Skip to content
1887
Volume 66, Issue 1
  • ISSN: 2056-5135

Abstract

Since the early 2010s, less than a handful of studies have been communicated to the hydrogen and fuel cell communities that special care should be adopted, and a systematic approach should be applied, when homogenising catalyst ink slurries using ultrasound in the form of either a laboratory-grade ultrasonic cleaning bath, or an ultrasonic probe (sonifier). In these studies, it was demonstrated that the use of power ultrasound for the homogenisation of catalyst inks can be detrimental if not used appropriately. Unfortunately, and to this day, literature still indicates that ultrasound is still used for the homogenisation of fuel cell and electrolyser catalyst ink slurries and little or even no experimental conditions are given. To what extent is this approach acceptable? This short review paper discusses the importance of using ultrasound adequately to avoid catalyst dissolution and ionomer degradation induced by acoustic cavitation as well as metallic contamination originating from the ultrasonic probe. It also sheds some light on the important aspects and effects of power ultrasound in liquids and surfaces and presents some recommendations on how to use ultrasound adequately for mixing catalyst ink formulations.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16196162869695
2021-04-28
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/1/Pollet_16a_Imp.html?itemId=/content/journals/10.1595/205651321X16196162869695&mimeType=html&fmt=ahah

References

  1. W. E. Mustain, M. Chatenet, M. Page, Y. S. Kim, Energy Environ. Sci., 2020, 13, (9), 2805 LINK https://doi.org/10.1039/d0ee01133a [Google Scholar]
  2. S. S. Kocha, H. Yokokawa, H. A. Gasteiger, ‘Principles of MEA Preparation: Fuel Cell Technology and Applications: Polymer Electrolyte Membrane Fuel Cells and Systems (PEMFC): Membrane-electrode-assembly (MEA): Principles of MEA Preparation’, in “Handbook of Fuel Cells: Fundamentals Technology and Applications”, eds. W. Vielstich, 3, Part 3, John Wiley & Sons Ltd, Chichester, UK, 2009 LINK https://doi.org/10.1002/9780470974001.f303047 [Google Scholar]
  3. B. Millington, V. Whipple, B. G. Pollet, J. Power Sources, 2011, 196, (20), 8500 LINK https://doi.org/10.1016/j.jpowsour.2011.06.024 [Google Scholar]
  4. C. Felix, T.-C. Jao, S. Pasupathi, B. G. Pollet, J. Power Sources, 2013, 243, 40 LINK https://doi.org/10.1016/j.jpowsour.2013.06.006 [Google Scholar]
  5. B. G. Pollet, Catalysts, 2019, 9, (3), 246 LINK https://doi.org/10.3390/catal9030246 [Google Scholar]
  6. H. Kuroki, K. Onishi, K. Asami, T. Yamaguchi, Ind. Eng. Chem. Res., 2019, 58, (42), 19545 LINK https://doi.org/10.1021/acs.iecr.9b02111 [Google Scholar]
  7. I. Takahashi, S. S. Kocha, J. Power Sources, 2010, 195, (19), 6312 LINK https://doi.org/10.1016/j.jpowsour.2010.04.052 [Google Scholar]
  8. B. G. Pollet, Int. J. Hydrogen Energy, 2010, 35, (21), 11986 LINK https://doi.org/10.1016/j.ijhydene.2010.08.021 [Google Scholar]
  9. H. Momand, ‘The Effect of Ultrasound on Nafion® Polymer in Proton Exchange Membrane Fuel Cells (PEMFCs)’, MRes Thesis, College of Engineering and Physical Sciences, The University of Birmingham, UK, 2013, 118 pp LINK http://etheses.bham.ac.uk/id/eprint/4025 [Google Scholar]
  10. B. G. Pollet, J. T. E. Goh, Electrochim. Acta, 2014, 128, 292 LINK https://doi.org/10.1016/j.electacta.2013.09.160 [Google Scholar]
  11. B. G. Pollet, Electrocatalysis, 2014, 5, (4), 330 LINK https://doi.org/10.1007/s12678-014-0211-4 [Google Scholar]
  12. K. Shinozaki, J. W. Zack, R. M. Richards, B. S. Pivovar, S. S. Kocha, J. Electrochem. Soc., 2015, 162, (10), F1144 LINK https://doi.org/10.1149/2.1071509jes [Google Scholar]
  13. C. J. Jacobs, ‘Influence of Catalyst Ink Mixing Procedures on Catalyst Layer Properties and In-Situ PEMFC Performance’, MSc thesis, Department of Chemical Engineering, University of Cape Town, South Africa, March, 2016, 117 pp LINK http://hdl.handle.net/11427/22932 [Google Scholar]
  14. M. Wang, J. H. Park, S. Kabir, K. C. Neyerlin, N. N. Kariuki, H. Lv, V. R. Stamenkovic, D. J. Myers, M. Ulsh, S. A. Mauger, ACS Appl. Energy Mater., 2019, 2, (9), 6417 LINK https://doi.org/10.1021/acsaem.9b01037 [Google Scholar]
  15. S. Bapat, C. Giehl, S. Kohsakowski, V. Peinecke, M. Schäffler, D. Segets, ChemRxiv, February, 2020, unpublished preprint Version 3 LINK https://doi.org/10.26434/chemrxiv.13125401.v3 [Google Scholar]
  16. M. Adamski, N. Peressin, S. Holdcroft, B. G. Pollet, Ultrason. Sonochem., 2020, 60, 104758 LINK https://doi.org/10.1016/j.ultsonch.2019.104758 [Google Scholar]
  17. E. Y. Safronova, G. Pourcelly, A. B. Yaroslavtsev, Polym. Degrad. Stab., 2020, 178, 109229 LINK https://doi.org/10.1016/j.polymdegradstab.2020.109229 [Google Scholar]
  18. E. Y. Safronova, A. B. Yaroslavtsev, Membr. Membr. Technol., 2021, 3, (1), 8 LINK https://doi.org/10.1134/s2517751621010078 [Google Scholar]
  19. Y. Garsany, O. A. Baturina, K. E. Swider-Lyons, S. S. Kocha, Anal. Chem., 2010, 82, (15), 6321 LINK https://doi.org/10.1021/ac100306c [Google Scholar]
  20. Y. Garsany, I. L. Singer, K. E. Swider-Lyons, J. Electroanal. Chem., 2011, 662, (2), 396 LINK https://doi.org/10.1016/j.jelechem.2011.09.016 [Google Scholar]
  21. Y. Garsany, J. Ge, J. St-Pierre, R. Rocheleau, K. E. Swider-Lyons, J. Electrochem. Soc., 2014, 161, (5), F628 LINK https://doi.org/10.1149/2.036405jes [Google Scholar]
  22. K. Shinozaki, J. W. Zack, S. Pylypenko, B. S. Pivovar, S. S. Kocha, J. Electrochem. Soc.>, 2015, 162, (12), F1384 LINK https://doi.org/10.1149/2.0551512jes [Google Scholar]
  23. S. Martens, L. Asen, G. Ercolano, F. Dionigi, C. Zalitis, A. Hawkins, A. M. Bonastre, L. Seidl, A. C. Knoll, J. Sharman, P. Strasser, D. Jones, O. Schneider, J. Power Sources, 2018, 392, 274 LINK https://doi.org/10.1016/j.jpowsour.2018.04.084 [Google Scholar]
  24. C.-H. Song, J.-S. Park, Energies, 2019, 12, (3), 549 LINK https://doi.org/10.3390/en12030549 [Google Scholar]
  25. Y. Guo, F. Pan, W. Chen, Z. Ding, D. Yang, B. Li, P. Ming, C. Zhang, Electrochem. Energy Rev., 2021, 4, (1), 67 LINK https://doi.org/10.1007/s41918-020-00083-2 [Google Scholar]
  26. G. C. Anderson, B. S. Pivovar, S. M. Alia, J. Electrochem. Soc., 2020, 167, (4), 044503 LINK https://doi.org/10.1149/1945-7111/ab7090 [Google Scholar]
  27. M. F. Tovini, A. Hartig-Weiß, H. A. Gasteiger, H. A. El-Sayed, J. Electrochem. Soc., 2021, 168, (1), 014512 LINK https://doi.org/10.1149/1945-7111/abdcc9 [Google Scholar]
  28. M. Inaba, Y. Kamitaka, K. Kodama, J. Electroanal. Chem., 2021, 886, 115115 LINK https://doi.org/10.1016/j.jelechem.2021.115115 [Google Scholar]
  29. W. Li, X. Bi, M. Luo, P.-C. Sui, J. Electrochem. Soc., 2021, 168, (3), 034502 LINK https://doi.org/10.1149/1945-7111/abe725 [Google Scholar]
  30. B. G. Pollet, M. Ashokkumar, M. Ashokkumar, “Introduction to Ultrasound, Sonochemistry and Sonoelectrochemistry”, SpringerBriefs in Molecular Science: Ultrasound and Sonochemistry Series, Eds. B. G. Pollet, Springer Nature Switzerland AG, Cham, Switzerland, 2019, 39 pp LINK https://doi.org/10.1007/978-3-030-25862-7 [Google Scholar]
  31. M. H. Islam, M. T. Y. Paul, O. S. Burheim, B. G. Pollet, Ultrason. Sonochem., 2019, 59, 104711 LINK https://doi.org/10.1016/j.ultsonch.2019.104711 [Google Scholar]
  32. M. H. Islam, O. S. Burheim, B. G. Pollet, Ultrason. Sonochem., 2019, 51, 533 LINK https://doi.org/10.1016/j.ultsonch.2018.08.024 [Google Scholar]
  33. T. J. Mason, ‘Sonochemistry: Uses of Ultrasound in Chemistry and Related Disciplines’, in “Ultrasound Angioplasty”, ed. R. J. Siegel, 187, Kluwer Academic Publishers, Norwell, USA, 1990, pp. 2554 LINK https://doi.org/10.1007/978-1-4613-1243-7_2 [Google Scholar]
  34. K. S. Suslick, Science, 1990, 247, (4949), 1439 LINK https://doi.org/10.1126/science.247.4949.1439 [Google Scholar]
  35. D. A. Armstrong, R. E. Huie, S. Lymar, W. H. Koppenol, G. Merényi, P. Neta, D. M. Stanbury, S. Steenken, P. Wardman, Bioinorg. React. Mech., 2014, 9, (1–4), 59 LINK https://doi.org/10.1515/irm-2013-0005 [Google Scholar]
  36. R. Mawson, M. Rout, G. Ripoll, P. Swiergon, T. Singh, K. Knoerzer, P. Juliano, Ultrason. Sonochem., 2014, 21, (6), 2122 LINK https://doi.org/10.1016/j.ultsonch.2014.04.005 [Google Scholar]
  37. H. E. Hansen, F. Seland, S. Sunde, O. S. Burheim, B. G. Pollet, Mater. Adv., 2021, 2, (6), 1962 LINK https://doi.org/10.1039/d0ma00909a [Google Scholar]
  38. M. Ashokkumar, D. Sunartio, S. Kentish, R. Mawson, L. Simons, K. Vilkhu, C. Versteeg, Innov. Food Sci. Emerg. Technol., 2008, 9, (2), 155 LINK https://doi.org/10.1016/j.ifset.2007.05.005 [Google Scholar]
  39. O. J. Curnick, B. G. Pollet, P. M. Mendes, RSC Adv., 2012, 2, (22), 8368 LINK https://doi.org/10.1039/c2ra21071a [Google Scholar]
  40. S. E. Skrabalak, Phys. Chem. Chem. Phys., 2009, 11, (25), 4930 LINK https://doi.org/10.1039/b823408f [Google Scholar]
  41. A. Sesis, M. Hodnett, G. Memoli, A. J. Wain, I. Jurewicz, A. B. Dalton, J. D. Carey, G. Hinds, J. Phys. Chem. B, 2013, 117, (48), 15141 LINK https://doi.org/10.1021/jp410041y [Google Scholar]
  42. A. Weissler, J. Appl. Phys., 1950, 21, (2), 171 LINK https://doi.org/10.1063/1.1699618 [Google Scholar]
  43. A. M. Basedow, K. H. Ebert, ‘Ultrasonic Degradation of Polymers in Solution’, in “Physical Chemistry”, Advances in Polymer Science Series, Vol. 22, Springer-Verlag, Berlin, Germany, 1977, pp. 83148 LINK https://doi.org/10.1007/3-540-07942-4_6 [Google Scholar]
  44. G. J. Price, P. F. Smith, Polym. Int., 1991, 24, (3), 159 LINK https://doi.org/10.1002/pi.4990240306 [Google Scholar]
  45. G. J. Price, P. J. West, P. F. Smith, Ultrason. Sonochem., 1994, 1, (1), S51 LINK https://doi.org/10.1016/1350-4177(94)90028-0 [Google Scholar]
  46. G. J. Price, A. J. White, A. A. Clifton, Polymer, 1995, 36, (26), 4919 LINK https://doi.org/10.1016/0032-3861(96)81616-8 [Google Scholar]
  47. X. Sun, J. Liu, L. Ji, G. Wang, S. Zhao, J. Y. Yoon, S. Chen, Sci. Total Environ., 2020, 737, 139606 LINK https://doi.org/10.1016/j.scitotenv.2020.139606 [Google Scholar]
  48. P. R. Gogate, A. B. Pandit, M. Ashokkumar, ‘Cavitation Generation and Usage Without Ultrasound: Hydrodynamic Cavitation’, in “Theoretical and Experimental Sonochemistry Involving Inorganic Systems”, eds. Pankaj, Springer Science and Business Media BV, Dordrecht, The Netherlands, 2011, pp. 69106 LINK https://doi.org/10.1007/978-90-481-3887-6_3 [Google Scholar]
  49. Y. T. Shah, A. B. Pandit, V. S. Moholkar, ‘Energy Efficiency and the Economics of the Cavitation Conversion Process’, in “Cavitation Reaction Engineering”, ed. D. Luss, Springer Science and Business Media, New York, USA, 1999, pp. 277312 LINK https://doi.org/10.1007/978-1-4615-4787-7_8 [Google Scholar]
/content/journals/10.1595/205651321X16196162869695
Loading
/content/journals/10.1595/205651321X16196162869695
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test