Skip to content
Volume 65, Issue 2
  • ISSN: 2056-5135


Long-distance air travel requires fuel with a high specific energy and a high energy density. There are no viable alternatives to carbon-based fuels. Synthetic jet fuel from the Fischer-Tropsch (FT) process, employing sustainable feedstocks, is a potential low-carbon alternative. A number of synthetic fuel production routes have been developed, using a range of feedstocks including biomass, waste, hydrogen and captured carbon dioxide. We review three energy system models and find that many of these production routes are not represented. We examine the market share of synthetic fuels in each model in a scenario in which the Paris Agreement target is achieved. In 2050, it is cheaper to use conventional jet fuel coupled with a negative emissions technology than to produce sustainable synthetic fuels in the TIAM-UCL and UK TIMES models. However, the JRC-EU-TIMES model, which represents the most production routes, finds a substantial role for synthetic jet fuels, partly because underground CO storage is assumed limited. These scenarios demonstrate a strong link between synthetic fuels, carbon capture and storage (CCS) and negative emissions. Future model improvements include better representing blending limits for synthetic jet fuels to meet international fuel standards, reducing the costs of synthetic fuels and ensuring production routes are sustainable.


Article metrics loading...

Loading full text...

Full text loading...



  1. “Paris Agreement”, United Nations, Bonn, Germany, 2015, 25 pp LINK [Google Scholar]
  2. “Special Report: Global warming of 1.5°C”, Geneva, Switzerland, 2018 LINK [Google Scholar]
  3. ‘Climate Change Act 2008’, The Stationery Office, London, UK, 26th November, 2008 LINK [Google Scholar]
  4. ‘Research and Analysis: Greenhouse Gas Reporting: Conversion Factors 2019’,Department for Business, Energy & Industrial Strategy, The Stationery Office, London, UK, 4th June, 2019 LINK [Google Scholar]
  5. ‘Contribution of the Global Aviation Sector to Achieving Paris Agreement Climate Objectives’,Climate Action Network International, Bonn, Germany, 2nd April, 2018 LINK [Google Scholar]
  6. Schäfer A. W., Evans A. D., Reynolds T. G., and Dray L. Nat. Clim. Chang., 2015, 6, (4), 412 LINK [Google Scholar]
  7. ‘Fuel Qualification’,Commercial Aviation Alternative Fuels Initiative (CAAFI): (Accessed on 4th February 2021)
  8. “Sustainable Synthetic Carbon Based Fuels for Transport: Policy Briefing”,The Royal Society, London, UK, 16th September, 2019, 46 pp LINK [Google Scholar]
  9. “Alternative Aviation Fuels: Overview of Challenges, Opportunities, and Next Steps”,Office of Energy Efficiency and Renewable Energy (EERE), US Department of Energy, Washington, DC, USA, March, 2017, 88 pp LINK [Google Scholar]
  10. Wang M., Dewil R., Maniatis K., Wheeldon J., Tan T., Baeyens J., and Fang Y. Prog. Energy Combust. Sci., 2019, 74, 31 LINK [Google Scholar]
  11. Capros P., Kannavou M., Evangelopoulou S., Petropoulos A., Siskos P., Tasios N., Zazias G., and DeVita A. Energy Strateg. Rev., 2018, 22, 255 LINK [Google Scholar]
  12. ‘A Clean Planet for All: A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy’, COM/2018/733Final, European Commission, Brussels, Belgium, 28th November, 2018 LINK [Google Scholar]
  13. Baliban R. C., Elia J. A., Floudas C. A., Gurau B., Weingarten M. B., and Klotz S. D. Energy Fuels, 2013, 27, (8), 4302 LINK [Google Scholar]
  14. Elia J. A., Baliban R. C., Floudas C. A., Gurau B., Weingarten M. B., and Klotz S. D. Energy Fuels, 2013, 27, (8), 4325 LINK [Google Scholar]
  15. Lappas A., Heracleous E., ‘Production of Biofuels via Fischer-Tropsch Synthesis: Biomass-to-Liquids’, in “Handbook of Biofuels Production: Processes and Technologies”,2nd Edn., eds. Luque R., Lin C. S. K., Wilson K., and Clark J. Woodhead Publishing Series in Energy, No. 98, Elsevier Ltd, Duxford, UK, 2016, pp. 549–593 LINK [Google Scholar]
  16. ‘JM and BP License Waste-To-Fuels Technology to Fulcrum BioEnergy’,Johnson Matthey, London, UK, 2018 LINK [Google Scholar]
  17. Pressley P. N., Aziz T. N., DeCarolis J. F., Barlaz M. A., He F., Li F., and Damgaard A. J. Clean. Prod., 2014, 70, 145 LINK [Google Scholar]
  18. Suresh P., Malina R., Staples M. D., Lizin S., Olcay H., Blazy D., Pearlson M. N., and Barrett S. R. H. Environ. Sci. Technol., 2018, 52, (21), 12055LINK [Google Scholar]
  19. Choi Y. H., Jang Y. J., Park H., Kim W. Y., Lee Y. H., Choi S. H., and Lee J. S. Appl. Catal. B Environ., 2017, 202, 605LINK [Google Scholar]
  20. ‘Syngas: The Renewable Feed Gas’,Sunfire GmbH, Dresden, Germany: (Accessed on 4th February 2021)
  21. Pye S., Li F. G. N., Petersen A., Broad O., McDowall W., Price J., and Usher W. Energy Res. Soc. Sci., 2018, 46, 332 LINK [Google Scholar]
  22. Dodds P. E., and McDowall W. Int. J. Hydrogen Energy, 2014, 39, (5), 2345 LINK [Google Scholar]
  23. Schäfer A. ‘Introducing Behavioral Change in Transportation into Energy/Economy/Environment Models’,World Bank Policy Research Working Paper No. 6234, The World Bank, Washington, DC, USA, 1st October, 2012, 61 pp LINK [Google Scholar]
  24. Searchinger T. D., Beringer T., and Strong A. Energy Policy, 2017, 110, 434 LINK [Google Scholar]
  25. Rauch R., Hrbek J., and Hofbauer H. Wiley Interdiscip. Rev. Energy Environ., 2013, 3, (4), 343 LINK [Google Scholar]
  26. Hogan M. ‘German Biofuel Firm Choren Declares Insolvency’,Reuters, London, UK, 8th July, 2011 LINK [Google Scholar]
  27. ‘Vapo Oy Freezes the Kemi Biodiesel Project’,Vapo Oy, Jyväskylä, Finland, 21st February, 2014 LINK [Google Scholar]
  28. ‘A Commercially Demonstrated Technology Solution’, Velocys, Oxford, UK: (Accessed on 4th February 2021)
  29. ‘Lakeview Site: Project Summary’,Red Rock Biofuels, Fort Collins, USA: (Accessed on 4th February 2021)
  30. Niziolek A. M., Onel O., Hasan M. M. F., and Floudas C. A. Comput. Chem. Eng., 2015, 74, 184 LINK [Google Scholar]
  31. Brynolf S., Taljegard M., Grahn M., and Hansson J. Renew. Sustain. Energy Rev., 2018, 81, 1887 LINK [Google Scholar]
  32. “Options for Producing Low-Carbon Hydrogen at Scale: Policy Briefing”,The Royal Society, London, UK, January, 2018, 36 pp LINK [Google Scholar]
  33. “Hydrogen Production by Electrolysis”, ed. Godula-Jopek A. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany, 2015 LINK [Google Scholar]
  34. Staffell I., Scamman D., Velazquez Abad A., Balcombe P., Dodds P. E., Ekins P., Shah N., and Ward K. R. Energy Environ. Sci., 2019, 12, (2), 463 LINK [Google Scholar]
  35. Dieterich V., Buttler A., Hanel A., Spliethoff H., and Fendt S. Energy Environ. Sci., 2020, 13, (10), 3207 LINK [Google Scholar]
  36. Herz G., Reichelt E., and Jahn M. Appl. Energy, 2018, 215, 309 LINK [Google Scholar]
  37. Butnar I., Broad O., Solano Rodriguez B., and Dodds P. E. GCB Bioenergy, 2020, 12, (3), 198 LINK [Google Scholar]
  38. Takeshita T., and Yamaji K. Energy Policy, 2008, 36, (8), 2773 LINK [Google Scholar]
  39. Blanco H., Nijs W., Ruf J., and Faaij A. Appl. Energy, 2018, 232, 617 LINK [Google Scholar]
  40. Lehtveer M., Brynolf S., and Grahn M. Environ. Sci. Technol., 2019, 53, (3), 1690 LINK [Google Scholar]
  41. Bellocchi S., De Falco M., Gambini M., Manno M., Stilo T., and Vellini M. Energy, 2019, 175, 847 LINK [Google Scholar]
  42. Loulou R., Goldstein G., and Noble K “Energy Technology Systems Analysis Programme Documentation for the MARKAL Family of Models”,Energy Technology Systems Analysis Programme (ETSAP), International Energy Agency, Paris, France, October, 2004, 389 pp LINK [Google Scholar]
  43. Pye S., Price J., Cronin J., Butnar I., and Welsby D. “Modelling ‘Leadership-Driven’ Scenarios of the Global Mitigation Effort”,Research Report, UCL Energy Institute, London, UK, May, 2019, 47 pp LINK [Google Scholar]
  44. Simoes S., Nijs W., Ruiz P., Sgobbi A., Radu D., Bolat P., Thiel C., and Peteves S. “The JRC-EU-TIMES model: Assessing the Long-Term Role of the SET Plan Energy Technologies”,JRC Scientific and Policy Reports, No. EUR 26292 EN, European Union, Luxembourg, 2013, 382 pp LINK [Google Scholar]
  45. “The Clean Growth Strategy: Leading the Way to a Low Carbon Future”,The Stationery Office, London, UK, 2017, 165 pp LINK [Google Scholar]
  46. Loulou R., Remne U., Kanudia A., Lehtila A., and Goldstein G. ’Documentation for the TIMES Model: Part I’,Energy Technology Systems Analysis Programme (ETSAP), International Energy Agency, Paris, France, April, 2005, 78 pp LINK [Google Scholar]
  47. Loulou R., and Labriet M. Comput. Manag. Sci., 2007, 5, (1–2), 7 LINK [Google Scholar]
  48. Fuss S., Canadell J. G., Peters G. P., Tavoni M., Andrew R. M., Ciais P., Jackson R. B., Jones C. D., Kraxner F., Nakicenovic N., Le Quéré C., Raupach M. R., Sharifi A., Smith P., and Yamagata Y. Nat. Clim. Chang., 2014, 4, (10), 850 LINK [Google Scholar]
  49. ‘Sierra Biofuels Plant: Bright Future’,Fulcrum BioEnergy Inc, Pleasanton, USA: (Accessed on 21st July 2020)
  50. Ekaab N. S., Hamza N. H., and Chaichan M. T. Case Stud. Therm. Eng., 2019, 13, 100381 LINK [Google Scholar]
  51. Lorne D., and Tchung-Ming S. “The French Biofuels Mandates Under Cost Uncertainty: An Assessment Based on Robust Optimization”,Les Cahiers de L’économie No. 87, IFP Energies Nouvelles, Rueil Malmaison, France, September, 2012, 38 pp LINK'%C3%A9conomie/ECO87_LORNE_TCHUNG-MING.pdf [Google Scholar]
  52. Hepburn C., Adlen E., Beddington J., Carter E. A., Fuss S., Mac Dowell N., Minx J. C., Smith P., and Williams C. K. Nature, 2019, 575, (7781), 87 LINK [Google Scholar]
  53. Pfenninger S., Hawkes A., and Keirstead J. Renew. Sustain. Energy Rev., 2014, 33, 74 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error