Skip to content
1887
Volume 66, Issue 1
  • ISSN: 2056-5135

Abstract

In recent years, sodium-ion batteries (NIBs) have been explored as an alternative technology to lithium-ion batteries (LIBs) due to their cost-effectiveness and promise in mitigating the energy crisis we currently face. Similarities between both battery systems have enabled fast development of NIBs, however, their full commercialisation has been delayed due to the lack of an appropriate anode material. Hard carbons (HCs) arise as one of the most promising materials and are already used in the first generation of commercial NIBs. Although promising, HCs exhibit lower performance compared to commercial graphite used as an anode in LIBs in terms of reversible specific capacity, operating voltage, initial coulombic efficiency and cycling stability. Nevertheless, these properties vary greatly depending on the HC in question, for example surface area, porosity, degree of graphitisation and defect amount, which in turn are dependent on the synthesis method and precursor used. Optimisation of these properties will bring forward the widespread commercialisation of NIBs at a competitive level with current LIBs. This review aims to provide a brief overview of the current understanding of the underlying reaction mechanisms occurring in the state-of-the-art HC anode material as well as their structure-property interdependence. We expect to bring new insights into the engineering of HC materials to achieve optimal, or at least, comparable electrochemical performance to that of graphite in LIBs.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16250408525547
2021-06-29
2024-02-28
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/1/Tapia-Ruiz_16a_Imp.html?itemId=/content/journals/10.1595/205651322X16250408525547&mimeType=html&fmt=ahah

References

  1. ‘Paris Agreement’, United Nations, Paris, France, 12th December, 2015 LINK https://unfccc.int/sites/default/files/english_paris_agreement.pdf [Google Scholar]
  2. Manthiram A. ACS Cent. Sci., 2017, 3, (10), 1063 LINK https://doi.org/10.1021/acscentsci.7b00288 [Google Scholar]
  3. Tarascon J.-M., and Armand M. Nature, 2001, 414, (6861), 359 LINK https://doi.org/10.1038/35104644 [Google Scholar]
  4. Tarascon J.-M. Nat. Chem., 2010, 2, (6), 510 LINK https://doi.org/10.1038/nchem.680 [Google Scholar]
  5. Hunt T. ‘Is There Enough Lithium to Maintain the Growth of the Lithium-Ion Battery Market?’, Greentech Media, Fleet, UK, 2nd June, 2015 LINK https://www.greentechmedia.com/articles/read/is-there-enough-lithium-to-maintain-the-growth-of-the-lithium-ion-battery-m [Google Scholar]
  6. Chen L., Fiore M., Wang J. E., Ruffo R., Kim D.-K., and Longoni G. Adv. Sustain. Syst., 2018, 2, (3), 1700153 LINK https://doi.org/10.1002/adsu.201700153 [Google Scholar]
  7. Larcher D., and Tarascon J.-M. Nat. Chem., 2015, 7, (1), 19 LINK https://doi.org/10.1038/nchem.2085 [Google Scholar]
  8. Wadia C., Albertus P., and Srinivasan V. J. Power Sources, 2011, 196, (3), 1593 LINK https://doi.org/10.1016/j.jpowsour.2010.08.056 [Google Scholar]
  9. Tahil W. ‘The Trouble with Lithium: Implications of Future PHEV Production for Lithium Demand’, Meridian International Research, Martainville, France, January, 2007 LINK http://www.meridian-int-res.com/Projects/Lithium_Problem_2.pdf [Google Scholar]
  10. ‘The Trouble with Lithium 2: Under the Microscope’, Meridian International Research, Martainville, France, 29th May, 2008 LINK http://www.meridian-int-res.com/Projects/Lithium_Microscope.pdf [Google Scholar]
  11. Hwang J.-Y., Myung S.-T., and Sun Y.-K. Chem. Soc. Rev., 2017, 46, (12), 3529 LINK https://doi.org/10.1039/c6cs00776g [Google Scholar]
  12. “Mineral Commodity Summaries 2021”, US Geological Survey, Reston, USA, 1st February, 2021 LINK https://doi.org/10.3133/mcs2021 [Google Scholar]
  13. “Practical Handbook of Physical Properties of Rocks and Minerals”, ed. Carmichael R. S. CRC Press, Boca Raton, USA, 1989 LINK https://doi.org/10.1201/9780203710968 [Google Scholar]
  14. Liu T., Zhang Y., Jiang Z., Zeng X., Ji J., Li Z., Gao X., Sun M., Lin Z., Ling M., Zheng J., and Liang C. Energy Environ. Sci., 2019, 12, (5), 1512 LINK https://doi.org/10.1039/c8ee03727b [Google Scholar]
  15. Gruber P. W., Medina P. A., Keoleian G. A., Kesler S. E., Everson M. P., and Wallington T. J. J. Ind. Ecol., 2011, 15, (5), 760 LINK https://doi.org/10.1111/j.1530-9290.2011.00359.x [Google Scholar]
  16. Yabuuchi N., Kubota K., Dahbi M., and Komaba S. Chem. Rev., 2014, 114, (23), 11636 LINK https://doi.org/10.1021/cr500192f [Google Scholar]
  17. Vaalma C., Buchholz D., Weil M., and Passerini S. Nat. Rev. Mater., 2018, 3, 18013 LINK https://doi.org/10.1038/natrevmats.2018.13 [Google Scholar]
  18. Liu Q., Hu Z., Chen M., Zou C., Jin H., Wang S., Chou S.-L., Liu Y., and Dou S.-X. Adv. Funct. Mater., 2020, 30, (14), 1909530 LINK https://doi.org/10.1002/adfm.201909530 [Google Scholar]
  19. Murray J. L. Bull. Alloy Phase Diagrams, 1983, 4, 407 LINK https://doi.org/10.1007/BF02868094 [Google Scholar]
  20. Rudola A., Rennie A. J. R., Heap R., Meysami S. S., Lowbridge A., Mazzali F., Sayers R., Wright C. J., and Barker J. J. Mater. Chem. A, 2021, 9, (13), 8279 LINK https://doi.org/10.1039/d1ta00376c [Google Scholar]
  21. Kim Y., Ha K.-H., Oh S. M., and Lee K. T. Chem. Eur. J., 2014, 20, (38), 11980 LINK https://doi.org/10.1002/chem.201402511 [Google Scholar]
  22. Choi J. W., and Aurbach D. Nat. Rev. Mater., 2016, 1, 16013 LINK https://doi.org/10.1038/natrevmats.2016.13 [Google Scholar]
  23. Perveen T., Siddiq M., Shahzad N., Ihsan R., Ahmad A., and Shahzad M. I. Renew. Sustain. Energy Rev., 2020, 119, 109549 LINK https://doi.org/10.1016/j.rser.2019.109549 [Google Scholar]
  24. Chayambuka K., Mulder G., Danilov D. L., and Notten P. H. L. Adv. Energy Mater., 2018, 8, (16), 1800079 LINK https://doi.org/10.1002/aenm.201800079 [Google Scholar]
  25. Xiao B., Rojo T., and Li X. ChemSusChem, 2019, 12, (1), 133 LINK https://doi.org/10.1002/cssc.201801879 [Google Scholar]
  26. Wang L., Światowska J., Dai S., Cao M., Zhong Z., Shen Y., and Wang M. Mater. Today Energy, 2019, 11, 46 LINK https://doi.org/10.1016/j.mtener.2018.10.017 [Google Scholar]
  27. Liang S., Cheng Y.-J., Zhu J., Xia Y., and Müller-Buschbaum P. Small Methods, 2020, 4, (8), 2000218 LINK https://doi.org/10.1002/smtd.202000218 [Google Scholar]
  28. Tan H., Chen D., Rui X., and Yu Y. Adv. Funct. Mater., 2019, 29, (14), 1808745 LINK https://doi.org/10.1002/adfm.201808745 [Google Scholar]
  29. Lao M., Zhang Y., Luo W., Yan Q., Sun W., and Dou S. X. Adv. Mater., 2017, 29, (48), 1700622 LINK https://doi.org/10.1002/adma.201700622 [Google Scholar]
  30. Wu C., Dou S.-X., and Yu Y. Small, 2018, 14, (22), 1703671 LINK https://doi.org/10.1002/smll.201703671 [Google Scholar]
  31. Wen Y., He K., Zhu Y., Han F., Xu Y., Matsuda I., Ishii Y., Cumings J., and Wang C. Nat. Commun., 2014, 5, 4033 LINK https://doi.org/10.1038/ncomms5033 [Google Scholar]
  32. Doeff M. M., Cabana J., and Shirpour M. J. Inorg. Organomet. Polym. Mater., 2014, 24, 5 LINK https://doi.org/10.1007/s10904-013-9977-8 [Google Scholar]
  33. Zhang Y., Jiang Z., Huang J., Lim L. Y., Li W., Deng J., Gong D., Tang Y., Lai Y., and Chen Z. RSC Adv., 2015, 5, (97), 79479 LINK https://doi.org/10.1039/c5ra11298b [Google Scholar]
  34. Costa S. I. R., Choi Y.-S., Fielding A. J., Naylor A. J., Griffin J. M., Sofer Z., Scanlon D. O., and Tapia-Ruiz N. Chem. Eur. J., 2021, 27, (11), 3875 LINK https://doi.org/10.1002/chem.202003129 [Google Scholar]
  35. Ge P., and Fouletier M. Solid State Ionics, 1988, 2830, (2), 1172 LINK https://doi.org/10.1016/0167-2738(88)90351-7 [Google Scholar]
  36. Doeff M. M., Ma Y., Visco S. J., and De Jonghe L. C. J. Electrochem. Soc., 1993, 140, (12), L 169 LINK https://doi.org/10.1149/1.2221153 [Google Scholar]
  37. Stevens D. A., and Dahn J. R. J. Electrochem. Soc., 2001, 148, (8), A 803 LINK https://doi.org/10.1149/1.1379565 [Google Scholar]
  38. DiVincenzo D. P., and Mele E. J. Phys. Rev. B, 1985, 32, (4), 2538 LINK https://doi.org/10.1103/PhysRevB.32.2538 [Google Scholar]
  39. Tsai P.-c., Chung S.-C., Lin S.-k., and Yamada A. J. Mater. Chem. A, 2015, 3, (18), 9763 LINK https://doi.org/10.1039/c5ta01443c [Google Scholar]
  40. Liu Y., Merinov B. V., and Goddard W. A. Proc. Natl. Acad. Sci., 2016, 113, (14), 3735 LINK https://doi.org/10.1073/pnas.1602473113 [Google Scholar]
  41. Li Y., Lu Y., Adelhelm P., Titirici M.-M., and Hu Y.-S. Chem. Soc. Rev., 2019, 48, (17), 4655 LINK https://doi.org/10.1039/c9cs00162j [Google Scholar]
  42. Jache B., and Adelhelm P. Angew. Chem. Int. Ed., 2014, 53, (38), 10169 LINK https://doi.org/10.1002/anie.201403734 [Google Scholar]
  43. Kim H., Hong J., Park Y.-U., Kim J., Hwang I., and Kang K. Adv. Funct. Mater., 2015, 25, (4), 534 LINK https://doi.org/10.1002/adfm.201402984 [Google Scholar]
  44. Zhu Z., Cheng F., Hu Z., Niu Z., and Chen J. J. Power Sources, 2015, 293, 626 LINK https://doi.org/10.1016/j.jpowsour.2015.05.116 [Google Scholar]
  45. Kim H., Hong J., Yoon G., Kim H., Park K.-Y., Park M.-S., Yoon W.-S., and Kang K. Energy Environ. Sci., 2015, 8, (10), 2963 LINK https://doi.org/10.1039/c5ee02051d [Google Scholar]
  46. Jache B., Binder J. O., Abe T., and Adelhelm P. Phys. Chem. Chem. Phys., 2016, 18, (21), 14299 LINK https://doi.org/10.1039/c6cp00651e [Google Scholar]
  47. Saurel D., Orayech B., Xiao B., Carriazo D., Li X., and Rojo T. Adv. Energy Mater., 2018, 8, (17), 1703268 LINK https://doi.org/10.1002/aenm.201703268 [Google Scholar]
  48. Yu P., Tang W., Wu F.-F., Zhang C., Luo H.-Y., Liu H., and Wang Z.-G. Rare Met., 2020, 39, (9), 1019 LINK https://doi.org/10.1007/s12598-020-01443-z [Google Scholar]
  49. Asenbauer J., Eisenmann T., Kuenzel M., Kazzazi A., Chen Z., and Bresser D. Sustain. Energy Fuels, 2020, 4, (11), 5387 LINK https://doi.org/10.1039/d0se00175a [Google Scholar]
  50. Bommier C., Mitlin D., and Ji X. Prog. Mater. Sci., 2018, 97, 170 LINK https://doi.org/10.1016/j.pmatsci.2018.04.006 [Google Scholar]
  51. Wahid M., Puthusseri D., Gawli Y., Sharma N., and Ogale S. ChemSusChem, 2018, 11, (3), 506 LINK https://doi.org/10.1002/cssc.201701664 [Google Scholar]
  52. Xie F., Xu Z., Guo Z., and Titirici M.-M. Prog. Energy, 2020, 2, (4), 042002 LINK https://doi.org/10.1088/2516-1083/aba5f5 [Google Scholar]
  53. Dou X., Hasa I., Saurel D., Vaalma C., Wu L., Buchholz D., Bresser D., Komaba S., and Passerini S. Mater. Today, 2019, 23, 87 LINK https://doi.org/10.1016/j.mattod.2018.12.040 [Google Scholar]
  54. Irisarri E., Ponrouch A., and Palacin M. R. J. Electrochem. Soc., 2015, 162, (14), A 2476 LINK https://doi.org/10.1149/2.0091514jes [Google Scholar]
  55. McDonald-Wharry J. S., Manley-Harris M., and Pickering K. L. Energy Fuels, 2016, 30, (10), 7811 LINK https://doi.org/10.1021/acs.energyfuels.6b00917 [Google Scholar]
  56. Liu Y., Xue J. S., Zheng T., and Dahn J. R. Carbon, 1996, 34, (2), 193 LINK https://doi.org/10.1016/0008-6223(96)00177-7 [Google Scholar]
  57. Buiel E. R., George A. E., and Dahn J. R. Carbon, 1999, 37, (9), 1399 LINK https://doi.org/10.1016/S0008-6223(98)00335-2 [Google Scholar]
  58. Dahn J. R., Xing W., and Gao Y. Carbon, 1997, 35, (6), 825 LINK https://doi.org/10.1016/S0008-6223(97)00037-7 [Google Scholar]
  59. Franklin R. E. Proc. R. Soc. A. Math. Phys. Eng. Sci., 1951, 209, (1097), 196 LINK https://doi.org/10.1098/rspa.1951.0197 [Google Scholar]
  60. Alptekin H., Au H., Jensen A. C. S., Olsson E., Goktas M., Headen T. F., Adelhelm P., Cai Q., Drew A. J., and Titirici M.-M. ACS Appl. Energy Mater., 2020, 3, (10), 9918 LINK https://doi.org/10.1021/acsaem.0c01614 [Google Scholar]
  61. Kim Y., Kim J.-K., Vaalma C., Bae G. H., Kim G.-T., Passerini S., and Kim Y. Carbon, 2018, 129, 564 LINK https://doi.org/10.1016/j.carbon.2017.12.059 [Google Scholar]
  62. Kubota K., and Komaba S. J. Electrochem. Soc., 2015, 162, (14), A 2538 LINK https://doi.org/10.1149/2.0151514jes [Google Scholar]
  63. Li X., Sun X., Hu X., Fan F., Cai S., Zheng C., and Stucky G. D. Nano Energy, 2020, 77, 105143 LINK https://doi.org/10.1016/j.nanoen.2020.105143 [Google Scholar]
  64. Ding F., Xu W., Choi D., Wang W., Li X., Engelhard M. H., Chen X., Yang Z., and Zhang J.-G. J. Mater. Chem., 2012, 22, (25), 12745 LINK https://doi.org/10.1039/c2jm31015e [Google Scholar]
  65. Hasegawa G., Kanamori K., Kannari N., Ozaki J.-i., Nakanishi K., and Abe T. ChemElectroChem, 2015, 2, (12), 1917 LINK https://doi.org/10.1002/celc.201500412 [Google Scholar]
  66. Bommier C., Luo W., Gao W.-Y., Greaney A., Ma S., and Ji X. Carbon, 2014, 76, 165 LINK https://doi.org/10.1016/j.carbon.2014.04.064 [Google Scholar]
  67. Lotfabad E. M., Kalisvaart P., Kohandehghan A., Karpuzov D., and Mitlin D. J. Mater. Chem. A, 2014, 2, (46), 19685 LINK https://doi.org/10.1039/c4ta04995k [Google Scholar]
  68. Xiao L., Lu H., Fang Y., Sushko M. L., Cao Y., Ai X., Yang H., and Liu J. Adv. Energy Mater., 2018, 8, (20), 1703238 LINK https://doi.org/10.1002/aenm.201703238 [Google Scholar]
  69. Pan Y., Zhang Y., Parimalam B. S., Nguyen C. C., Wang G., and Lucht B. L. J. Electroanal. Chem., 2017, 799, 181 LINK https://doi.org/10.1016/j.jelechem.2017.06.002 [Google Scholar]
  70. Verma P., Maire P., and Novák P. Electrochim. Acta, 2010, 55, (22), 6332 LINK https://doi.org/10.1016/j.electacta.2010.05.072 [Google Scholar]
  71. An S. J., Li J., Daniel C., Mohanty D., Nagpure S., and Wood D. L. Carbon, 2016, 105, 52 LINK https://doi.org/10.1016/j.carbon.2016.04.008 [Google Scholar]
  72. Heiskanen S. K., Kim J., and Lucht B. L. Joule, 2019, 3, (10), 2322 LINK https://doi.org/10.1016/j.joule.2019.08.018 [Google Scholar]
  73. Song J., Xiao B., Lin Y., Xu K., and Li X. Adv. Energy Mater., 2018, 8, (17), 1703082 LINK https://doi.org/10.1002/aenm.201703082 [Google Scholar]
  74. Mogensen R., Brandell D., and Younesi R. ACS Energy Lett., 2016, 1, (6), 1173 LINK https://doi.org/10.1021/acsenergylett.6b00491 [Google Scholar]
  75. Kumar H., Detsi E., Abraham D. P., and Shenoy V. B. Chem. Mater., 2016, 28, (24), 8930 LINK https://doi.org/10.1021/acs.chemmater.6b03403 [Google Scholar]
  76. Philippe B., Valvo M., Lindgren F., Rensmo H., and Edström K. Chem. Mater., 2014, 26, (17), 5028 LINK https://doi.org/10.1021/cm5021367 [Google Scholar]
  77. de la Llave E., Borgel V., Zinigrad E., Chesneau F.-F., Hartmann P., Sun Y.-K., and Aurbach D. Isr. J. Chem., 2015, 55, (11–12), 1260 LINK https://doi.org/10.1002/ijch.201500064 [Google Scholar]
  78. Bommier C., Surta T. W., Dolgos M., and Ji X. Nano Lett., 2015, 15, (9), 5888 LINK https://doi.org/10.1021/acs.nanolett.5b01969 [Google Scholar]
  79. Stevens D. A., and Dahn J. R. J. Electrochem. Soc., 2000, 147, (4), 1271 LINK https://doi.org/10.1149/1.1393348 [Google Scholar]
  80. Cao Y., Xiao L., Sushko M. L., Wang W., Schwenzer B., Xiao J., Nie Z., Saraf L. V., Yang Z., and Liu J. Nano Lett., 2012, 12, (7), 3783 LINK https://doi.org/10.1021/nl3016957 [Google Scholar]
  81. Qiu S., Xiao L., Sushko M. L., Han K. S., Shao Y., Yan M., Liang X., Mai L., Feng J., Cao Y., Ai X., Yang H., and Liu J. Adv. Energy Mater., 2017, 7, (17), 1700403 LINK https://doi.org/10.1002/aenm.201700403 [Google Scholar]
  82. Zhang B., Ghimbeu C. M., Laberty C., Vix-Guterl C., and Tarascon J.-M. Adv. Energy Mater., 2016, 6, (1), 1501588 LINK https://doi.org/10.1002/aenm.201501588 [Google Scholar]
  83. Li Y., Hu Y.-S., Titirici M.-M., Chen L., and Huang X. Adv. Energy Mater., 2016, 6, (18), 1600659 LINK https://doi.org/10.1002/aenm.201600659 [Google Scholar]
  84. Au H., Alptekin H., Jensen A. C. S., Olsson E., O’Keefe C. A., Smith T., Crespo-Ribadeneyra M., Headen T. F., Grey C. P., Cai Q., Drew A. J., and Titirici M.-M. Energy Environ. Sci., 2020, 13, (10), 3469 LINK https://doi.org/10.1039/d0ee01363c [Google Scholar]
  85. Stevens D. A., and Dahn J. R. J. Electrochem. Soc., 2000, 147, (12), 4428 LINK https://doi.org/10.1149/1.1394081 [Google Scholar]
  86. Komaba S., Murata W., Ishikawa T., Yabuuchi N., Ozeki T., Nakayama T., Ogata A., Gotoh K., and Fujiwara K. Adv. Funct. Mater., 2011, 21, (20), 3859 LINK https://doi.org/10.1002/adfm.201100854 [Google Scholar]
  87. Kubota K., Shimadzu S., Yabuuchi N., Tominaka S., Shiraishi S., Abreu-Sepulveda M., Manivannan A., Gotoh K., Fukunishi M., Dahbi M., and Komaba S. Chem. Mater., 2020, 32, (7), 2961 LINK https://doi.org/10.1021/acs.chemmater.9b05235 [Google Scholar]
  88. Li Y., Lu Y., Meng Q., Jensen A. C. S., Zhang Q., Zhang Q., Tong Y., Qi Y., Gu L., Titirici M.-M., and Hu Y.-S. Adv. Energy Mater., 2019, 9, (48), 1902852 LINK https://doi.org/10.1002/aenm.201902852 [Google Scholar]
  89. Sun N., Guan Z., Liu Y., Cao Y., Zhu Q., Liu H., Wang Z., Zhang P., and Xu B. Adv. Energy Mater., 2019, 9, (32), 1901351 LINK https://doi.org/10.1002/aenm.201901351 [Google Scholar]
  90. Simone V., Boulineau A., de Geyer A., Rouchon D., Simonin L., and Martinet S. J. Energy Chem., 2016, 25, (5), 761 LINK https://doi.org/10.1016/j.jechem.2016.04.016 [Google Scholar]
  91. Alvin S., Cahyadi H. S., Hwang J., Chang W., Kwak S. K., and Kim J. Adv. Energy Mater., 2020, 10, (20), 2000283 LINK https://doi.org/10.1002/aenm.202000283 [Google Scholar]
  92. Gomez-Martin A., Martinez-Fernandez J., Ruttert M., Winter M., Placke T., and Ramirez-Rico J. Chem. Mater., 2019, 31, (18), 7288 LINK https://doi.org/10.1021/acs.chemmater.9b01768 [Google Scholar]
  93. Ding J., Wang H., Li Z., Kohandehghan A., Cui K., Xu Z., Zahiri B., Tan X., Lotfabad E. M., Olsen B. C., and Mitlin D. ACS Nano, 2013, 7, (12), 11004 LINK https://doi.org/10.1021/nn404640c [Google Scholar]
  94. Alvin S., Yoon D., Chandra C., Susanti R. F., Chang W., Ryu C., and Kim J. J. Power Sources, 2019, 430, 157 LINK https://doi.org/10.1016/j.jpowsour.2019.05.013 [Google Scholar]
  95. Xie F., Xu Z., Jensen A. C. S., Au H., Lu Y., Araullo-Peters V., Drew A. J., Hu Y.-S., and Titirici M.-M. Adv. Funct. Mater., 2019, 29, (24), 1901072 LINK https://doi.org/10.1002/adfm.201901072 [Google Scholar]
  96. Ferrari A., and Robertson J. Phys. Rev. B., 2000, 61, (20), 14095 LINK https://doi.org/10.1103/PhysRevB.61.14095 [Google Scholar]
  97. Zhang G., Zhao Y., Yan L., Zhang L., and Shi Z. J. Mater. Sci. Mater. Electron., 2021, 32, (5), 5645 LINK https://doi.org/10.1007/s10854-021-05286-x [Google Scholar]
  98. Morikawa Y., Nishimura S.-i., Hashimoto R.-i., Ohnuma M., and Yamada A. Adv. Energy Mater., 2020, 10, (3), 1903176 LINK https://doi.org/10.1002/aenm.201903176 [Google Scholar]
  99. Ghimbeu C. M., Górka J., Simone V., Simonin L., Martinet S., and Vix-Guterl C. Nano Energy, 2018, 44, 327 LINK https://doi.org/10.1016/j.nanoen.2017.12.013 [Google Scholar]
  100. Chen D., Zhang W., Luo K., Song Y., Zhong Y., Liu Y., Wang G., Zhong B., Wu Z., and Guo X. Energy Environ. Sci, 2021, 14, (4), 2244 LINK https://doi.org/10.1039/d0ee03916k [Google Scholar]
  101. Stratford J. M., Allan P. K., Pecher O., Chater P. A., and Grey C. P. Chem. Commun., 2016, 52, (84), 12430 LINK https://doi.org/10.1039/c6cc06990h [Google Scholar]
  102. Reddy M. A., Helen M., Groß A., Fichtner M., and Euchner H. ACS Energy Lett., 2018, 3, (12), 2851 LINK https://doi.org/10.1021/acsenergylett.8b01761 [Google Scholar]
  103. Bobyleva Z. V., Drozhzhin O. A., Dosaev K. A., Kamiyama A., Ryazantsev S. V., Komaba S., and Antipov E. V. Electrochim. Acta, 2020, 354, 136647 LINK https://doi.org/10.1016/j.electacta.2020.136647 [Google Scholar]
  104. Nagmani, and Puravankara S. ACS Appl. Energy Mater., 2020, 3, (10), 10045 LINK https://doi.org/10.1021/acsaem.0c01750 [Google Scholar]
  105. Weaving J. S., Lim A., Millichamp J., Neville T. P., Ledwoch D., Kendrick E., McMillan P. F., Shearing P. R., Howard C. A., and Brett D. J. L. ACS Appl. Energy Mater., 2020, 3, (8), 7474 LINK https://doi.org/10.1021/acsaem.0c00867 [Google Scholar]
  106. Li Z., Bommier C., Chong Z. S., Jian Z., Surta T. W., Wang X., Xing Z., Neuefeind J. C., Stickle W. F., Dolgos M., Greaney P. A., and Ji X. Adv. Energy Mater., 2017, 7, (18), 1602894 LINK https://doi.org/10.1002/aenm.201602894 [Google Scholar]
  107. Kamiyama A., Kubota K., Igarashi D., Youn Y., Tateyama Y., Ando H., Gotoh K., and Komaba S. Angew. Chem. Int. Ed., 2021, 60, (10), 5114 LINK https://doi.org/10.1002/anie.202013951 [Google Scholar]
  108. He H., Sun D., Tang Y., Wang H., and Shao M. Energy Storage Mater., 2019, 23, 233 LINK https://doi.org/10.1016/j.ensm.2019.05.008 [Google Scholar]
  109. Zhu Y., Chen M., Li Q., Yuan C., and Wang C. Carbon, 2018, 129, 695 LINK https://doi.org/10.1016/j.carbon.2017.12.103 [Google Scholar]
  110. Li Y., Xu S., Wu X., Yu J., Wang Y., Hu Y.-S., Li H., Chen L., and Huang X. J. Mater. Chem. A, 2015, 3, (1), 71 LINK https://doi.org/10.1039/c4ta05451b [Google Scholar]
  111. Ponrouch A., Marchante E., Courty M., Tarascon J.-M., and Palacín M. R. Energy Environ. Sci., 2012, 5, (9), 8572 LINK https://doi.org/10.1039/c2ee22258b [Google Scholar]
  112. Wang H., Xiao Y., Sun C., Lai C., and Ai X. RSC Adv., 2015, 5, (129), 106519 LINK https://doi.org/10.1039/c5ra21235a [Google Scholar]
  113. Zhang B., Dugas R., Rousse G., Rozier P., Abakumov A. M., and Tarascon J.-M. Nat. Commun., 2016, 7, 10308 LINK https://doi.org/10.1038/ncomms10308 [Google Scholar]
  114. De Ilarduya J. M., Otaegui L., López del Amo J. M., Armand M., and Singh G. J. Power Sources, 2017, 337, 197 LINK https://doi.org/10.1016/j.jpowsour.2016.10.084 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651322X16250408525547
Loading
/content/journals/10.1595/205651322X16250408525547
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error