Skip to content
1887
Volume 65, Issue 2
  • ISSN: 2056-5135

Abstract

Shipping, which accounts for 2.6% of global carbon dioxide emissions, is urged to find clean energy solutions to decarbonise the industry and achieve the International Maritime Organization (IMO)’s greenhouse gas (GHG) emission targets by 2050. It is generally believed that hydrogen will play a vital role in enabling the use of renewable energy sources. However, issues related with hydrogen storage and distribution currently obstruct its implementation. Alternatively, an energy-carrier such as ammonia with its carbon neutral chemical formula, high energy density and established production, transportation and storage infrastructure could provide a practical short-term next generation power solution for maritime industry. This paper presents an overview of the state-of-the-art and emerging technologies for decarbonising shipping using ammonia as a fuel, covering general properties of ammonia, the current production technologies with an emphasis on green synthesis methods, onboard storage and ways to generate power from it.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16043240667033
2021-01-01
2024-02-27
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/2/Tsang_16a_Imp_PART_I.html?itemId=/content/journals/10.1595/205651321X16043240667033&mimeType=html&fmt=ahah

References

  1. “Roadmap to Decarbonising European Shipping”,European Federation for Transport and Environment, Brussels, Belgium, November, 2018, 22 pp LINK https://www.transportenvironment.org/sites/te/files/publications/2018_11_Roadmap_decarbonising_European_shipping.pdf
  2. “Third IMO GHG Study 2014”,International Maritime Organization, London, UK, 2015, 327 pp LINK https://www.imo.org/en/OurWork/Environment/Pages/Greenhouse-Gas-Studies-2014.aspx [Google Scholar]
  3. Cames M., Graichen J., Siemons A., and Cook V. “Emission Reduction Targets for International Aviation and Shipping: Study for the ENVI Committee”, Study Report No. PE569.964, European Union, Brussels, Belgium, November, 2015, 52 pp LINK https://www.europarl.europa.eu/RegData/etudes/STUD/2015/569964/IPOL_STU(2015)569964_EN.pdf [Google Scholar]
  4. ‘Greenhouse Gas Emissions: Overview of Greenhouse Gases”,United States Environmental Protection Agency, Washington, DC, USA:https://www.epa.gov/ghgemissions/overview-greenhouse-gases (Accessed on 28th January 2021) [Google Scholar]
  5. ‘Prevention of Air Pollution from Ships’,International Maritime Organization, London, UK:https://www.imo.org/en/OurWork/Environment/Pages/Air-Pollution.aspx#:~:text=MARPOL%20Annex%20VI%2C%20first%20adopted,ozone%20depleting%20substances%20(ODS) (Accessed on 28th January 2021) [Google Scholar]
  6. ‘Sulphur oxides (SOx) and Particulate Matter (PM) – Regulation 14’,International Maritime Organization, London, UK:https://www.imo.org/en/OurWork/Environment/Pages/Sulphur-oxides-(SOx)-%E2%80%93-Regulation-14.aspx (Accessed on 28th January 2021) [Google Scholar]
  7. ‘Mission Possible: Reaching Net-Zero Carbon Emissions from Harder-to-Abate Sectors’,Energy Transitions Commission, London, UK, November, 2018 LINK https://www.energy-transitions.org/publications/mission-possible/ [Google Scholar]
  8. “Energy Roadmap 2050”,European Union, Luxembourg, 2012, 24 pp LINK https://www.doi.org/10.2833/10759 [Google Scholar]
  9. “Decarbonising Transport: Setting the Challenge”,Department for Transport, The Stationery Office, London, UK, 2020, 80 pp LINK https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/932122/decarbonising-transport-setting-the-challenge.pdf [Google Scholar]
  10. Gur T. M. Energy Environ. Sci., 2018, 11, (10), 2696 LINK https://doi.org/10.1039/C8EE01419A [Google Scholar]
  11. Wilkinson I. ‘Green Ammonia’,14th Annual NH3 Fuel Conference: Topical Conference in AIChE Annual Meeting, Minneapolis, USA,1st–2nd November, 2017, Siemens AG, Munich, Germany, 19 pp LINK https://www.ammoniaenergy.org/wp-content/uploads/2019/12/NH3-Energy-2017-Ian-Wilkinson.pdf [Google Scholar]
  12. Scamman D., Abad A. V., Mac Dowell N., Ward K., Agnolucci P., Papageorgiou L., Shah N., “The Role of Hydrogen and Fuel Cells in Future Energy Systems: A H2FC SUPERGEN White Paper”, eds. Staffell I., and Dodds P. E H2FC SUPERGEN, London, UK, March, 2017, 200 pp LINK http://www.h2fcsupergen.com/wp-content/uploads/2015/08/J5212_H2FC_Supergen_Energy_Systems_WEB.pdf [Google Scholar]
  13. McDowall W., Li F., Staffell I., Grünewald P., Kansara T., Ekins P., Dodds P., Hawkes A., Agnolucci P., “The Role of Hydrogen and Fuel Cells in Providing Affordable, Secure Low-Carbon Heat: A H2FC SUPERGEN White Paper”, eds. Dodds P., and Hawkes A. H2FC SUPERGEN, London, UK, May, 2014, 187 pp [Google Scholar]
  14. van Vrijaldenhoven T. ‘First Hydrogen Fueled Water Taxi being Developed by Enviu and Partners’,Towards Hydrogen-based Renewables Used for Ship Transportation (THRUST), Enviu, Rotterdam, The Netherlands, 13th February, 2020 LINK https://thrust.enviu.org/2020/02/13/first-hydrogen-fueled-water-taxi-being-developed-by-enviu-and-partners/ [Google Scholar]
  15. Balcombe P., Brierley J., Lewis C., Skatvedt L., Speirs J., Hawkes A., and Stafell I. Energy Convers. Manag., 2019, 182, 72 LINK https://doi.org/10.1016/j.enconman.2018.12.080 [Google Scholar]
  16. ‘Comparisons: The Logical Path Forward’,NH3 Fuel Association:https://nh3fuelassociation.org/comparisons/ (Accessed on 29th January 2021) [Google Scholar]
  17. Bicer Y., and Dincer I. J. Clean. Prod., 2018, 170, 1594 LINK https://doi.org/10.1016/j.jclepro.2017.09.243 [Google Scholar]
  18. Valera-Medina A, Xiao H, Owen-Jones M, David W. I. F., and Bowen P. J. Prog. Energ. Combust, 2018, 69, 63 LINK https://doi.org/10.1016/j.pecs.2018.07.001 [Google Scholar]
  19. “Ammonia as a fuel for the Maritime Industry”,Enviu, Rotterdam, The Netherlands, 30th October, 2019, 94 pp LINK https://thrust.enviu.org/wp-content/uploads/2020/03/Ammonia-as-a-fuel-for-the-maritime-industry-short.pdf [Google Scholar]
  20. Hansson J., Fridell E., and Brynolf S. “Lighthouse Reports: On the Potential of Ammonia as Fuel for Shipping: A Synthesis of Knowledge”,Lighthouse Swedish Maritime Competence Center, Göteborg, Sweden, January, 2020, 35 pp LINK https://www.lighthouse.nu/sites/www.lighthouse.nu/files/rapport_ammoniak.pdf [Google Scholar]
  21. Dincer I., and Bicer Y. “Ammonia (NH3) as a Potential Transportation Solution for Ontario”,Hydrofuel Inc, Mississauga, Canada, 10th March, 2017, 61 pp LINK https://www.slideshare.net/tswittrig/ammonia-nh3-as-a-potential-transportation-solution-for-ontario-uoit-dincer-vezina-white-paper [Google Scholar]
  22. Giddey S., Badwal S. P. S., Munnings C., and Dolan M. ACS Sustain. Chem. Eng., 2017, 5, (11), 10231 LINK https://doi.org/10.1021/acssuschemeng.7b02219 [Google Scholar]
  23. Ash N., and Scarbrough T. “Sailing on Solar: Could Green Ammonia Decarbonise International Shipping?”,Environmental Defence Fund Europe Ltd, London, UK, 2019, 63 pp LINK https://www.edf.org/oceans [Google Scholar]
  24. McKinlay C. J., Turnock S. R., and Hudson D. A. ‘A Comparison of Hydrogen and Ammonia for Future Long Distance Shipping Fuels’, LNG/LPG and Alternative Fuels, 29th–30th January 2020, The Royal Institute of Naval Architects, London, UK, 2020, 13 pp LINK https://eprints.soton.ac.uk/437555/ [Google Scholar]
  25. ‘Australia’s National Hydrogen Strategy’,Department of Industry, Science, Energy and Resources, Canberra, Australia, November, 2019 LINK https://www.industry.gov.au/data-and-publications/australias-national-hydrogen-strategy [Google Scholar]
  26. ‘Ammonia Producers Dominate Hydrogen Pilot Projects in Australia’,Rystad Energy, Oslo, Norway, April, 2020 LINK https://www.rystadenergy.com/newsevents/news/newsletters/sera-archive/renewable-april-2020/ [Google Scholar]
  27. “Roadmap to Zero Emission from International Shipping”,Ministry of Land, Infrastructure, Transport and Tourism (MLIT), Tokyo, Japan, March, 2020, 120 pp LINK https://www.mlit.go.jp/en/maritime/GHG_roadmap_en.html [Google Scholar]
  28. “Clean Maritime Plan”,Department of Transport, The Stationery Office, London, UK, 2019, 57 pp LINK https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/815664/clean-maritime-plan.pdf [Google Scholar]
  29. “FY 2017 Study of the Infrastructure Development Project to Obtain Joint Credit, etc. (Study of International Contribution Quantification and JCM Feasibility): Study of Master Plan for Creating a Low-Carbon Energy System in Saudi Arabia”,The Institute of Energy Economics Japan (IEEJ), Ministry of Economy, Trade and Industry, Tokyo, Japan, 15th March, 2018, 87 pp LINK https://www.meti.go.jp/meti_lib/report/H29FY/000286.pdf
  30. “Engineering the Future Two-Stroke Green-Ammonia Engine”,MAN Energy Solutions, Augsburg, Germany, November, 2019 LINK https://fathom.world/wp-content/uploads/2020/05/engineeringthefuturetwostrokegreenammoniaengine1589339239488.pdf [Google Scholar]
  31. ‘World’s First Full Scale Ammonia Engine Test – An Important Step Towards Carbon Free Shipping’,Wärtsilä Corp, Helsinki, Finland, 30th June, 2020 LINK https://www.wartsila.com/media/news/30-06-2020-world-s-first-full-scale-ammonia-engine-test---an-important-step-towards-carbon-free-shipping-2737809 [Google Scholar]
  32. ‘MAN ES Targets 2024 for Delivery of First Ammonia Engine’, The Motorship, Mercator Media Ltd, Fareham, UK, 14th August, 2020 LINK https://www.motorship.com/news101/alternative-fuels/man-es-targets-2024-for-delivery-of-first-ammonia-engine [Google Scholar]
  33. ‘Industry Project to Design Ammonia-Fuelled 23k ULCS Concept’, Lloyd’s Register, London, UK, 3rd December, 2019 LINK https://www.lr.org/en/latest-news/aip-ammonia-fuelled-ulcs/ [Google Scholar]
  34. Brown T. ‘Maritime Ammonia: Ready for Demonstration’, Ammonia Energy Association, New York, USA, 7th May, 2020 LINK https://www.ammoniaenergy.org/articles/maritime-ammonia-ready-for-demonstration/ [Google Scholar]
  35. ‘New Research Center Will Lead the Way for Decarbonizing Shipping’, Maersk, Copenhagen, Denmark, 25th June, 2020 LINK https://www.maersk.com/news/articles/2020/06/25/new-research-center-will-lead-the-way-for-decarbonizing-shipping [Google Scholar]
  36. ‘Major Project to Convert Offshore Vessel to Run On Ammonia-Powered Fuel Cell’, Fuel Cells and Hydrogen Joint Undertaking, Brussels, Belgium:https://www.fch.europa.eu/press-releases/major-project-convert-offshore-vessel-run-ammonia-powered-fuel-cell (Accessed on 29th January 2021) [Google Scholar]
  37. Eason C. ‘The Launch of Nordic Green Ammonia Powered Ships -NoGAPS- Project’,Fathom.World, Stockholm, Sweden, 3rd May, 2020 LINK https://fathom.world/nogaps-launch/ [Google Scholar]
  38. ‘Japanese Consortium to Develop Ammonia-Fuelled Vessels’, The Motorship, Mercator Media Ltd, Fareham, UK, 5th May, 2020 LINK https://www.motorship.com/news101/alternative-fuels/japanese-consortium-to-develop-ammonia-fuelled-vessels [Google Scholar]
  39. ‘Joint R&D Starts for Use of Ammonia in Marine Transportation to Reduce GHG Emissions: World’s First Effort to Stably Supply Ammonia Fuel to Oceangoing Vessels’, The NYK Line, Tokyo, Japan, 12th August, 2020 LINK https://www.nyk.com/english/news/2020/20200812_01.html [Google Scholar]
  40. Hansson J., Fridell E., and Brynolf S. ‘On the Potential of Ammonia as Fuel for Shipping: A Synthesis of Knowledge’, Lighthouse Swedish Maritime Competence Centre, Göteborg, Sweden, January, 2020, 35 pp LINK https://www.lighthouse.nu/sites/www.lighthouse.nu/files/rapport_ammoniak.pdf [Google Scholar]
  41. “Ammonia: Zero-Carbon Fertiliser, Fuel and Energy Storage”,The Royal Society, London, UK, February, 2020, 40 pp LINK https://royalsociety.org/-/media/policy/projects/green-ammonia/green-ammonia-policy-briefing.pdf [Google Scholar]
  42. Garside M. ‘Global Production Capacity of Ammonia 2018-2030’,Statista, Hamburg, Germany, 23rd November, 2019 LINK https://www.statista.com/statistics/1065865/ammonia-production-capacity-globally/ [Google Scholar]
  43. de Vries N. ‘Safe and Effective Application of Ammonia as a Marine Fuel’, Masters Thesis, Mechanical, Maritime and Materials Engineering, Delft University of Technology, The Netherlands, 12th June, 2019, 100 pp LINK https://repository.tudelft.nl/islandora/object/uuid%3Abe8cbe0a-28ec-4bd9-8ad0-648de04649b8 [Google Scholar]
  44. Gielen D., and Roesch R. ‘Shipping: Commercially Viable Zero Emission Deep Sea Vessels by 2030’, Energy Post, The Netherlands,30th September, 2019 LINK https://energypost.eu/shipping-commercially-viable-zero-emission-deep-sea-vessels-by-2030/ [Google Scholar]
  45. ‘THRUST Impact Model: Demo Version’, Enviu, Rotterdam, The Netherlands:https://thrust-demo.herokuapp.com/ (Accessed on 29th January 2021) [Google Scholar]
  46. Ryste J. A. “Comparison of Alternative Marine Fuels”, Report No. 2019-0567 Rev. 4, DNV LG, Høvik, Norway, 25th September, 2019, 65 pp LINK https://sea-lng.org/wp-content/uploads/2020/04/Alternative-Marine-Fuels-Study_final_report_25.09.19.pdf [Google Scholar]
  47. Collodi G., Azzaro G., Ferrari N., and Santos S. Energy Proc., 2017, 114, 2690 LINK https://doi.org/10.1016/j.egypro.2017.03.1533 [Google Scholar]
  48. “Techno-Economic Evaluation of SMR Based Standalone (Merchant) Plant with CCS”,IEAGHG Technical Report, IEA Environmental Projects Ltd (IEAGHG), Cheltenham, UK, February 2017, 286 pp LINK https://ieaghg.org/exco_docs/2017-02.pdf [Google Scholar]
  49. Gilbert P., Alexander S., Thornley P., and Brammer J. J. Clean. Prod., 2014, 64, 581 LINK https://doi.org/10.1016/j.jclepro.2013.09.011 [Google Scholar]
  50. Sanchez A., Martín M., and Vega P. ACS Sustain. Chem. Eng., 2019, 7, (11), 9995 LINK https://doi.org/10.1021/acssuschemeng.9b01158 [Google Scholar]
  51. Arora P., Hoadley A. F. A., Mahajani S. M., and Ganesh A. Ind. Eng. Chem. Res., 2016, 55, (22), 6422 LINK https://doi.org/10.1021/acs.iecr.5b04937 [Google Scholar]
  52. Davis S. J., Lewis N. S., Shaner M., Aggarwal S., Arent D., Azevedo I. L., Benson S. M., Bradley T., Brouwer J., Chiang Y.-M., Clack C. T. M., Cohen A., Doig S., Edmonds J., Fennell P., Field C. B., Hannegan B., Hodge B.-M., Hoffert M. I., Ingersoll E., Jaramillo P., Lackner K. S., Mach K. J., Mastrandrea M., Ogden J., Peterson P. F., Sanchez D. L., Sperling D., Stagner J., Trancik J. E., Yang C.-J., and Caldeira K. Science, 2018, 360, (6396), eaas9793 LINK https://doi.org/10.1126/science.aas9793 [Google Scholar]
  53. McPherson I. J., Sudmeier T., Fellowes J. P., Wilkinson I., Hughes T., and Tsang S. C. E. Angew. Chem. Int. Ed., 2019, 58, (48), 17433 LINK https://doi.org/10.1002/anie.201909831 [Google Scholar]
  54. Mo J., Stefanov B. I., Lau T. H. M., Chen T., Wu S., Wang Z., Gong X-Q., Wilkinson I., Schmid G., and Tsang S. C. E. ACS Appl. Energy Mater., 2019, 2, (2), 1221 LINK https://doi.org/10.1021/acsaem.8b01777 [Google Scholar]
  55. ‘Hymeth Commences its Commercial Production of HyaeonTM Hydrogen Electrolyser’, FuelCellsWorks, Montreal, Canada, 31st July, 2019 LINK https://fuelcellsworks.com/news/hymeth-commences-its-commercial-production-of-hyaeon-hydrogen-electrolyser/ [Google Scholar]
  56. Fajrina N., and Tahir M. Int. J. Hydro. Energy, 2019, 44, (2), 540 LINK https://doi.org/10.1016/j.ijhydene.2018.10.200 [Google Scholar]
  57. Li Y., Peng Y.-K., Hu L., Zheng J., Prabhakaran D., Wu S., Puchtler T. J., Li M., Wong K.-Y., Taylor R. A., and Tsang S. C. E. Nature Commun., 2019, 10, 4421 LINK https://doi.org/10.1038/s41467-019-12385-1 [Google Scholar]
  58. Smith C., Hill A. K., and Torrente-Murciano L. Energy Environ. Sci., 2020, 13, (2), 331 LINK https://doi.org/10.1039/C9EE02873K [Google Scholar]
  59. Bañares-Alcántara R., Dericks G., Fiaschetti M., Grünewald P., Lopez J. M., Tsang E., Yang A., Ye L., and Zhao S. “Analysis of Islanded Ammonia-Based Energy Storage Systems”,University of Oxford, UK, September, 2015, 158 pp LINK http://www2.eng.ox.ac.uk/systemseng/publications/Ammonia-based_ESS.pdf [Google Scholar]
  60. Zheng J., Liao F., Wu S., Jones G., Chen T.-Y., Fellowes J., Sudmeier T., McPherson I. J., Wilkinson I., and Tsang S. C. E. Angew. Chem., 2019, 131, (48), 17496 LINK https://doi.org/10.1002/ange.201907171 [Google Scholar]
  61. Wu S., Peng Y.-K., Chen T.-Y., Mo J., Large A., McPherson I., Chou H.-L., Wilkinson I., Venturini F., Grinter D., Escorihuela P. F., Held G., and Tsang S. C. E. ACS Catal., 2020, 10, (10), 5614 LINK https://doi.org/10.1021/acscatal.0c00954 [Google Scholar]
  62. Hattori M., Iijima S., Nakao T., Hosono H., and Hara M. Nature Commun., 2020, 11, 2001 LINK https://doi.org/10.1038/s41467-020-15868-8 [Google Scholar]
  63. McPherson I. J., Sudmeier T., Fellowes J., and Tsang S. C. E. Dalton Trans., 2019, 48, (5), 1562 LINK https://doi.org/10.1039/C8DT04019B [Google Scholar]
  64. Zhao R., Xie H., Chang L., Zhang X., Zhu X., Tong X., Wang T., Luo Y., Wei P., Wang Z., and Sun X. EnergyChem, 2019, 1, (2), 100011 LINK https://doi.org/10.1016/j.enchem.2019.100011 [Google Scholar]
  65. Giddey S., Badwal S. P. S., and Kulkarni A. Int. J. Hydrogen Energy, 2013, 38, (34), 14576 LINK https://doi.org/10.1016/j.ijhydene.2013.09.054 [Google Scholar]
  66. MacFarlane D. R., Cherepanov P. V., Choi J., Suryanto B. H.R., Hodgetts R. Y., Bakker J. M., Vallana F. M. F., and Simonov A. N. Joule, 2020, 4, (6), 1186 LINK https://doi.org/10.1016/j.joule.2020.04.004 [Google Scholar]
  67. Brown T. ‘The Forces Driving Industrial Scale-Up of Green Ammonia Pilot Plants and their Implications for the Fertiliser Industry’, IFS Webinar, 15th April, 2020, Ammonia Energy Association, New York, USA, 2020, 9 pp LINK https://fertiliser-society.org/wp-content/uploads/2020/04/Green-ammonia-webinar-slides.pdf [Google Scholar]
  68. ‘Kapuni ‘Green’ Hydrogen Project Seen as Catalyst for NZ Market’, Ballance Agri-Nutrients Ltd, Tauranga, New Zealand, 20th June, 2019 LINK https://ballance.co.nz/Kapuni-hydrogen-project [Google Scholar]
  69. ‘ARENA Announces Funding for Yara Pilbara and ENGIE’s Feasibility Study on a Renewable Hydrogen to Ammonia Solution in Fertiliser Production’, Yara International ASA, Oslo, Norway, 21st February, 2020 LINK https://www.yara.com/news-and-media/news/archive/2020/arena-announces-funding-for-yara-pilbara-and-engies-feasibility-study-on-a-renewable-hydrogen-to-ammonia-solution-in-fertiliser-production/ [Google Scholar]
  70. Roberts P. ‘Dyno Nobel Tests Feasibility of Making Ammonia with Renewables’,@AuManufacturing, Hove, Australia, 4th February, 2020 LINK https://www.aumanufacturing.com.au/dyno-noble-tests-feasibility-of-making-ammonia-with-renewables [Google Scholar]
  71. ‘Queensland Green Ammonia Plant Could use Renewable Hydrogen’, Australian Renewable Energy Agency (ARENA), Canberra, Australia, 30th September, 2019 LINK https://arena.gov.au/assets/2019/09/ARENA-Media-Release_Queensland-Nitrates-ammonia-production-feasibility-study-using-renewable-hydrogen-300919.pdf [Google Scholar]
  72. Brown T. ‘Saudi Arabia to Export Renewable Energy Using Green Ammonia’,Ammonia Energy Association, New York, USA, 16th July, 2020 LINK https://www.ammoniaenergy.org/articles/saudi-arabia-to-export-renewable-energy-using-green-ammonia/ [Google Scholar]
  73. Brown T. ‘Solar Ammonia, Available in Spain from 2021’,Ammonia Energy Association, New York, USA, 30th July, 2020 LINK https://www.ammoniaenergy.org/articles/solar-ammonia-available-in-spain-from-2021/ [Google Scholar]
  74. ‘World’s First Successful Ammonia Synthesis Using Renewable Energy-Based Hydrogen and Power Generation: Progress Toward Realization of Hydrogen Energy Carriers’, JGC Corp, Yokohama, Japan, 19th October, 2018 LINK https://www.jgc.com/en/news/assets/pdf/20181019e.pdf [Google Scholar]
  75. ‘‘Green’ Ammonia is the Key to Meeting the Twin Challenges of the 21st Century’, Siemens Energy, Erlangen, Germany:https://www.siemens-energy.com/uk/en/offerings-uk/green-ammonia.html (Accessed on 29th January 2021) [Google Scholar]
  76. Crolius S. H. ‘University of Minnesota’s Ammonia Program’,University of Minnesota, Morris, USA, 16th December, 2016 LINK https://www.ammoniaenergy.org/articles/university-of-minnesotas-ammonia-program/ [Google Scholar]
  77. Brown T. ‘University of Minnesota Demonstrates Efficient Ammonia Dual-Fuel Engine System,Ammonia Energy Association, New York, USA, 28th June, 2019 LINK https://www.ammoniaenergy.org/articles/university-of-minnesota-demonstrates-efficient-ammonia-dual-fuel-engine-system/ [Google Scholar]
  78. ‘Look to the Past for the Fuel of the Future’, New Scientist, London, UK, 31st July, 2013 LINK https://www.newscientist.com/article/mg21929283-500-look-to-the-past-for-the-fuel-of-the-future/ [Google Scholar]
  79. Kobayashi H., Hayakawa A., Somarathne K. D. K. A., and Okafor E. C. Proc. Combust. Inst., 2019, 37, (1), 109 LINK https://doi.org/10.1016/j.proci.2018.09.029 [Google Scholar]
  80. Brohi E. A. ‘Ammonia as Fuel for Internal Combustion?: An Evaluation of the Feasibility of Using Nitrogen-Based Fuels in ICE’, Masters Thesis, Department of Applied Mechanics, Division of Combustion, Chalmers University of Technology, Gothenburg, Sweden, 2014 LINK http://publications.lib.chalmers.se/records/fulltext/207145/207145.pdf [Google Scholar]
  81. Kojima S., Nakamura N., Shimizu R., Sugimoto T., and Kim K.-O. Toyota Motor Co Ltd, ‘Ammonia-Burning Internal Combustion Engine’,European Patent Appl. 2011/2378094 [Google Scholar]
  82. Andersson J., and Grönkvist S. Int. J. Hydro. Energy, 2019, 44, (23), 11901 LINK https://doi.org/10.1016/j.ijhydene.2019.03.063 [Google Scholar]
  83. Lan R., and Tao S. Front. Energy Res., 2014, 2, 35 LINK https://doi.org/10.3389/fenrg.2014.00035 [Google Scholar]
  84. Lamb K. E., Dolan M. D., and Kennedy D. F. Int. J. Hydrog. Energy, 2019, 44, (7), 3580 LINK https://doi.org/10.1016/j.ijhydene.2018.12.024 [Google Scholar]
  85. Bell T. E., and Torrente-Murciano L. Top. Catal., 2016, 59, (15–16), 1438 LINK https://doi.org/10.1007/s11244-016-0653-4 [Google Scholar]
  86. David W. I. F., Makepeace J. W., Callear S. K., Hunter H. M. A., Taylor J. D., Wood T. J., and Jones M. O. J. Am. Chem. Soc., 2014, 136, (38), 13082 LINK https://doi.org/10.1021/ja5042836 [Google Scholar]
  87. Makepeace J. W., Wood T. J., Marks P. L., Smith R. I., Murray C. A., and David W. I. F. Phys. Chem. Chem. Phys., 2018, 20, (35), 22689 LINK https://doi.org/10.1039/C8CP02824A [Google Scholar]
  88. Makepeace J. W., Wood T. J., Hunter H. M. A., Jones M. O., and David W. I. F. Chem. Sci., 2015, 6, (7), 3805 LINK https://doi.org/10.1039/C5SC00205B [Google Scholar]
  89. Jackson C., Fothergill K., Gray P., Haroon F., Makhloufi C., Kezibri N., Davey A., LHote O., Zarea M., Davenne T., Greenwood S., Huddart A., Makepeace J., Wood T., David B., and Wilkinson I. “Ammonia to Green Hydrogen Project: Feasibility Study”, Ecuity, UK, 2019, 70 pp LINK https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf [Google Scholar]
  90. Cinti G., Barelli L., and Bidini G. AIP Conf. Proc., 2019, 2191, (1), 020048 LINK https://doi.org/10.1063/1.5138781 [Google Scholar]
  91. “Ammonfuel – An Industrial View of Ammonia as a Marine Fuel”,Haldor Topsoe A/S, Lyngby, Denmark, August, 2020, 59 pp LINK https://www.topsoe.com/hubfs/DOWNLOADS/DOWNLOADS%20-%20White%20papers/Ammonfuel%20Report%20Version%2009.9%20August%203_update.pdf [Google Scholar]
  92. Ayvalı T., Tsang S. C. E., and Van Vrijaldenhoven T. Johnson Matthey Technol. Rev., 2021, 65, (2), 300–309 LINK https://www.technology.matthey.com/article/65/2/291-300/ [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651321X16043240667033
Loading
/content/journals/10.1595/205651321X16043240667033
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error