Skip to content
Volume 65, Issue 1
  • ISSN: 2056-5135


The second part of this commemoration covers the final stage of Robert Gillard’s career as Professor of Inorganic Chemistry at Cardiff University and his time in retirement. At Cardiff he built on earlier work while extending his scientific interests still further into mineralogical and archaeological chemistry, and even into forensic dentistry. Coordination chemistry research continued and included the polysulfide S chain as a bidentate ligand in the all-inorganic cyclic PtS unit and the rhodium(III) complex [Rh(S)]3–. His penchant for discussion led him into several controversies, particularly over his ‘covalent hydration’ hypothesis of coordinated nitrogen-carbon double bonds in metal complexes which included those with platinum and 2,2’-bipyridine. He travelled widely attending international conferences and giving lectures. Research collaborations continued throughout his time at Cardiff and in particular he had many strong links with Portugal, both with colleagues there and as supervisor of Portuguese higher degree students at Cardiff. His years in retirement were spent in finalising his research legacy, in continuing to read historical literature, both chemical and otherwise, and in following his musical interests that had included many years singing in the Cwmbach Male Voice Choir.


Article metrics loading...

Loading full text...

Full text loading...



  1. The inorganic/organic borderline species tris-carbonatocobalt(III) provides a link to Gillard’s series “Optically-Active Coordination Compounds” – Part 28 of which reports the resolution of this complex by the use of (+)[Co(en)3]3+ (2)
  2. Gillard R. D., Mitchell P. R., and Price M. G. J. Chem. Soc., Dalton Trans., 1972, (12), 1211–1213 LINK [Google Scholar]
  3. Cartwright P., Gillard R. D., Sillanpaa R., and Valkonen J. Polyhedron, 1987, 6, (9), 1775–1779 LINK [Google Scholar]
  4. Buckley A. N., Wouterlood H. J., Cartwright P. S., and Gillard R. D. Inorg. Chim. Acta, 1988, 143, (1), 77–80 LINK [Google Scholar]
  5. Gillard R. D. Chem. Brit., 1984, 20, (11), 1022–1024 [Google Scholar]
  6. It is impossible to give a reliable estimate for the number of publications in this Series as several part numbers appear to be missing. The existence of two Part 17s and two Part 50s complicates the situation, while the fact that P. A. Williams is the sole author of Part 23 adds a further complication
  7. The final paper is dated 2001, three years after he retired and 28 years after Part 1 was published
  8. In Part 34 caerulomycin, which contains a bipy moiety, provides an exotic example of an N-heterocyclic ligand – see (9) – and a link to the “Coordination Compounds and Micro-Organisms” series
  9. Dholakia S., and Gillard R. D. J. Chem. Soc.,Dalton Trans., 1984, (10), 2245–2248 LINK [Google Scholar]
  10. Fe(bipy)2(CN)2 and Fe(phen)2(CN)2 are so-called Schilt-Barbieri compounds (11, 12)
  11. Barbieri G. A. Atti Accad. Lincei, 1934, 20, 273–278 [Google Scholar]
  12. Schilt A. A. J. Am. Chem. Soc., 1960, 82, (12), 3000–3005 LINK [Google Scholar]
  13. Though ESR was rarely used in the studies reported in this Series, Gillard used this technique extensively in later work on oxovanadium(IV) complexes (see, for example, Parts 7 and 8 of the series “Oxovanadium(IV) – Amino-Acids” – Table S11 – and (14). ESR also featured in his work on silver(II) (15) and in a few of his rhodium studies. These latter included investigation of Rh(II) species in zeolite catalysts (16) and of the paramagnetic dioxygen complexes of rhodium cis- and trans-[Rh(O2)(en)2Cl]+, [[Rh(en)2Cl]2(μ-O2)]3+ and [(RhL4Cl)2(μ-O2)]3+ (L = 4-methylpyridine). Here ESR showed that the complexes contain the Rh(III)-O2 moiety with the unpaired electron localised on the O2 (17). Despite his extensive work on copper, he seems very rarely to have obtained ESR spectra of copper complexes. However, his study of equilibria at high pH in copper(II)/amino-acid solutions (18) does provide one instance
  14. Costa Pessoa J., Vilas Boas L. F., and Gillard R. D. Polyhedron, 1989, 8, (13–14), 1745–1747 LINK [Google Scholar]
  15. Evans J. C., Gillard R. D., Lancashire R. J., and Morgan P. H. J. Chem. Soc. Dalton Trans., 1980, (8), 1277–1281 LINK [Google Scholar]
  16. Ellison I. J., Gillard R. D., and Maher J. P. Trans. Met. Chem., 2000, 25, (6), 626–627 LINK [Google Scholar]
  17. Raynor J. B., Gillard R. D., and Pedrosa de Jesus J. D. J. Chem. Soc.,Dalton Trans., 1982, (6), 1165–1166 LINK [Google Scholar]
  18. Gillard R. D., Lancashire R. J., and O’Brien P. Trans. Met. Chem., 1980, 5, (1), 340–345 LINK [Google Scholar]
  19. X-Ray powder patterns were used, alongside colour and hydration data, to characterise various tris-(1,10-phenanthroline)nickel(II) salt hydrates (20), and X-ray structure determinations carried out on the iodide trihydrate of this complex (21) and on the dimorphs of fac-[Ir(py)3Cl3] (22)
  20. Gillard R. D., and Mitchell S. H. Polyhedron, 1988, 7, (13), 1175–1186 LINK [Google Scholar]
  21. Gillard R. D., Mitchell S. H., and Robinson W. T. Polyhedron, 1989, 8, (22), 2649–2655 LINK [Google Scholar]
  22. Gillard R. D., and Mitchell S. H. Polyhedron, 1989, 8, (18), 2245–2249 LINK [Google Scholar]
  23. Covalent hydration involves the addition of water across a ring carbon-nitrogen bond in a heterocyclic compound, a pseudobase is generated by addition of an anion (e.g. hydroxide) to a ring carbon atom in a (generally quaternised) nitrogen heterocycle – either way producing a four-coordinate carbon bearing an activated nucleophile
  24. However Gillard had earlier hinted at the possibility of the occurrence of covalent hydration, for example in his 1969 paper with Brian Heaton on the properties of complexes [M(LL)2X2]+ (M = Rh or Ir, LL = bipy or phen, X = Cl or Br – see (25)
  25. Gillard R. D., and Heaton B. T. J. Chem. Soc. A, 1969, 451–454 LINK [Google Scholar]
  26. Gillard R. D., and Lyons J. R. J. Chem. Soc., Chem. Commun., 1973, (16), 585–586 LINK [Google Scholar]
  27. Gillard R. D. Inorg. Chim. Acta, 1974, 11, L21–L22 LINK [Google Scholar]
  28. “Equilibria in Complexes of N-Heterocyclic Molecules. Part III. An Explanation For Classical Anomalies Among Complexes of 1,10-Phenanthrolines and 2,2′-Bipyridyls”: A lecture delivered at the Bressanone Conference on “Stability and Reactivity of Coordination Compounds”, in August, 1974, and based on lectures at Canterbury (1967), Coleraine (1974), Cambridge (1974) and Gregynog (1974) (29)
  29. Gillard R. D. Coord. Chem. Rev., 1975, 16, (1–2), 67–94 LINK [Google Scholar]
  30. The pH-rate profile of solvolysis, racemisation and photoracemisation of [Cr(bipy)3]3+ and the pH dependence of its luminescence behaviour suggest the intermediacy of a cation-hydroxide adduct – see (31) and references therein
  31. Cartwright P. S., and Gillard R. D. Polyhedron, 1989, 8, (11), 1453–1455 LINK [Google Scholar]
  32. Diimine complexes of cobalt(II), nickel(II) and copper(II) feature in Parts 22 (33) and 28 (34); the pH-dependent racemisation of [Ni(phen)3]2+cf. [Cr(bipy)3]3+ in (30) – is discussed in Part 10 (35)
  33. Gillard R. D., and Williams P. A. Trans. Met. Chem., 1979, 4, (1), 18–23 LINK [Google Scholar]
  34. Arce Sagüés J. A., Gillard R. D., and Williams P. A. Inorg. Chim. Acta, 1979, 36, L411–L412 LINK [Google Scholar]
  35. Gillard R. D., and Williams P. A. Trans. Met. Chem., 1977, 2, (1), 14–18 LINK [Google Scholar]
  36. Pteridines undergo nucleophilic addition reactions, such as covalent hydration, particularly easily (37)
  37. Albert A., Brown D. J., and Cheeseman G. J. Chem. Soc., 1952, 1620–1630 LINK [Google Scholar]
  38. Albert A. Adv. Heterocyclic Chem., 1976, 20, 117–143 LINK [Google Scholar]
  39. Albert A. Angew. Chem., 1967, 79, (21), 913–922 LINK [Google Scholar]
  40. Albert A. Angew. Chem., Int. Ed., 1967, 6, (11), 919–928 LINK [Google Scholar]
  41. Albert A., and Armarego W. L. Adv. Heterocycl. Chem., 1965, 4, 1–42 LINK [Google Scholar]
  42. Perrin D. D. Adv. Heterocycl. Chem., 1965, 4, 43–73 LINK [Google Scholar]
  43. Pyridine has long been known to associate strongly with water, e.g. in ternary pyridine/water/organic cosolvent media (44), but seems unwilling to form a covalent bond
  44. Johnson J. R., Kilpatrick P. J., Christian S. D., and Affsprung H. E. J. Phys. Chem., 1968, 72, (9), 3223–3229 LINK [Google Scholar]
  45. Lowry T. M. “Optical Rotatory Power”,Longmans, Green and Co, London, UK, 1935, pp. 329–333 [Google Scholar]
  46. Davies N. S. A., and Gillard R. D. Trans. Met. Chem., 2000, 25, (6), 628–629 LINK [Google Scholar]
  47. (48); Gillard was the (co)author of two reviews on the Pfeiffer effect (49, 50) – the former from a conference held at University of Sussex
  48. Gillard R. D., Johns K. W., and Williams P. A. J. Chem. Soc., Chem. Commun., 1979, (8), 357–358 LINK [Google Scholar]
  49. Gillard R. D., ‘The Origin of the Pfeiffer Effect’, Proceedings of the NATO Advanced Study Institute, University of Sussex, UK, 10th–22nd September, 1978, “Optical Activity and Chiral Discrimination”, Series C – Mathematical and Physical Sciences, ed. and Mason S. F. Vol. 48, Springer Science and Business Media, Dordrecht, Holland, 1979, pp. 353–367 LINK [Google Scholar]
  50. Gillard R. D., and Williams P. A. Int. Rev. Phys. Chem., 1986, 5, (2–3), 301–305 LINK [Google Scholar]
  51. Henry M. S., and Hoffman M. Z. J. Am. Chem. Soc., 1977, 99, (15), 5201–5203 LINK [Google Scholar]
  52. Henry M. S., and Hoffman M. Z. J. Phys. Chem., 1979, 83, (5), 618–625 LINK [Google Scholar]
  53. Sarkar A., and Chakravorti S. J. Luminescence, 1995, 63, (3), 143–148 LINK [Google Scholar]
  54. Gillard R. D., and Hall D. P. J. J. Chem. Soc., Chem. Commun., 1988, (17), 1163–1164 LINK [Google Scholar]
  55. Tomasik P., and Woszczyk A. J. Heterocyclic Chem., 1979, 16, (6), 1283–1286 LINK [Google Scholar]
  56. Zhang X.-M., Tong M.-L., and Chen X.-M. Angew. Chem., Int. Ed., 2002, 41, (6), 1029–1031 LINK<1029::AID-ANIE1029>3.0.CO;2-B [Google Scholar]
  57. Reissert A. Ber. Deutsch. Chem. Ges., 1905, 38, (2), 1603–1614 LINK [Google Scholar]
  58. Reissert A. Ber. Deutsch. Chem. Ges., 1905, 38, 3415–3435 LINK [Google Scholar]
  59. McEwen W. E., and Cobb R. L. Chem. Rev., 1955, 55, (3), 511–549 LINK [Google Scholar]
  60. Popp F. D., ‘Reissert Compounds’, in “Advances in Heterocyclic Chemistry”, eds. Katritzky A. R., and Boulton A. J. Academic Press, Cambridge, USA, Vol. 9, 1968, pp. 1–25 LINK [Google Scholar]
  61. Popp F. D., ‘Developments in the Chemistry of Reissert Compounds (1968-1978)’, in “Advances in Heterocyclic Chemistry”, eds. Katritzky A. R., and Boulton A. J. Elsevier Inc, Amsterdam, The Netherlands, Vol. 24, 1979, pp. 187–214 LINK [Google Scholar]
  62. Meisenheimer J. Justus Liebigs Ann. Chem., 1902, 323, (2), 205–246 LINK [Google Scholar]
  63. Bernasconi C. F. Accts. Chem. Res., 1978, 11, (4), 147–152 LINK [Google Scholar]
  64. Terrier F. Chem. Rev., 1982, 82, (2), 77–152 LINK [Google Scholar]
  65. Artamkina G. A., Egorov M. P., and Beletskaya I. P. Chem. Rev., 1982, 82, (4), 427–459 LINK [Google Scholar]
  66. Janovsky J. V., and Erb L. Ber. Deutsch. Chem. Ges., 1886, 19, (2), 2155–2158 LINK [Google Scholar]
  67. Bunting J. W., and Meathrel W. G. Can. J. Chem., 1974, 52, (6), 975–980 LINK [Google Scholar]
  68. Black A. L., and Summers L. A. Tetrahedron, 1968, 24, (21), 6453–6457 LINK [Google Scholar]
  69. Bunting J. W. Adv. Heterocycl. Chem., 1980, 25, 1–82 LINK [Google Scholar]
  70. Gillard R. D. Coord. Chem. Rev., 1983, 50, (3), 303–309 LINK [Google Scholar]
  71. Gillard R. D. Comm. Inorg. Chem., 1986, 5, (4), 175–199 LINK [Google Scholar]
  72. Serpone N., and Hoffman M. Z. J. Chem. Educ., 1983, 60, (1), 853–860 LINK [Google Scholar]
  73. Jamieson M. A., Serpone N., and Hoffman M. Z. Coord. Chem. Rev., 1981, 39, (1–2), 121–179 LINK [Google Scholar]
  74. It should be added that references 98 to 101 of Constable’s recent review (see page 298 of (75)) argue that covalent hydration plays no role in reactions of this type
  75. Constable E. C. Polyhedron, 2016, 103, (Part B), 295–306 LINK [Google Scholar]
  76. House D. A., Norman P. R., and Hay R. W. Inorg. Chim. Acta, 1980, 45, L117–L119 LINK [Google Scholar]
  77. This hint appears in his riposte (70) to Serpone’s criticism (78). It is also possible that steric effects are significant, while both here and in the equilibria shown in Equation (iv) back-donation of electrons from the metal may also play a role
  78. Serpone N., Ponterini G., Jamieson M. A., Bolletta F., and Maestri M. Coord. Chem. Rev., 1983, 50, (3), 209–302 [Google Scholar]
  79. Mønsted O., and Nord G. J. Chem. Soc., Dalton Trans., 1981, (12), 2599 LINK [Google Scholar]
  80. This observation is a byproduct of the study of reactions of complexes [M(LL)3]2+. M = Fe or Ru. LL = bipy or phen, with cyanide mentioned later in the text – see (81)
  81. Gillard R. D., Kane-Maguire L. A. P., and Williams P. A. Transition Met. Chem., 1976, 1, (6), 247 [Google Scholar]
  82. Sengül A., and Gillard R. D. Trans. Met. Chem., 1998, 23, (6), 663–666 LINK [Google Scholar]
  83. Gameiro A. M. F., Gillard R. D., Rees N. H., Schulte J., and Sengül A. Croatica Chem. Acta, 2001, 74, (3), 641–665 LINK [Google Scholar]
  84. Margerum D. W. J. Am. Chem. Soc., 1957, 79, (11), 2728–2733 LINK [Google Scholar]
  85. Margerum D. W., and Morgenthaler L. P. J. Am. Chem. Soc., 1962, 84, (5), 706–709 LINK [Google Scholar]
  86. Burgess J., and Twigg M. V. Johnson Matthey Technol. Rev., 2021, 65, (1), 4–22 LINK [Google Scholar]
  87. (88). Some early spectroscopic evidence for pseudobase formation from M(5NO2phen)32+, M = Fe(II), Ru(II) and 5NO2phen = 5-nitro-1,10-phenanthroline, appeared in a non-Series communication (89); the electron-withdrawing 5-nitro-substituent promotes reaction with nucleophilic hydroxide
  88. Gillard R. D., Knight D. W., and Williams P. A. Trans. Met. Chem., 1980, 5, (1), 321–324 LINK [Google Scholar]
  89. Gillard R. D., Hughes C. T., and Williams P. A. Trans. Met. Chem., 1976, 1, (2), 51–52 LINK [Google Scholar]
  90. (91). It should be noted that NMR spectra of Fe(bipy)2(CN)2 (92) and of Ru(bipy)2(CN)2 (93) have been interpreted in terms of the effects of shielding by the CN group rather than in terms of covalent hydration
  91. Gillard R. D., Hughes C. T., Kane-Maguire L. A. P., and Williams P. A. Trans. Met. Chem., 1976, 1, (3), 114–118 [Google Scholar]
  92. Agarwala B. V., Ramanathan K. V., and Khetrapal C. L. J. Coord. Chem., 1985, 14, (2), 133–137 LINK [Google Scholar]
  93. Maruyama M., Matsuzawa H., and Kaizu Y. Inorg. Chim. Acta, 1995, 237, (1–2), 159–162 LINK [Google Scholar]
  94. Arce Sagüés J. A., Gillard R. D., and Williams P. A. Trans. Met. Chem., 1989, 14, (2), 110–114 LINK [Google Scholar]
  95. Anderson D. W. W., Roberts P., Twigg M. V., and Williams M. B. Inorg. Chim. Acta, 1979, 34, L281–L283 LINK [Google Scholar]
  96. Gillard R. D., Houghton R. P., and Tucker J. N. J. Chem. Soc., Dalton Trans., 1980, (11), 2102–2017 LINK [Google Scholar]
  97. Gillard R. D., and Hill R. E. E. J. Chem. Soc., Dalton Trans., 1974, (11), 1217–1236 LINK [Google Scholar]
  98. Gillard R. D., and Hummel H.-U. Trans. Met. Chem., 1985, 10, (9), 348–349 LINK [Google Scholar]
  99. -Zhan S., -Meng Q., -You X., Wang G., and Zheng P.-J. Polyhedron, 1996, 15, (15), 2655–2658 LINK [Google Scholar]
  100. Gillard R. D., and Hummel H. U. J. Coord. Chem., 1986, 14, (4), 315–319 LINK [Google Scholar]
  101. Beck M. T., and Porszolt E. C. J. Coord. Chem., 1971, 1, (1), 57–66 LINK [Google Scholar]
  102. Constable E. C. Polyhedron, 1983, 2, (7), 551–572 LINK [Google Scholar]
  103. The session at the Autumn Meeting was part of a joint Dalton and Perkin (i.e. inorganic and organic) symposium on “Reactions of Coordinated Ligands”, which included an oral contribution by E. C. Constable and K. R. Seddon entitled “Reactivity of Coordinated 2,2′-Bipyridine and 1,10-Phenanthroline”. Nord and Gillard both made oral presentations at the IMDG meeting
  104. Gillard R. D., and Wademan R. J. J. Chem. Soc., Chem. Commun., 1981, (10), 448–449 LINK [Google Scholar]
  105. Seddon K. R., Turp J. E., Constable E. C., and Wernberg O. J. Chem. Soc., Dalton Trans., 1987, (2), 293–296 LINK [Google Scholar]
  106. Hitchcock P. B., Seddon K. R., Turp J. E., Yousif Y. Z., Zora J. A., Constable E. C., and Wernberg O. J. Chem. Soc., Dalton Trans., 1988, (7), 1837–1842 LINK [Google Scholar]
  107. Gillard R. D., and Hughes C. T. J. Chem. Soc., Chem. Commun., 1977, (21), 776–777 LINK [Google Scholar]
  108. Gillard R. D., and Wademan R. J. J. Chem. Soc., Dalton Trans., 1981, (12), 2599–2600 LINK [Google Scholar]
  109. Farver O., Mønsted O., and Nord G. J. Am. Chem. Soc., 1979, 101, (20), 6118–6120 LINK [Google Scholar]
  110. Nord G. Comm. Inorg. Chem., 1985, 4, (4), 193–211 LINK [Google Scholar]
  111. Though earlier Nord had suggested the intermediacy of a pseudobase “… highly reactive precursor complex … [M(LL)2(R’-OH)]2+ where R’-OH is probably the pseudo-base…”, in her discussion of the kinetics of reduction of tris(2,2’-bipyridine) and tris(1,10-phenanthroline) complexes of iron(III) and osmium(III) by hydroxide ion (112)
  112. Nord G., and Wernberg O. J. Chem. Soc., Dalton Trans., 1975, (10), 845–849 LINK [Google Scholar]
  113. Gillard R. D., Lancashire R. J., and Williams P. A. J. Chem. Soc., Dalton Trans., 1979, (1), 190–192 [Google Scholar]
  114. (115). Other examples of tris-bipy complexes of iridium(III) containing a monodentate bipy plus water or hydroxide to complete the octahedral environment of the metal include (116–118). Monodentate phen bonded to platinum(II) has been demonstrated in [PtCl(PEt3)2(phen)]BF4, see (119)
  115. Watts R. J., Harrington J. S., and Van Houten J. J. Am. Chem. Soc., 1977, 99, (7), 2179–2187 LINK [Google Scholar]
  116. Kahl J. L., Hanck K. W., and DeArmond K. J. Phys. Chem., 1978, 82, (5), 540–545 LINK [Google Scholar]
  117. Watts R. J., and Bergeron S. F. J. Phys. Chem., 1979, 83, (3), 424–425 LINK [Google Scholar]
  118. Bergeron S. F., and Watts R. J. J. Am. Chem. Soc., 1979, 101, (12), 3151–3156 LINK [Google Scholar]
  119. Dixon K. R. Inorg. Chem., 1977, 16, (10), 2618–2624 LINK [Google Scholar]
  120. Sagüés J. A. A., Lancashire R. J., and Williams P. A. J. Chem. Soc., Dalton Trans., 1979, (1), 193–198 LINK [Google Scholar]
  121. (122). Three years later the waters of crystallisation in the analogous perchlorate salt [Ir(bipy)3](ClO4)3·2⅓H2O were shown to be close to 5,5′ positions of the ligands; no oxygen atoms were found close to the 3 (3′) positions as proposed in Gillard’s covalent hydration structure (123)
  122. Wickramasinghe W. A., Bird P. H., and Serpone N. J. Chem. Soc., Chem. Commun., 1981, (24), 1284–1286 LINK [Google Scholar]
  123. Hazell A. C., and Hazell R. G. Acta Cryst., 1984, C40, (5), 806–811 LINK [Google Scholar]
  124. There is also a link to his interest in mineral materials, in that he invoked covalent hydration to explain aspects of the behaviour of 1,10-phenanthroline complexes of iron(II) and of copper(II) on clay (hectorite, the smectite Na0.3(Mg,Li)3Si4O10(OH)2) surfaces (125). A few years later Krenske et al. (126) suggested that the dependence of absorption spectra and luminescence yields on water content for [Ru(bipy)3]2+ absorbed on smectite membranes could be rationalised in terms of covalent hydration – quoting several Gillard references (though not the Clays and Clay Minerals (125) paper!) in support [Google Scholar]
  125. Gillard R. D., and Williams P. A. Clays Clay Miner., 1978, 26, 178–179 LINK [Google Scholar]
  126. Krenske D., Abdo S., Van Damme H., Cruz M., and Fripiat J. J. J. Phys. Chem., 1980, 84, (19), 2447–2457 LINK [Google Scholar]
  127. Zhang J.-P., Lin Y.-Y., Weng Y.-Q., and Chen X.-M. Inorg. Chim. Acta, 2006, 359, (11), 3666–3670 LINK [Google Scholar]
  128. Huang Q., Diao L.-H., and Yin X.-H. Z. Kristallogr. NCS, 2010, 225, (4), 781–782 LINK [Google Scholar]
  129. Wu S.-F., Liu J.-Z., Meng M.-X., and Luo W.-Q. Z. Kristallogr. NCS, 2012, 227, (2), 163–164 LINK [Google Scholar]
  130. Though it must be said that Bunting cites Gillard in this connection in his 1980 review (131)
  131. Bunting J. W. Adv. Heterocycl. Chem., 1980, 25, 1–82 LINK [Google Scholar]
  132. (21). The authors comment (their italics) “Covalent hydration was proposed for this system in solution … such modification of the ligated 1,10-phenanthroline is not present in this particular solid”. It should be added that, in view of the extensive polymorphism – at least seven other forms – known for [Ni(phen)3]I2·nH2O (20) the occurrence of covalent hydration in [Ni(phen)3]2+-water systems cannot be totally ruled out [Google Scholar]
  133. Ledney M., and Dutta P. K. J. Am. Chem. Soc., 1995, 117, (29), 7687–7695 LINK [Google Scholar]
  134. Ghosh P. K., Brunschwig B. S., Chou M., Creutz C., and Sutin N. J. Am. Chem. Soc., 1984, 106, (17), 4772–4783 LINK [Google Scholar]
  135. Hurst J. K. Coord. Chem. Rev., 2005, 249, (3–4), 313–328 LINK [Google Scholar]
  136. Yamada H., Siems W. F., Koike T., and Hurst J. K. J. Am. Chem. Soc., 2004, 126, (31), 9786–9795 LINK [Google Scholar]
  137. Cape J. L., Siems W. F., and Hurst J. K. Inorg. Chem., 2009, 48, 8729–8735 LINK [Google Scholar]
  138. These entities were chosen as models for intermediates in the catalysis of water oxidation by cis,cis-{[RuIII(bipy)2(OH2)}2O]4+
  139. Ozkanlar A., Cape J. L., Hurst J. K., and Clark A. E. Inorg. Chem., 2011, 50, (17), 8177–8187 LINK [Google Scholar]
  140. Wang L.-P., Wu Q., and Van Voorhis T. Inorg. Chem., 2010, 49, (10), 4543–4553 LINK [Google Scholar]
  141. Szpakolski K. B., Latham K., Rix C. J., White J. M., Moubaraki B., and Murray K. S. Chem. Eur. J., 2010, 16, (5), 1691–1696 LINK [Google Scholar]
  142. The words we have italicised in the title “The nature of the [Pt(bipy)2]2+ ion in aqueous alkaline solution: a new look at an old problem” irresistibly recall Gillard’s re-examinations of such entities as Rhodium Blue and Tipper’s Compound
  143. McInnes C. S., Clare B. R., Redmond W. R., Clark C. R., and Blackman A. G. Dalton Trans., 2003, (11), 2215–2218 LINK [Google Scholar]
  144. Kawanishi Y., Funaki T., Yatabe T., Suzuki Y., Miyamoto S., Shimoi Y., and Abe S. Inorg. Chem., 2008, 47, (9), 3477–3479 LINK [Google Scholar]
  145. Cavigliasso G., Stranger R., Lo W. K. C., Crowley J. D., and Blackman A. G. Polyhedron, 2013, 64, 238–246 LINK [Google Scholar]
  146. Lo W. K. C., Shepherd R. J., Stranger R., Blackman A. G., and Cavigliasso G. Polyhedron, 2017, 130, 145–153 LINK [Google Scholar]
  147. However, monodentate phen bound to platinum(II) is not unknown – as in, for instance, [PtCl(PEt3)2(phen)]BF4 (see (118))
  148. See (149) and five earlier references (from 2012 to 2017) to Bellam et al. therein
  149. Bellam R., Anipindi N. R., and Jaganyi D. J. Mol. Liquids, 2018, 258, 57–65 LINK [Google Scholar]
  150. Angeles-Boza A. M., Ertem M. Z., Sarma R., Ibanez C. H., Maji S., Llobet A., Cramer C. J., and Roth J. P. Chem. Sci., 2014, 5, (3), 1141–1152 LINK [Google Scholar]
  151. Nord G., Pedersen B., and Bjergbakke E. J. Am. Chem. Soc., 1983, 105, (7), 1913–1919 LINK [Google Scholar]
  152. Smith E. E. “Aluminum Compounds in Food”, Paul B. Hoeber, New York, USA, 1928 [Google Scholar]
  153. Snow J. Int. J. Epidemiol., 2003, 32, (3), 336–337 LINK [Google Scholar]
  154. Hardy A. Int. J. Epidemiol., 2003, 32, (3), 337–340 LINK [Google Scholar]
  155. Dunnigan M. Int. J. Epidemiol., 2003, 32, (3), 340–341 LINK [Google Scholar]
  156. Paneth N. Int. J. Epidemiol., 2003, 32, (3), 341–343 LINK [Google Scholar]
  157. Chesney R. W. Pediatr. Nephrol., 2012, 27, (1), 3–6 LINK [Google Scholar]
  158. Mattsson P. Vår Foda, 1981, 33, (6), 231–236 [Google Scholar]
  159. Coriat A. M., and Gillard R. D. Nature, 1986, 321, (6070), 570 LINK [Google Scholar]
  160. An article detailing the effects of various platinum metal species on the growth of water hyacinths provides a useful perspective (161); a Gillard-contemporaneous reference is (162) – but Gillard will have been aware of Margaret Farago’s work well before 1979
  161. Farago M. E., and Parsons P. J. Chem. Speciat. Bioavail., 1994, 6, (1), 1–12 LINK [Google Scholar]
  162. Farago M. E., Mullen W. A., and Payne J. B. Inorg. Chim. Acta, 1979, 34, 151–154 LINK [Google Scholar]
  163. Gillard R. D., Laurie S. H., ‘Metal-Protein Interactions’, in “Biochemistry of Food Proteins”, ed. and Hudson B. J. F. Springer Science and Business Media, Dordrecht, The Netherlands, 1992, pp. 155–196 LINK [Google Scholar]
  164. Recent references testifying to continuing interest in the absorption of aluminium by tea plants, its concentration in their shoots and leaves, its extraction in tea infusions, and levels of aluminium in typical cups of tea include (165–167)
  165. Karak T., and Bhagat R. M. Food Res. Int., 2010, 43, (9), 2234–2252 LINK [Google Scholar]
  166. Kröppl M., Zeiner M., Cindrić I. J., and Stingeder G. Eur. Chem. Bull., 2012, 1, (9), 382–386 LINK [Google Scholar]
  167. Milani R. F., Morgano M. A., and Cadore S. LWT – Food Sci. Technol., 2016, 68, 491–498 LINK [Google Scholar]
  168. Wild G. M. Nature, 1987, 326, (6112), 434 LINK [Google Scholar]
  169. A typical example of the state of the controversy towards the end of the 20th century is provided by the linked references (170–172) – of which the last is of particular reference to the topic of aluminium in tea. The current situation can be traced through, for example (173–175)
  170. Munoz D. G. Arch. Neurol., 1998, 55, (5), 737–739 LINK [Google Scholar]
  171. Forbes W. F., and Hill G. B. Arch. Neurol., 1998, 55, (5), 740–741 LINK [Google Scholar]
  172. Hachinski V. Arch. Neurol., 1998, 55, (5), 742 LINK [Google Scholar]
  173. Exley C. Environ. Sci.: Processes Impacts, 2013, 15, (10), 1807–1816 LINK [Google Scholar]
  174. Mirza A., King A., Troakes Claire, and Exley C. J. Trace Elem. Med. Biol., 2017, 40, 30–36 LINK [Google Scholar]
  175. Seidowsky A., Dupuis E., Drueke T., Dard S, Massy Z. A., and Canaud B. Nephrol. Ther., 2018, 14, (1), 35–41 LINK [Google Scholar]
  176. Gillard R. D. Chem. Brit., 1985, 21, (6), 535 [Google Scholar]
  177. Linsker F., and Evans R. L. J. Am. Chem. Soc., 1946, 68, (3), 403 LINK [Google Scholar]
  178. Gillard does not cite sources for some of these claims, but implies that they were made in manuscripts submitted for him to referee – he was a commendably active peer reviewer. Several papers reporting preparations of a number of its complexes, including those of VO2+, ZrO2+, UO22+, Sn4+ and Th4+ (see (179, 180) and references therein), appeared around this time. This group claimed to have prepared their 1,10-phenanthroline-N,N’-dioxide (phenO2) ligand by hydrogen peroxide/glacial acetic acid oxidation of 1,10-phenanthroline, a method which works well for the conversion of 2,2’-bipyridine to its N,N’-dioxide (181) but is unlikely to be successful for the hoped-for analogous conversion of phen into phenO2 [Google Scholar]
  179. Srivastava A. K., Sharma S., and Agarwal R. K. Inorg. Chim. Acta, 1982, 61, 235–239 LINK [Google Scholar]
  180. Agarwal R. K., and Rawat H. K. Thermochim. Acta, 1986, 99, 367–371 LINK [Google Scholar]
  181. Simpson P. G., Vinciguerra A., and Quagliano J. V. Inorg. Chem., 1963, 2, (2), 282–286 LINK [Google Scholar]
  182. Gillard R. D. Inorg. Chim. Acta, 1981, 53, L173 LINK [Google Scholar]
  183. Gillard R. D. Inorg. Chim. Acta, 1989, 156, (2), 155 LINK [Google Scholar]
  184. Rozen S., and Dayan S. Angew. Chem., Int. Ed., 1999, 38, (23), 3471–3473 LINK<3471::AID-ANIE3471>3.0.CO;2-O [Google Scholar]
  185. The situation here recalls the difficulty of doubly-protonating 1,10-phenanthroline – see (186)
  186. Swinnerton C., and Twigg M. V. Trans. Met. Chem., 1978, 3, (1), 25–27 LINK [Google Scholar]
  187. Franks F. “Polywater”, The Massachusetts Institute of Technology Press, Cambridge, USA, 1981 [Google Scholar]
  188. Fedyakin N. Kollodniy Zhurnal, 1962, 24, 497–501 [Google Scholar]
  189. Derjaguin B. V. Disc. Faraday Soc., 1966, 42, 109–119 LINK [Google Scholar]
  190. Derjaguin B. V., Zorin Z. M., Rabinovich Ya. I., and Churaev N. V. J. Colloid Interface Sci., 1974, 46, (3), 437–441 LINK [Google Scholar]
  191. Rousseau D. L. Am. Sci., 1992, 80, (1), 54–63 LINK [Google Scholar]
  192. Gratzer W. “The Undergrowth of Science: Delusion, Self-Deception and Human Frailty”,Oxford University Press, New York, USA, 2000, 328 pp [Google Scholar]
  193. van Brakel J., ‘Pure Chemical Substance’, in “Stuff: The Nature of Chemical Substance”, ed. Ruthenberg K., and van Brakel J. Königshausen & Neumann, Würzburg, Germany, 2008, Ch. 9, pp. 145–162 [Google Scholar]
  194. Cavaleiro A. M. V. S. V., Pedrosa de Jesus J. D., Gil V. M. S., Gillard R. D., and Williams P. A. Trans. Met. Chem., 1982, 7, (2), 75–79 LINK [Google Scholar]
  195. Cavaleiro A. M. V. S. V., Pedrosa de Jesus J. D., Gil V. M. S., Gillard R. D., and Williams P. A. Inorg. Chim. Acta, 1990, 172, (1), 25–33 LINK [Google Scholar]
  196. Cavaco I., Costa Pessoa J., Costa D., Duarte M. T., Gillard R. D., and Matias P. J. Chem. Soc., Dalton Trans., 1994, (2), 149–157 LINK [Google Scholar]
  197. Cavaco I., Costa Pessoa J., Luz S. M., Duarte M. T., Matias P. M., Henriques R. T., and Gillard R. D. Polyhedron, 1995, 14, (3), 429–439 LINK [Google Scholar]
  198. Costa Pessoa J., Calhorda M. J., Cavaco I., Costa P. J., Correia I., Costa D., Vilas-Boas L. F., Félix V., Gillard R. D., Henriques R. T., and Wiggins R. Dalton Trans., 2004, (18), 2855–2866 LINK [Google Scholar]
  199. Frausto da Silva J. J. R., Wootton R., and Gillard R. D. J. Chem. Soc. A, 1970, 3369–3372 LINK [Google Scholar]
  200. Analogous complexes can readily be prepared from other aromatic o-hydroxyaldehydes – see for example (201)
  201. Costa Pessoa J., Cavaco I., Correia I., Gillard R. D., Higes F. J., Madeira C., and Tomaz I. Inorg. Chim. Acta, 1999, 293, (1), 1–11 LINK [Google Scholar]
  202. Ettling’s preparation of bis-salicylaldimine-copper(II), reported in 1840 (203), provided one of the earliest examples of a reaction of a coordinated ligand. Ettling wrote at length about salicylate(s) (203) in an oil steam-distilled (in 1835) from meadowsweet (Spiraea ulmaria) flowers by the apothecary Pagenstecher and analysed by Löwig in Zürich (204, 205). Copper(II) and nickel(II) complexes of amino acid ester derivatives of salicaldehyde were described in (206)
  203. Ettling C. Justus Liebigs Ann. Chem., 1840, 35, (3), 241–276 LINK [Google Scholar]
  204. Löwig K. J. Ann. Phys., 1835, 112, (11), 383–403 LINK [Google Scholar]
  205. Vallett M. J. Pharm. Sci. Access., 1836, 22, 187–200 [Google Scholar]
  206. Pfeiffer P., Offerman W., and Werner H. J. Prakt. Chem. (Leipzig), 1942, 159, 313–333 [Google Scholar]
  207. Black D. St. C., “Comprehensive Coordination Chemistry”, eds. Wilkinson G., Gillard R. D., and McCleverty J. A. Vol. 1, Pergamon Press, Oxford, UK, 1987, p. 434 [Google Scholar]
  208. Black D. St. C., “Comprehensive Coordination Chemistry”, eds. Wilkinson G., Gillard R. D., and McCleverty J. A. Vol. 6, Pergamon Press, Oxford, UK, 1987, p. 156 [Google Scholar]
  209. Gillard thought that the “adduct” of aniline with bis-paeonolatocopper(II) made by Pfeiffer and his students – see p. 174 of (210) for the copper-paeonol complex and its aniline solvate – was in fact probably a copper(II)-ketimine complex
  210. Pfeiffer P., Buchholz E., and Bauer O. J. Prakt. Chem., 1931, 129, (1), 163–177 LINK [Google Scholar]
  211. The trivial name paeonol (US peonol, German päonol) for 4-methoxy-acetophenone dates from the time it was used in perfumery. It has also been used in traditional medicine – and, more recently, shown to have analgesic, anti-inflammatory. and anti-mutagenic properties. Pfeiffer’s laboratory studied its metal-complexing reactions in the 1920s (209, 212). The name paeonol was derived from the Greek – Paiõ̅n (Παιών) was Apollo’s title as physician of the gods. Presumably the perfumery usage of paeonol comes from the fragrance of paeony (Greek παιωνία) flowers
  212. Pfeiffer P., Golther S., and Angern O. Chem. Ber., 1927, 60, (2), 305–313 LINK [Google Scholar]
  213. Wiggins R. A., and Gillard R. D. 1970, unpublished
  214. Sillanpää E. R. J., Al-Dhahir A., and Gillard R. D. Polyhedron, 1991, 10, (17), 2051–2055 LINK [Google Scholar]
  215. Costa Pessoa J., Luz S. M., and Gillard R. D. J. Chem. Soc., Dalton Trans., 1997, (4), 569–576 LINK [Google Scholar]
  216. Costa Pessoa J., Gajda T., Kiss T., Moura J. J. G., Tomaz I., Telo J. P., and Török I. J. Chem. Soc., Dalton Trans., 1998, (21), 3587–3600 LINK [Google Scholar]
  217. Costa Pessoa J., Cavaco I., Correia I., Costa D, Henriques R. T., and Gillard R. D. Inorg. Chim. Acta, 2000, 305, (1), 7–13 LINK [Google Scholar]
  218. Gillard R. D., Pollard A. M., Sutton P. A., and Whittaker D. K. Archaeometry, 1990, 32, (1), 61–70 LINK [Google Scholar]
  219. Child A. M., Gillard R. D., and Pollard A. M. J. Arch. Sci., 1993, 20, (2), 159–168 LINK [Google Scholar]
  220. Gillard R. D., Hardman S. M., Thomas R. G., and Watkinson D. E. Stud. Conserv., 1994, 39, (2), 132–140 LINK [Google Scholar]
  221. Gillard R. D., Hardman S. M., Thomas R. G., and Watkinson D. E. Stud. Conserv., 1994, 39, (3), 187–192 LINK [Google Scholar]
  222. Indeed one paper was concerned with both subjects – (223) dealt with rhodium(III) complexes with enantiomers of nicotine
  223. Gillard R. D., and Lekkas E. Trans. Met. Chem., 2000, 25, (6), 617–621 LINK [Google Scholar]
  224. This final paper (198) and his 1999 paper on the same complexes (201), reflect both his long-standing interest in complexes of aminoacids and their derivatives and his fruitful Portuguese collaborations. These two papers also complement Part IV of Gillard’s “Oxovanadium(IV) – Amino-Acids” series (Table S11) on oxovanadium complexes of cysteine and of penicillamine (225)
  225. Costa Pessoa J., Vilas Boas L. F., and Gillard R. D. Polyhedron, 1990, 9, (17), 2101–2125 LINK [Google Scholar]
  226. To quote from the abstract and text of this article: “…characterised by elemental analysis, spectroscopy (UV-VIS, CD, EPR), TG, DSC and magnetic susceptibility measurements (9–295 K) ... the use of molecular mechanics and density functional calculations … DFT calculations for both types of tautomers…”
  227. As was recently stated “Bob was an undervalued member of the generation who brought coordination chemistry to the front of scientific awareness.” – see page 303 of (228)
  228. Kauffman G. B. “Alfred Werner: Founder of Coordination Chemistry”, Springer-Verlag, Heidelberg, Germany, 1966 [Google Scholar]
  229. Kauffman G. B. Coord. Chem. Rev., 1972, 9, (3–4), 339–363 [Google Scholar]
  230. (231). The first edition was published in 1915 by J. & A. Churchill (London) under the title “The Chemistry of Cyanogen Compounds”
  231. Williams H. E. “Cyanogen Compounds”, 2nd Edn., E. Arnold and Co, London, UK, 1948 [Google Scholar]
  232. It is a matter of considerable regret that Gillard did not write a book on chemistry. A volume on coordination complexes which combined an outline of their historical context with accounts of their preparation, characterisation and properties, would have been particularly valuable and appreciated, as would a book expanding his review on circular dichroism (cf. (233))
  233. Gillard R. D., ‘The Cotton Effect in Coordination Compounds‘, in “Progress in Inorganic Chemistry”, ed. and Cotton F. A. Vol. 7, John Wiley and Sons Inc, New York, USA, 1966, pp. 215–276 LINK [Google Scholar]
  234. (235). This obituary also mentions a popular public lecture entitled “Is God left handed?”, reflecting his long standing fascination by chirality and an unpublished essay on chemistry in Sherlock Holmes books
  235. Gillard I., and Hammett F. ‘Robert David Gillard (1956)’, St Edmund Hall Magazine (Oxford), 2013, 18, (4), 167–173 [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error