 39, (2–3), 478 LINK https://doi.org/10.1016/j.watres.2004.09.018 [Google Scholar]
  6. P. Elumalai, P. Parthipan, J. Narenkumar, R. K. Sarankumar, O. P. Karthikeyan, A. Rajasekar, Int. J. Environ. Res., 2017, 11, 339 LINK https://doi.org/10.1007/s41742-017-0031-5 [Google Scholar]
  7. F. Di Pippo, L. Di Gregorio, R. Congestri, V. Tandoi, S. Rossetti, FEMS Microbiol. Ecol., 2018, 94, (5), fiy044 LINK https://doi.org/10.1093/femsec/fiy044 [Google Scholar]
  8. M. Ludensky, ‘Microbiological Control in Cooling Water Systems’, in “Directory of Microbicides for the Protection of Materials: A Handbook”, ed. W. Paulus, Kluwer Academic Publishers, The Netherlands, 2004 LINK https://doi.org/10.1007/1-4020-2818-0_8 [Google Scholar]
  9. N. O. Sanli-Yurudu, Eur. J. Biol., 2012, 71, (1), 63 LINK https://dergipark.org.tr/en/pub/iufsjb/issue/9057/112949 [Google Scholar]
  10. L. Brouse, R. Brouse, D. Brouse, Pathogens, 2017, 6, (2), 14 LINK https://doi.org/10.3390/pathogens6020014 [Google Scholar]
  11. A. Lomander, P. Schreuders, E. Russek-Cohen, L. Ali, Biores. Technol., 2004, 94, (3), 275 LINK https://doi.org/10.1016/j.biortech.2004.01.004 [Google Scholar]
  12. A. Bridier, R. Briandet, V. Thomas, F. Dubois-Brissonnet, Biofouling, 2011, 27, (9), 1017 LINK https://doi.org/10.1080/08927014.2011.626899 [Google Scholar]
  13. F. Liu, X. Chang, F. Yang, Y. Wang, F. Wang, W. Dong, C. Zhao, World J. Microbiol. Biotechnol., 2011, 27, 2989 LINK https://doi.org/10.1007/s11274-011-0783-6 [Google Scholar]
  14. N. Zelver, M. Hamilton, D. Goeres, J. Heersink, ‘Development of a Standardized Antibiofilm Test’, in “Microbial Growth in Biofilms: Part B: Special Environments and Physicochemical Aspects”, ed. R. J. Doyle, Vol. 337, Academic Press, Cambridge, USA, 2001, pp. 363–376 LINK https://doi.org/10.1016/S0076-6879(01)37025-8 [Google Scholar]
  15. D. G. Allison, Biofouling, 2003, 19, (2), 139 LINK https://doi.org/10.1080/0892701031000072190 [Google Scholar]
  16. A. Meyer, F. M. Wallis, Biotechnol. Techn., 1997, 11, 859 LINK https://doi.org/10.1023/A:1018497813505 [Google Scholar]
  17. D. Van der Kooij, J. S. Vrouwenvelder, H. R. Veenendaal, Water Sci. Technol., 2003, 47, (5), 83 LINK https://doi.org/10.2166/wst.2003.0287 [Google Scholar]
  18. Y. C. Chang, K. Jung, J. Microbiol. Biotechnol., 2004, 14, (6), 1114 LINK http://www.jmb.or.kr/journal/view.html?uid=1546&vmd=Full [Google Scholar]
  19. K. Kröpfl, P. Vladár, K. Szabó, É. Ács, A. K. Borsodi, S. Szikora, S. Caroli, G. Záray, Environ. Pollution, 2006, 144, (2), 626 LINK https://doi.org/10.1016/j.envpol.2006.01.031 [Google Scholar]
  20. A. K. Erdem, N. O. Sanli-Yürüdü, E. O. Arslan-Aydoğdu, N. Dogruoz, Z. Zeybek, I. Türetgen, A. Cotuk, Eur. J. Biol., 2008, 67, (1), 9 LINK https://dergipark.org.tr/en/pub/iufsjb/issue/9052/112896 [Google Scholar]
  21. ‘Halamid® Disinfectant’,Axcentive SARL, France:https://www.axcentive.com/disinfectants/ (Accessed on 8th December 2020)
  22. ‘Water Quality – Enumeration of Legionella’,ISO 11731:2017, International Organization for Standardization, Geneva, Switzerland, May, 2017 LINK https://www.iso.org/standard/61782.html [Google Scholar]
  23. K. Davenport, D. Wayman, I. Michie, ‘Using ATP to Determine Biocide Efficacy’, Technical Paper, Issue Ref: MLM197 TEP005, Biotrace International Plc, UK, 2002 [Google Scholar]
  24. J. Långmark, M. V. Storey, N. J. Ashbolt, T.-A. Stenström, Appl. Environ. Microbiol., 2005, 71, (2), 706 LINK https://doi.org/10.1128/AEM.71.2.706-712.2005 [Google Scholar]
  25. IBM® SPSS® Statistics for Windows, Version 22.0, IBM Corp, Armonk, NY, USA, 2013 LINK https://www.ibm.com/support/pages/node/313621
  26. K. E. Haneke, ‘Chloramine-T [127-65-1] and Metabolite p-Toluenesulfonamide [70-55-3]: Review of Toxicological Literature’,National Institute of Environmental Health Sciences, North Carolina, USA, February, 2002 LINK https://ntp.niehs.nih.gov/ntp/htdocs/chem_background/exsumpdf/chloraminet_508.pdf [Google Scholar]
  27. ‘Standard Practice for Evaluation of Microbicides Used in Cooling Water Systems’,ASTM E645-18, ASTM International, West Conshohocken, PA, USA, 2018 LINK https://doi.org/10.1520/E0645-18 [Google Scholar]
  28. B. O. Emerenini, B. A. Hense, C. Kuttler, H. J. Eberl, PLoS One, 2015, 10, (7), e0132385 LINK https://doi.org/10.1371/journal.pone.0132385 [Google Scholar]
  29. T. Nguyen, F. A. Roddick, L. Fan, Membranes, 2012, 2, (4), 804 LINK https://doi.org/10.3390/membranes2040804 [Google Scholar]
  30. F. W. Hyde, M. Alberg, K. Smith, J. Ind. Microbiol. Biotechnol., 1997, 19, 142 LINK https://doi.org/10.1038/sj.jim.2900448 [Google Scholar]
  31. V. L. dos Santos, A. A. Veiga, R. S. Mendonça, A. L. Alves, S. Pagnin, V. M. J. Santiago, Environ. Sci. Pollution Res., 2015, 22, 2945 LINK https://doi.org/10.1007/s11356-014-3555-7 [Google Scholar]
  32. O. M. Zacheus, E. K. Iivanainen, T. K. Nissinen, M. J. Lehtola, P. J. Martikainen, Water Res., 2000, 34, (1), 63 LINK https://doi.org/10.1016/S0043-1354(99)00113-X [Google Scholar]
  33. A. K. Camper, W. L. Jones, J. T. Hayes, Appl. Environ. Microbiol., 1996, 62, (11), 4014 LINK https://doi.org/10.1128/AEM.62.11.4014-4018.1996 [Google Scholar]
/content/journals/10.1595/205651320X15994793725735
Loading
/content/journals/10.1595/205651320X15994793725735
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test