Skip to content
1887
Volume 65, Issue 1
  • ISSN: 2056-5135

Abstract

Platinum-based knitted gauzes are the most efficient catalysts for the production of nitric oxide, as a precursor to the manufacture of nitric acid and caprolactam. Decades of research and optimisation have resulted in a greater understanding of ammonia oxidation kinetics and associated metal movement within these catalyst packs, along with the development of beneficial binary and ternary alloys. The design of a pack has evolved from the simple addition or removal of metal to modelling the optimal installed metal content and distribution. This review discusses the fundamental kinetics and metal loss for ammonia oxidation catalysts in nitric acid applications and outlines how they can, in conjunction with prevailing platinum group metal (pgm) market conditions and plant key performance indicators (KPIs), influence the optimal catalyst design.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16012842414480
2021-01-01
2024-02-22
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/1/Ashcroft_16a_Imp.html?itemId=/content/journals/10.1595/205651321X16012842414480&mimeType=html&fmt=ahah

References

  1. Gubler R., Suresh B., He H., and Yamaguchi Y. ‘Nitric Acid’, in “Chemical Economics Handbook”, IHS Markit, London, UK, May, 2020, 116 pp [Google Scholar]
  2. Frankland H., Brown C., Goddin H., Kay O., and Bünnagel T. Johnson Matthey Technol. Rev., 2017, 61, (3), 183 LINK https://www.technology.matthey.com/article/61/3/183-189/ [Google Scholar]
  3. Davis C. W., and Du Pont de Nemours E. I. ‘Process of Oxidizing Ammonia’, US Patent 1,706,055; 1929 [Google Scholar]
  4. Handforth S. L., and Tilley J. N. Ind. Eng. Chem., 1934, 26, (12), 1287 LINK https://doi.org/10.1021/ie50300a016 [Google Scholar]
  5. Heywood A. E. Platinum Metals Rev., 1973, 17, (4), 118 LINK https://www.technology.matthey.com/article/17/4/118-129/ [Google Scholar]
  6. Horner B. T. Platinum Metals Rev., 1993, 37, (2), 76 LINK https://www.technology.matthey.com/article/37/2/76-85/ [Google Scholar]
  7. Bazhenov A., and Gushin G. ‘Catalysts for Ammonia Oxidation’, Nitrogen+Syngas, September–October, 2017, 349, 1 LINK http://www.plaurum.sk/u/files/1bb94979b8c068417a1d109414fb5412.pdf/NS-349-Russia-lrprf3.pdf [Google Scholar]
  8. Ning Y., Yang Z., and Zhao H. Platinum Metals Rev., 1996, 40, (2), 80 LINK https://www.technology.matthey.com/article/40/2/80-87/ [Google Scholar]
  9. Gölitzer H., Köenigs D., Neumann J., and Stoll T. Umicore AG & Co KG, ‘Three-Dimensional Catalyst Gauzes Knitted in Two Layers’, European Patent, 1,358,010; 2002 [Google Scholar]
  10. Groves M. C. E. ‘Nitric Acid’, in “Kirk-Othmer Encyclopedia of Chemical Technology”, John Wiley & Sons Inc, Hoboken, USA, 2020 LINK https://doi.org/10.1002/0471238961.1409201803120118.a01.pub3 [Google Scholar]
  11. Pignet T., and Schmidt L. D. J. Catal., 1975, 40, (2), 212 LINK https://doi.org/10.1016/0021-9517(75)90249-3 [Google Scholar]
  12. Warner M., and Haynes B. S. Proc. Combust. Inst., 2015, 35, (2), 2215 LINK http://dx.doi.org/10.1016/j.proci.2014.06.110 [Google Scholar]
  13. Pérez-Ramírez J., Kondratenko E. V., Novell-Leruth G., and Ricart J. M. J. Catal., 2009, 261, (2), 217 LINK https://doi.org/10.1016/j.jcat.2008.11.018 [Google Scholar]
  14. Hannevold L., Nilsen O., Kjekshus A., and Fjellvåg H. Appl. Catal. A: Gen., 2005, 284, (1–2), 163 LINK https://doi.org/10.1016/j.apcata.2005.01.033 [Google Scholar]
  15. Busby J. A., Knapton A. G., and Budd A. E. R. Proc. Fert. Soc., 1978, 169, 39 [Google Scholar]
  16. Mugo J., and Jones G. 2018
  17. Fraunhofer ISI, ECOFYS BV and Öko-Institut eV, “Methodology for the Free Allocation of Emission Allowances in the EU ETS Post 2012: Sector Report for the Chemical Industry”, Study Contract 07.0307/2008/515770/ETU/C2, Ecofys Project Number PECSNL082164, European Commission, Brussels, Belgium, November, 2009, 101 pp LINK https://ec.europa.eu/clima/sites/clima/files/ets/allowances/docs/bm_study-chemicals_en.pdf [Google Scholar]
  18. Salanov A. N., Suprun E. A., Serkova A. N., Chesnokova N. M., Sutormina E. F., Isupova L. A., and Parmon V. N. Kinet. Catal., 2020, 61, (3), 421 LINK https://doi.org/10.1134/S0023158420030179 [Google Scholar]
  19. Bergene E., Tronstad O., and Holmen A. J. Catal., 1996, 160, (2), 141 LINK https://doi.org/10.1006/jcat.1996.0133 [Google Scholar]
  20. Farrauto R. J., and Lee H. C. Ind. Eng. Chem. Res., 1990, 29, (7), 1125 LINK https://doi.org/10.1021/ie00103a006 [Google Scholar]
  21. Wilson M., and Goddin H. 2017
  22. Nilsen O., Kjekshus A., and Fellvåg H. Appl. Catal. A: Gen., 2001, 207, (1–2), 43 LINK https://doi.org/10.1016/S0926-860X(00)00615-3 [Google Scholar]
  23. Lyubovsky M. R., and Barelko V. V. J. Catal., 1994, 149, (1), 23 LINK https://doi.org/10.1006/jcat.1994.1269 [Google Scholar]
  24. Kondratenko E. V., and Pérez-Ramírez J. Appl. Catal. A: Gen., 2005, 289, (1), 97 LINK https://doi.org/10.1016/j.apcata.2005.04.017 [Google Scholar]
  25. Lawrence G. M. Proc. Safe. Prog., 1989, 8, (1), 33 LINK https://doi.org/10.1002/prsb.720080111 [Google Scholar]
  26. Sperner F., and Hohmann W. Platinum Metals Rev., 1976, 20, (1), 12 LINK https://www.technology.matthey.com/article/20/1/12-20/ [Google Scholar]
  27. Cowley A. “Pgm Market Report”, Johnson Matthey, London, UK, February, 2020, 40 pp LINK http://www.platinum.matthey.com/documents/new-item/pgm%20market%20reports/pgm_market_report_february_2020.pdf [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651321X16012842414480
Loading
/content/journals/10.1595/205651321X16012842414480
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error