Skip to content
1887
Volume 64, Issue 4
  • ISSN: 2056-5135

Abstract

The asymmetric reduction of C=C double bonds is a sought-after chemical transformation to obtain chiral molecules used in the synthesis of fine chemicals. Biocatalytic C=C double bond reduction is a particularly interesting transformation complementary to more established chemocatalytic methods. The enzymes capable of catalysing this reaction are called ene-reductases (ENEs). For the reaction to take place, ENEs need an electron withdrawing group (EWG) in conjugation with the double bond. Especially favourable EWGs are carbonyls and nitro groups; other EWGs, such as carboxylic acids, esters or nitriles, often give poor results. In this work, a substrate engineering strategy is proposed whereby a simple transformation of the carboxylic acid into a fluorinated ester or a cyclic imide allows to increase the ability of ENEs to reduce the conjugated double bond. Up to complete conversion of the substrates tested was observed with enzymes ENE-105 and *ENE-69.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X16001815466116
2020-01-01
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/4/Dominguez_16a_Imp.html?itemId=/content/journals/10.1595/205651320X16001815466116&mimeType=html&fmt=ahah

References

  1. B. Dominguez, U. Schell, S. Bisagni, T. Kalthoff, Johnson Matthey Technol. Rev., 2016, 60, (4), 243 LINK https://www.technology.matthey.com/article/60/4/243-249/ [Google Scholar]
  2. M. Hall, C. Stueckler, H. Ehammer, E. Pointner, G. Oberdorfer, K. Gruber, B. Hauer, R. Stuermer, W. Kroutil, P. Macheroux, K. Faber, Adv. Synth. Catal., 2008, 350, (3), 411 LINK https://doi.org/10.1002/adsc.200700458 [Google Scholar]
  3. M. Hall, C. Stueckler, W. Kroutil, P. Macheroux, K. Faber, Angew. Chem., Int. Ed., 2007, 46, (21), 3934 LINK https://doi.org/10.1002/anie.200605168 [Google Scholar]
  4. J. F. Chaparro-Riggers, T. A. Rogers, E. Vazquez-Figueroa, K. M. Polizzi, A. S. Bommarius, Adv. Synth. Catal., 2007, 349, (8–9), 1521 LINK https://doi.org/10.1002/adsc.200700074 [Google Scholar]
  5. A. Müller, B. Hauer, B. Rosche, Biotechnol. Bioeng., 2007, 98, (1), 22 LINK https://doi.org/10.1002/bit.21415 [Google Scholar]
  6. M. A. Swiderska, J. D. Stewart, J. Mol. Catal. B: Enzym., 2006, 42, (1–2), 52 LINK https://doi.org/10.1016/j.molcatb.2006.06.023 [Google Scholar]
  7. D. Dobrijevic, L. Benhamou, A. E. Aliev, D. Méndez-Sánchez, N. Dawson, D. Baud, N. Tappertzhofen, T. S. Moody, C. A. Orengo, H. C. Hailes, J. M. Ward, RSC Adv., 2019, 9, (63), 36608 LINK https://doi.org/10.1039/c9ra06088j [Google Scholar]
  8. H. S. Toogood, N. S. Scrutton, ACS Catal., 2018, 8, (4), 3532 LINK https://doi.org/10.1021/acscatal.8b00624 [Google Scholar]
  9. G. Brown, T. S. Moody, M. Smyth, S. J. C. Taylor, ‘Almac: An Industrial Perspective of Ene Reductase (ERED) Biocatalysis’, in “Biocatalysis: An Industrial Perspective”, eds. G. de Gonzalo, P. Domínguez de María, Royal Society of Chemistry, London, UK, 2018, pp. 229–256 LINK https://doi.org/10.1039/9781782629993-00229 [Google Scholar]
  10. D. Mangan, I. Miskelly, T. S. Moody, Adv. Synth. Catal., 2012, 354, (11–12), 2185 LINK https://doi.org/10.1002/adsc.201101006 [Google Scholar]
  11. R. Stuermer, B. Hauer, M. Hall, K. Faber, Curr. Opin. Chem. Biol., 2007, 11, (2), 203 LINK https://doi.org/10.1016/j.cbpa.2007.02.025 [Google Scholar]
  12. Y. Kawai, M. Hayashi, Y. Inaba, K. Saitou, A. Ohno, Tetrahedron Lett., 1998, 39, (29), 5225 LINK https://doi.org/10.1016/s0040-4039(98)01027-2 [Google Scholar]
  13. H. U. Blaser, B. Pugin, F. Spindler, ‘Asymmetric Hydrogenation’, in “Topics in Organometallic Chemistry: Organometallics as Catalysts in the Fine Chemical Industry”, eds., M. Beller, H. U. Blaser, Vol. 42, Springer-Verlag, Berlin, Germany, 2012, pp. 65–102 LINK https://doi.org/10.1007/3418_2011_27 [Google Scholar]
  14. D. J. Ager, A. H. M. de Vries, J. G. de Vries, Chem. Soc. Rev., 2012, 41, (8), 3340 LINK https://doi.org/10.1039/c2cs15312b [Google Scholar]
  15. C. S. G. Seo, R. H. Morris, Organometallics, 2018, 38, (1), 47 LINK https://doi.org/10.1021/acs.organomet.8b00774 [Google Scholar]
  16. D. J. Mansell, H. S. Toogood, J. Waller, J. M. X. Hughes, C. W. Levy, J. M. Gardiner, N. S. Scrutton, ACS Catal., 2013, 3, (3), 370 LINK https://doi.org/10.1021/cs300709m [Google Scholar]
  17. J. Waller, H. S. Toogood, V. Karuppiah, N. J. W. Rattray, D. J. Mansell, D. Leys, J. M. Gardiner, A. Fryszkowska, S. T. Ahmed, R. Bandichhor, G. P. Reddy, N. S. Scrutton, Org. Biomol. Chem., 2017, 15, (20), 4440 LINK https://doi.org/10.1039/c7ob00163k [Google Scholar]
  18. M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R. Stürmer, T. Zelinski, Angew. Chem., Int. Ed., 2004, 43, (7), 788 LINK https://doi.org/10.1002/anie.200300599 [Google Scholar]
  19. D. Monge, H. Jiang, Y. Alvarez-Casao, Chem. Eur. J., 2015, 21, (12), 4494 LINK https://doi.org/10.1002/chem.201405552 [Google Scholar]
  20. V. A. Soloshonok, C. Cai, V. J. Hruby, L. Van Meervelt, T. Yamazaki, J. Org. Chem., 2000, 65, (20), 6688 LINK https://doi.org/10.1021/jo0008791 [Google Scholar]
  21. T. Inokuma, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc., 2006, 128, (29), 9413 LINK https://doi.org/10.1021/ja061364f [Google Scholar]
  22. D. A. Evans, T. C. Britton, R. L. Dorow, J. F. Dellaria, J. Am. Chem. Soc., 1986, 108, (20), 6395 LINK https://doi.org/10.1021/ja00280a050 [Google Scholar]
  23. T. F. Woiwode, T. J. Wandless, J. Org. Chem., 1999, 64, (20), 7670 LINK https://doi.org/10.1021/jo990916s [Google Scholar]
/content/journals/10.1595/205651320X16001815466116
Loading
/content/journals/10.1595/205651320X16001815466116
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test