Skip to content
Volume 66, Issue 1
  • ISSN: 2056-5135


Since the early 2010s, less than a handful of studies have been communicated to the hydrogen and fuel cell communities that special care should be adopted, and a systematic approach should be applied, when homogenising catalyst ink slurries using ultrasound in the form of either a laboratory-grade ultrasonic cleaning bath, or an ultrasonic probe (sonifier). In these studies, it was demonstrated that the use of power ultrasound for the homogenisation of catalyst inks can be detrimental if not used appropriately. Unfortunately, and to this day, literature still indicates that ultrasound is still used for the homogenisation of fuel cell and electrolyser catalyst ink slurries and little or even no experimental conditions are given. To what extent is this approach acceptable? This short review paper discusses the importance of using ultrasound adequately to avoid catalyst dissolution and ionomer degradation induced by acoustic cavitation as well as metallic contamination originating from the ultrasonic probe. It also sheds some light on the important aspects and effects of power ultrasound in liquids and surfaces and presents some recommendations on how to use ultrasound adequately for mixing catalyst ink formulations.


Article metrics loading...

Loading full text...

Full text loading...



  1. Mustain W. E., Chatenet M., Page M., and Kim Y. S. Energy Environ. Sci., 2020, 13, (9), 2805 LINK [Google Scholar]
  2. Kocha S. S., Yokokawa H., and Gasteiger H. A. ‘Principles of MEA Preparation: Fuel Cell Technology and Applications: Polymer Electrolyte Membrane Fuel Cells and Systems (PEMFC): Membrane-electrode-assembly (MEA): Principles of MEA Preparation’, in “Handbook of Fuel Cells: Fundamentals Technology and Applications”, eds. Vielstich W., 3, Part 3, John Wiley & Sons Ltd, Chichester, UK, 2009 LINK [Google Scholar]
  3. Millington B., Whipple V., and Pollet B. G. J. Power Sources, 2011, 196, (20), 8500 LINK [Google Scholar]
  4. Felix C., Jao T.-C., Pasupathi S., and Pollet B. G. J. Power Sources, 2013, 243, 40 LINK [Google Scholar]
  5. Pollet B. G. Catalysts, 2019, 9, (3), 246 LINK [Google Scholar]
  6. Kuroki H., Onishi K., Asami K., and Yamaguchi T. Ind. Eng. Chem. Res., 2019, 58, (42), 19545 LINK [Google Scholar]
  7. Takahashi I., and Kocha S. S. J. Power Sources, 2010, 195, (19), 6312 LINK [Google Scholar]
  8. Pollet B. G. Int. J. Hydrogen Energy, 2010, 35, (21), 11986 LINK [Google Scholar]
  9. Momand H. ‘The Effect of Ultrasound on Nafion® Polymer in Proton Exchange Membrane Fuel Cells (PEMFCs)’, MRes Thesis, College of Engineering and Physical Sciences, The University of Birmingham, UK, 2013, 118 pp LINK [Google Scholar]
  10. Pollet B. G., and Goh J. T. E. Electrochim. Acta, 2014, 128, 292 LINK [Google Scholar]
  11. Pollet B. G. Electrocatalysis, 2014, 5, (4), 330 LINK [Google Scholar]
  12. Shinozaki K., Zack J. W., Richards R. M., Pivovar B. S., and Kocha S. S. J. Electrochem. Soc., 2015, 162, (10), F1144 LINK [Google Scholar]
  13. Jacobs C. J. ‘Influence of Catalyst Ink Mixing Procedures on Catalyst Layer Properties and In-Situ PEMFC Performance’, MSc thesis, Department of Chemical Engineering, University of Cape Town, South Africa, March, 2016, 117 pp LINK [Google Scholar]
  14. Wang M., Park J. H., Kabir S., Neyerlin K. C., Kariuki N. N., Lv H., Stamenkovic V. R., Myers D. J., Ulsh M., and Mauger S. A. ACS Appl. Energy Mater., 2019, 2, (9), 6417 LINK [Google Scholar]
  15. Bapat S., Giehl C., Kohsakowski S., Peinecke V., Schäffler M., and Segets D. ChemRxiv, February, 2020, unpublished preprint Version 3 LINK [Google Scholar]
  16. Adamski M., Peressin N., Holdcroft S., and Pollet B. G. Ultrason. Sonochem., 2020, 60, 104758 LINK [Google Scholar]
  17. Safronova E. Y., Pourcelly G., and Yaroslavtsev A. B. Polym. Degrad. Stab., 2020, 178, 109229 LINK [Google Scholar]
  18. Safronova E. Y., and Yaroslavtsev A. B. Membr. Membr. Technol., 2021, 3, (1), 8 LINK [Google Scholar]
  19. Garsany Y., Baturina O. A., Swider-Lyons K. E., and Kocha S. S. Anal. Chem., 2010, 82, (15), 6321 LINK [Google Scholar]
  20. Garsany Y., Singer I. L., and Swider-Lyons K. E. J. Electroanal. Chem., 2011, 662, (2), 396 LINK [Google Scholar]
  21. Garsany Y., Ge J., St-Pierre J., Rocheleau R., and Swider-Lyons K. E. J. Electrochem. Soc., 2014, 161, (5), F628 LINK [Google Scholar]
  22. Shinozaki K., Zack J. W., Pylypenko S., Pivovar B. S., and Kocha S. S. J. Electrochem. Soc.>, 2015, 162, (12), F1384 LINK [Google Scholar]
  23. Martens S., Asen L., Ercolano G., Dionigi F., Zalitis C., Hawkins A., Bonastre A. M., Seidl L., Knoll A. C., Sharman J., Strasser P., Jones D., and Schneider O. J. Power Sources, 2018, 392, 274 LINK [Google Scholar]
  24. Song C.-H., and Park J.-S. Energies, 2019, 12, (3), 549 LINK [Google Scholar]
  25. Guo Y., Pan F., Chen W., Ding Z., Yang D., Li B., Ming P., and Zhang C. Electrochem. Energy Rev., 2021, 4, (1), 67 LINK [Google Scholar]
  26. Anderson G. C., Pivovar B. S., and Alia S. M. J. Electrochem. Soc., 2020, 167, (4), 044503 LINK [Google Scholar]
  27. Tovini M. F., Hartig-Weiß A., Gasteiger H. A., and El-Sayed H. A. J. Electrochem. Soc., 2021, 168, (1), 014512 LINK [Google Scholar]
  28. Inaba M., Kamitaka Y., and Kodama K. J. Electroanal. Chem., 2021, 886, 115115 LINK [Google Scholar]
  29. Li W., Bi X., Luo M., and Sui P.-C. J. Electrochem. Soc., 2021, 168, (3), 034502 LINK [Google Scholar]
  30. Pollet B. G., Ashokkumar M., and Ashokkumar M. “Introduction to Ultrasound, Sonochemistry and Sonoelectrochemistry”, SpringerBriefs in Molecular Science: Ultrasound and Sonochemistry Series, Eds. Pollet B. G., Springer Nature Switzerland AG, Cham, Switzerland, 2019, 39 pp LINK [Google Scholar]
  31. Islam M. H., Paul M. T. Y., Burheim O. S., and Pollet B. G. Ultrason. Sonochem., 2019, 59, 104711 LINK [Google Scholar]
  32. Islam M. H., Burheim O. S., and Pollet B. G. Ultrason. Sonochem., 2019, 51, 533 LINK [Google Scholar]
  33. Mason T. J., ‘Sonochemistry: Uses of Ultrasound in Chemistry and Related Disciplines’, in “Ultrasound Angioplasty”, ed. R. and Siegel J. 187, Kluwer Academic Publishers, Norwell, USA, 1990, pp. 2554 LINK [Google Scholar]
  34. Suslick K. S. Science, 1990, 247, (4949), 1439 LINK [Google Scholar]
  35. Armstrong D. A., Huie R. E., Lymar S., Koppenol W. H., Merényi G., Neta P., Stanbury D. M., Steenken S., and Wardman P. Bioinorg. React. Mech., 2014, 9, (1–4), 59 LINK [Google Scholar]
  36. Mawson R., Rout M., Ripoll G., Swiergon P., Singh T., Knoerzer K., and Juliano P. Ultrason. Sonochem., 2014, 21, (6), 2122 LINK [Google Scholar]
  37. Hansen H. E., Seland F., Sunde S., Burheim O. S., and Pollet B. G. Mater. Adv., 2021, 2, (6), 1962 LINK [Google Scholar]
  38. Ashokkumar M., Sunartio D., Kentish S., Mawson R., Simons L., Vilkhu K., and Versteeg C. Innov. Food Sci. Emerg. Technol., 2008, 9, (2), 155 LINK [Google Scholar]
  39. Curnick O. J., Pollet B. G., and Mendes P. M. RSC Adv., 2012, 2, (22), 8368 LINK [Google Scholar]
  40. Skrabalak S. E. Phys. Chem. Chem. Phys., 2009, 11, (25), 4930 LINK [Google Scholar]
  41. Sesis A., Hodnett M., Memoli G., Wain A. J., Jurewicz I., Dalton A. B., Carey J. D., and Hinds G. J. Phys. Chem. B, 2013, 117, (48), 15141 LINK [Google Scholar]
  42. Weissler A. J. Appl. Phys., 1950, 21, (2), 171 LINK [Google Scholar]
  43. Basedow A. M., and Ebert K. H. ‘Ultrasonic Degradation of Polymers in Solution’, in “Physical Chemistry”, Advances in Polymer Science Series, Vol. 22, Springer-Verlag, Berlin, Germany, 1977, pp. 83148 LINK [Google Scholar]
  44. Price G. J., and Smith P. F. Polym. Int., 1991, 24, (3), 159 LINK [Google Scholar]
  45. Price G. J., West P. J., and Smith P. F. Ultrason. Sonochem., 1994, 1, (1), S51 LINK [Google Scholar]
  46. Price G. J., White A. J., and Clifton A. A. Polymer, 1995, 36, (26), 4919 LINK [Google Scholar]
  47. Sun X., Liu J., Ji L., Wang G., Zhao S., Yoon J. Y., and Chen S. Sci. Total Environ., 2020, 737, 139606 LINK [Google Scholar]
  48. Gogate P. R., Pandit A. B., and Ashokkumar M. ‘Cavitation Generation and Usage Without Ultrasound: Hydrodynamic Cavitation’, in “Theoretical and Experimental Sonochemistry Involving Inorganic Systems”, eds. Pankaj, Springer Science and Business Media BV, Dordrecht, The Netherlands, 2011, pp. 69106 LINK [Google Scholar]
  49. Shah Y. T., Pandit A. B., Moholkar V. S., ‘Energy Efficiency and the Economics of the Cavitation Conversion Process’, in “Cavitation Reaction Engineering”, ed. and Luss D. Springer Science and Business Media, New York, USA, 1999, pp. 277312 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error