Skip to content
1887
Volume 64, Issue 4
  • ISSN: 2056-5135

Abstract

The asymmetric reduction of C=C double bonds is a sought-after chemical transformation to obtain chiral molecules used in the synthesis of fine chemicals. Biocatalytic C=C double bond reduction is a particularly interesting transformation complementary to more established chemocatalytic methods. The enzymes capable of catalysing this reaction are called ene-reductases (ENEs). For the reaction to take place, ENEs need an electron withdrawing group (EWG) in conjugation with the double bond. Especially favourable EWGs are carbonyls and nitro groups; other EWGs, such as carboxylic acids, esters or nitriles, often give poor results. In this work, a substrate engineering strategy is proposed whereby a simple transformation of the carboxylic acid into a fluorinated ester or a cyclic imide allows to increase the ability of ENEs to reduce the conjugated double bond. Up to complete conversion of the substrates tested was observed with enzymes ENE-105 and *ENE-69.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X16001815466116
2020-01-01
2024-02-28
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/4/Dominguez_16a_Imp.html?itemId=/content/journals/10.1595/205651320X16001815466116&mimeType=html&fmt=ahah

References

  1. Dominguez B., Schell U., Bisagni S., and Kalthoff T. Johnson Matthey Technol. Rev., 2016, 60, (4), 243 LINK https://www.technology.matthey.com/article/60/4/243-249/ [Google Scholar]
  2. Hall M., Stueckler C., Ehammer H., Pointner E., Oberdorfer G., Gruber K., Hauer B., Stuermer R., Kroutil W., Macheroux P., and Faber K. Adv. Synth. Catal., 2008, 350, (3), 411 LINK https://doi.org/10.1002/adsc.200700458 [Google Scholar]
  3. Hall M., Stueckler C., Kroutil W., Macheroux P., and Faber K. Angew. Chem., Int. Ed., 2007, 46, (21), 3934 LINK https://doi.org/10.1002/anie.200605168 [Google Scholar]
  4. Chaparro-Riggers J. F., Rogers T. A., Vazquez-Figueroa E., Polizzi K. M., and Bommarius A. S. Adv. Synth. Catal., 2007, 349, (8–9), 1521 LINK https://doi.org/10.1002/adsc.200700074 [Google Scholar]
  5. Müller A., Hauer B., and Rosche B. Biotechnol. Bioeng., 2007, 98, (1), 22 LINK https://doi.org/10.1002/bit.21415 [Google Scholar]
  6. Swiderska M. A., and Stewart J. D. J. Mol. Catal. B: Enzym., 2006, 42, (1–2), 52 LINK https://doi.org/10.1016/j.molcatb.2006.06.023 [Google Scholar]
  7. Dobrijevic D., Benhamou L., Aliev A. E., Méndez-Sánchez D., Dawson N., Baud D., Tappertzhofen N., Moody T. S., Orengo C. A., Hailes H. C., and Ward J. M. RSC Adv., 2019, 9, (63), 36608 LINK https://doi.org/10.1039/c9ra06088j [Google Scholar]
  8. Toogood H. S., and Scrutton N. S. ACS Catal., 2018, 8, (4), 3532 LINK https://doi.org/10.1021/acscatal.8b00624 [Google Scholar]
  9. Brown G., Moody T. S., Smyth M., Taylor S. J. C., ‘Almac: An Industrial Perspective of Ene Reductase (ERED) Biocatalysis’, in “Biocatalysis: An Industrial Perspective”, eds. de Gonzalo G., and Domínguez de María P. Royal Society of Chemistry, London, UK, 2018, pp. 229–256 LINK https://doi.org/10.1039/9781782629993-00229 [Google Scholar]
  10. Mangan D., Miskelly I., and Moody T. S. Adv. Synth. Catal., 2012, 354, (11–12), 2185 LINK https://doi.org/10.1002/adsc.201101006 [Google Scholar]
  11. Stuermer R., Hauer B., Hall M., and Faber K. Curr. Opin. Chem. Biol., 2007, 11, (2), 203 LINK https://doi.org/10.1016/j.cbpa.2007.02.025 [Google Scholar]
  12. Kawai Y., Hayashi M., Inaba Y., Saitou K., and Ohno A. Tetrahedron Lett., 1998, 39, (29), 5225 LINK https://doi.org/10.1016/s0040-4039(98)01027-2 [Google Scholar]
  13. Blaser H. U., Pugin B., Spindler F., ‘Asymmetric Hydrogenation’, in “Topics in Organometallic Chemistry: Organometallics as Catalysts in the Fine Chemical Industry”, eds., Beller M., and Blaser H. U. Vol. 42, Springer-Verlag, Berlin, Germany, 2012, pp. 65–102 LINK https://doi.org/10.1007/3418_2011_27 [Google Scholar]
  14. Ager D. J., de Vries A. H. M., and de Vries J. G. Chem. Soc. Rev., 2012, 41, (8), 3340 LINK https://doi.org/10.1039/c2cs15312b [Google Scholar]
  15. Seo C. S. G., and Morris R. H. Organometallics, 2018, 38, (1), 47 LINK https://doi.org/10.1021/acs.organomet.8b00774 [Google Scholar]
  16. Mansell D. J., Toogood H. S., Waller J., Hughes J. M. X., Levy C. W., Gardiner J. M., and Scrutton N. S. ACS Catal., 2013, 3, (3), 370 LINK https://doi.org/10.1021/cs300709m [Google Scholar]
  17. Waller J., Toogood H. S., Karuppiah V., Rattray N. J. W., Mansell D. J., Leys D., Gardiner J. M., Fryszkowska A., Ahmed S. T., Bandichhor R., Reddy G. P., and Scrutton N. S. Org. Biomol. Chem., 2017, 15, (20), 4440 LINK https://doi.org/10.1039/c7ob00163k [Google Scholar]
  18. Breuer M., Ditrich K., Habicher T., Hauer B., Keßeler M., Stürmer R., and Zelinski T. Angew. Chem., Int. Ed., 2004, 43, (7), 788 LINK https://doi.org/10.1002/anie.200300599 [Google Scholar]
  19. Monge D., Jiang H., and Alvarez-Casao Y. Chem. Eur. J., 2015, 21, (12), 4494 LINK https://doi.org/10.1002/chem.201405552 [Google Scholar]
  20. Soloshonok V. A., Cai C., Hruby V. J., Van Meervelt L., and Yamazaki T. J. Org. Chem., 2000, 65, (20), 6688 LINK https://doi.org/10.1021/jo0008791 [Google Scholar]
  21. Inokuma T., Hoashi Y., and Takemoto Y. J. Am. Chem. Soc., 2006, 128, (29), 9413 LINK https://doi.org/10.1021/ja061364f [Google Scholar]
  22. Evans D. A., Britton T. C., Dorow R. L., and Dellaria J. F. J. Am. Chem. Soc., 1986, 108, (20), 6395 LINK https://doi.org/10.1021/ja00280a050 [Google Scholar]
  23. Woiwode T. F., and Wandless T. J. J. Org. Chem., 1999, 64, (20), 7670 LINK https://doi.org/10.1021/jo990916s [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651320X16001815466116
Loading
/content/journals/10.1595/205651320X16001815466116
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error