Skip to content
Volume 65, Issue 2
  • ISSN: 2056-5135


The restructuring of the economy post-COVID-19 coupled to the drive towards Net Zero carbon dioxide emissions means we must rethink the way we use transport fuels. Fossil-carbon based fuels are ubiquitous in the transport sector, however there are alternative synthetic fuels that could be used as drop-in or replacement fuels. The main hurdles to achieving a transition to synthetic fuels are the limited availability of low-cost carbon dioxide at an appropriate purity, the availability of renewable hydrogen and, in the case of hydrocarbons, catalysts that are selective for small and particular chain lengths. In this paper we will consider some of the alternative fuels and methods that could reduce cost, both economically and environmentally. We recommend that increased effort in the rapid development of these fuels should be a priority in order to accelerate the possibility of achieving Net Zero without costly infrastructure changes. As ground transportation offers a more straightforward approach legislatively, we will look at oxygenated organic fuels as an alternative drop-in replacement for hydrocarbons.


Article metrics loading...

Loading full text...

Full text loading...



  1. Styring P., Quadrelli E. A., and Armstrong K. “Carbon Dioxide Utilisation: Closing the Carbon Cycle”,Elsevier, Amsterdam, The Netherlands, 2015 LINK [Google Scholar]
  2. Priestley J. “Directions for Impregnating Water with Fixed Air: In Order to Communicate to it the Peculiar Spirit and Virtues of Pyrmont Water, and Other Mineral Waters of a Similar Nature”,J. Johnson, London, UK, 1772 LINK [Google Scholar]
  3. Maitlis P. M., and de Klerk A. “Greener Fischer-Tropsch Processes: For Fuels and Feedstocks”,Wiley, Weinheim, Germany, 2013 LINK [Google Scholar]
  4. “Sustainable Synthetic Carbon Based Fuels for Transport: Policy Briefing”,The Royal Society, London, UK, September, 2019 LINK [Google Scholar]
  5. Willems W. ‘Sustainable Fuels for Future Mobility: The DME Opportunity for CI-Engines’,8th International DME Conference,Sacramento, CA, USA,10th–12th September, 2018 [Google Scholar]
  6. ‘Fossil and Alternative Fuels - Energy Content’,The Engineering Toolbox, 2008 LINK [Google Scholar]
  7. ‘Fuels - Higher and Lower Calorific Values’,The Engineering Toolbox, 2003 LINK [Google Scholar]
  8. Molstad M. C., and Dodge B. F. Ind. Eng. Chem., 1935, 27, (2), 134 LINK [Google Scholar]
  9. Olah G. A. Angew. Chem. Int. Ed., 2013, 52, 1, 104 LINK [Google Scholar]
  10. Hobson C., and Márquez C. “Renewable Methanol Report”,Methanol Institute, Singapore, December, 2018 LINK [Google Scholar]
  11. Larmier K., Liao W.-C., Tada S., Lam E., Verel R., Bansode A., Urakawa A., Comas-Vives A., and Copéret C. Angew. Chem. Int. Ed., 2017, 56, (9), 2318 LINK [Google Scholar]
  12. Dasireddy V. D. B. C., and Likozar B. Renew. Energy, 2019, 140, 452 LINK [Google Scholar]
  13. Behrens M., Studt F., Kasatkin I., Kühl S., Hävecker M., Abild-Pedersen F., Zander S., Girgsdies F., Kurr P., Kniep B.-L., Tovar M., Fischer R. W., Nørskov J. K., and Schlögl R. Science, 2012, 336, (6083), 893 LINK [Google Scholar]
  14. Huš M., Dasireddy V. D. B. C., Štefaničič N. S., and Likozar B. Appl. Catal. B: Environ., 2017, 207, 267 LINK [Google Scholar]
  15. Sun J. T., Metcalfe I. S., and Sahibzada M. Ind. Eng. Chem. Res., 1999, 38, (10), 3868 LINK [Google Scholar]
  16. Prašnikar A., Pavlišič A., Ruiz-Zepeda F., Kovač J., and Likozar B. Ind. Eng. Chem. Res., 2019, 58, (29), 13021 LINK [Google Scholar]
  17. Wei X., Yin Z., Lyu K., Li Z., Gong J., Wang G., Xiao L., Lu J., and Zhuang L. ACS Catal., 2020, 10, (7), 4103 LINK [Google Scholar]
  18. Zhou W., Cheng K., Kang J., Zhou C., Subramanian V., Zhang Q., and Wang Y. Chem. Soc. Rev., 2019, 48, (12), 3193 LINK [Google Scholar]
  19. Wang W., Wang S., Ma X., and Gong J. Chem. Soc. Rev., 2011, 40, (7), 3703 LINK [Google Scholar]
  20. Díez-Ramírez J., Sánchez P., Rodríguez-Gómez A., Valverde J. L., and Dorado F. Ind. Eng. Chem. Res., 2016, 55, (12), 3556 LINK [Google Scholar]
  21. Toyao T., Kayamori S., Maeno Z., Siddiki S. M. A. H., and Shimizu K.-i. ACS. Catal., 2019, 9, (9), 8187 LINK [Google Scholar]
  22. Jiang X., Koizumi N., Guo X., and Song C. Appl. Catal. B: Environ., 2015, 170-171, 173 LINK [Google Scholar]
  23. Dang S., Yang H., Gao P., Wang H., Li X., Wei W., and Sun Y. Catal. Today, 2019, 330, 61 LINK [Google Scholar]
  24. Xiao S., Zhang Y., Gao P., Zhong L., Li X., Zhang Z., Wang H., Wei W., and Sun Y. Catal. Today, 2017, 281, (2), 327 LINK [Google Scholar]
  25. Joo O.-S., Jung K.-D., Moon I., Rozovskii A. Ya., Lin G. I., Han S.-H., and Uhm S.-J. Ind. Eng. Chem. Res. 1999, 38, (5), 1808 LINK [Google Scholar]
  26. Toyir J., Miloua R., Elkandri N. E., Nawdali M., Toufik H., Miloua F., and Saito M. Phys. Proc., 2009, 2, (3), 1075 LINK [Google Scholar]
  27. Dolan G. ‘Methanol: Emerging Global Energy Markets’,16th Annual State of the Energy Industry Forum, Washington, DC, USA, 23rd January, 2020 [Google Scholar]
  28. Su X., Yang X., Zhao B., and Huang Y. J. Energy Chem., 2017, 26, (5), 854 LINK [Google Scholar]
  29. Lahijani P., Zainal Z. A., Mohammadi M., and Mohamed A. R. Renew. Sust. Energy Rev., 2015, 41, 615 LINK [Google Scholar]
  30. Gao F.-Y., Bao R.-C., Gao M.-R., and Yu S.-H. J. Mater. Chem. A, 2020, 8, (31), 15458 LINK [Google Scholar]
  31. Chen G., Wang L., Godfroid T., Snyders R., ‘Progress in Plasma-Assisted Catalysis for Carbon Dioxide Reduction’, in “Plasma Chemistry and Gas Conversion”, eds. Britun N., and Silva T. IntechOpen, London, UK, 2018, pp. 59–69 LINK [Google Scholar]
  32. Ramey D., and Yang S.-T. ‘Production of Butyric acid and Butanol from Biomass’,US Department of Energy, Oak Ridge, TN, USA, 2005 LINK [Google Scholar]
  33. Szwaja S., and Naber J. D. Fuel, 2010, 89, (7), 1573 LINK [Google Scholar]
  34. Munro M., Nash S., and Chuck C. J. R. W. Jenkins, Fuel, 2013, 103, 593 LINK [Google Scholar]
  35. Abo B. O., Gao M., Wang Y., Wu C., Wang Q., and Ma H. Environ. Sci. Poll. Res., 2019, 26, 20164 LINK [Google Scholar]
  36. Aitchison H., Wingad R. L., and Wass D. F. ACS Catal., 2016, 6, (10), 7125 LINK [Google Scholar]
  37. Bai S., Shao Q., Wang P., Dai Q., Wang X., and Huang X. J. Am. Chem. Soc., 2017, 139, (20), 6827 LINK [Google Scholar]
  38. Wang L., Wang L., Zhang J., Liu X., Wang H., Zhang W., Yang Q., Ma J., Dong X., Yoo S. J., Kim J.-G., Meng X., and Xiao F.-S. Angew. Chem. Int. Ed., 2018, 57, (21), 6104 LINK [Google Scholar]
  39. Xu H., Rebollar D., He H., Chong L., Liu Y., Liu C., Sun C.-J., Li T., Muntean J. V., Winans R. E., Liu D.-J., and Xu T. Nat. Energy, 2020, 5, 623 LINK [Google Scholar]
  40. Zhao B., Liu Y., Zhu Z., Guo H., and Ma X. J. CO2 Util., 2018, 24, 34 LINK [Google Scholar]
  41. Ting L. R. L., García-Muelas R., Martín A. J., Veenstra F. L. P., Chen S. T.-J., Peng Y., Per E. Y. X., Pablo-García S., López N., Pérez-Ramírez J., and Yeo B. S. Angew. Chem. Int. Ed., 2020, 59, (47), 21072 LINK [Google Scholar]
  42. Dowson G. R. M., and Styring P. Front. Energy Res., 2017, 5, 26 LINK [Google Scholar]
  43. Speiser F., Braunstein P., and Saussine L. Acc. Chem. Res., 2005, 38, (10), 784 LINK [Google Scholar]
  44. Tan L., Yang G., Yoneyama Y., Kou Y., Tan Y., Vitidsant T., and Tsubaki N. Appl. Catal. A: Gen., 2015, 505, 141 LINK [Google Scholar]
  45. Kim M. Y., Yoon S. H., Ryu B. W., and Lee C. S. Fuel, 2008, 87, (12), 2779 LINK [Google Scholar]
  46. ‘Mack Trucks Tests Alternative Fuel DME’,Volvo Group, Gothenburg, Sweden, 24th January, 2017 LINK [Google Scholar]
  47. ‘Ford Leads Project to Develop Near Zero Particulate Emission Diesel Cars that Could Run On Converted CO2’,Ford of Europe, Aachen, Germany, 11th September, 2015 LINK [Google Scholar]
  48. McLaren J., Miller J., O’Shaughnessy E., Wood E., and Shapiro E. ‘Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type’,NREL/TP-6A20-64852, National Renewable Energy Laboratory, Golden, CO, USA, April, 2016 LINK [Google Scholar]
  49. Jayabalan Thangavelu ‘Flexible DME Production From Biomass: Fledged Project Update’,DME Sustainable Mobility Workshop, Berlin, Germany, 24th May 2019 LINK [Google Scholar]
  50. Michailos S., McCord S., Sick V., Stokes G., and Styring P. Energy Conv. Manage., 2019, 184, 262 LINK [Google Scholar]
  51. Corradini A., and McCormick J. Oberon Fuels Inc, ‘Process and System for Converting Biogas to Liquid Fuels’,US Patent 8809603; 2014 [Google Scholar]
  52. Aresta M., and Dibenedetto A. Dalton Trans., 2007, (28), 2975 LINK [Google Scholar]
  53. Huang C.-H., and Tan C.-S. Aerosol Air Qual. Res., 2014, 14, (2), 480 LINK [Google Scholar]
  54. Schittkowski J., Ruland H., Laudenschleger D., Girod K., Kähler K., Kaluza S., Muhler M., and Schlögl R. Chem. Ing. Techn., 2018, 90, (10), 1419 LINK [Google Scholar]
  55. Yao L., Shen X., Pan Y., and Peng Z. Energy Fuels, 2020, 34, (7), 8635 LINK [Google Scholar]
  56. Polierer S., Guse D., Wild S., Delgado K. H., Otto T. N., Zevaco T. A., Kind M., Sauer J., Studt F., and Pitter S. Catalysts, 2020, 10, (8), 816 LINK [Google Scholar]
  57. Sheng Q., Ye R.-P., Gong W., Shi X., Xu B., Argyle M., Adidharma H., and Fan M. J. Environ. Sci., 2020, 92, 106 LINK [Google Scholar]
  58. Modak A., Bhanja P., Dutta S., Chowdhury B., and Bhaumik A. Green Chem., 2020, 22, (13), 4002 LINK [Google Scholar]
  59. Otalvaro N. D., Kaiser M., Delgado K. H., Wild S., Sauer J., and Freund H. React. Chem. Eng., 2020, 5, (5), 949 LINK [Google Scholar]
  60. Kornas A., Śliwa M., Ruggiero-Mikołajczyk M., Samson K., Podobiński J., Karcz R., Duraczyńska D., Rutkowska-Zbik D., and Grabowski R. React. Kinet. Mech. Catal., 2020, 130, 179 LINK [Google Scholar]
  61. Lee U., Han J., Wang M., Ward J., Hicks E., Goodwin D., Boudreaux R., Hanarp P., Salsing H., Desai P., Varenne E., Klintbom P., Willems W., Winkler S. L., Maas H., De Kleine R., Hansen J., Shim T., and Furusjö E. SAE Int. J. Fuels Lubr., 2016, 9, (3), 546 LINK [Google Scholar]
  62. Hänggi S., Elbert P., Bütler T., Cabalzar U., Teske S., Bach C., and Onder C. Energy Rep., 2019, 5, 555 LINK [Google Scholar]
  63. Ahmad W., Chan F. L., Hoadley A., Wang H., and Tanksale A. Appl. Catal. B: Environ., 2020, 269, 118765 LINK [Google Scholar]
  64. Gierlich C. H., Beydoun K., Klankermayer J., and Palkovits R. Chem. Ing. Techn., 2020, 92, (1–2), 116 LINK [Google Scholar]
  65. Wunderlich J., Müller L., Buchner G. A., Marxen A., Michailos S., Armstrong K., Naims H., McCord S., Styring P., Sick V., and Schomäcker R. A. W. Zimmermann, Front. Energy Res., 2020, 8, 5 LINK [Google Scholar]
  66. Sick V., Armstrong K., Cooney G., Cremonese L., Eggleston A., Faber G., Hackett G., Kätelhön A., Keoleian G., Marano J., Marriott J., McCord S, Miller S. A., Mutchek M., Olfe-Kräutlein B., Ravikumar D., Roper L. K., Schaidle J., Skone T., Smith L., Strunge T., Styring P., Tao L., Völker S., and Zimmermann A. Energy Technol., 2019, 8, (11), 1901034 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error