Skip to content
Volume 66, Issue 1
  • ISSN: 2056-5135


In recent years, sodium-ion batteries (NIBs) have been explored as an alternative technology to lithium-ion batteries (LIBs) due to their cost-effectiveness and promise in mitigating the energy crisis we currently face. Similarities between both battery systems have enabled fast development of NIBs, however, their full commercialisation has been delayed due to the lack of an appropriate anode material. Hard carbons (HCs) arise as one of the most promising materials and are already used in the first generation of commercial NIBs. Although promising, HCs exhibit lower performance compared to commercial graphite used as an anode in LIBs in terms of reversible specific capacity, operating voltage, initial coulombic efficiency and cycling stability. Nevertheless, these properties vary greatly depending on the HC in question, for example surface area, porosity, degree of graphitisation and defect amount, which in turn are dependent on the synthesis method and precursor used. Optimisation of these properties will bring forward the widespread commercialisation of NIBs at a competitive level with current LIBs. This review aims to provide a brief overview of the current understanding of the underlying reaction mechanisms occurring in the state-of-the-art HC anode material as well as their structure-property interdependence. We expect to bring new insights into the engineering of HC materials to achieve optimal, or at least, comparable electrochemical performance to that of graphite in LIBs.


Article metrics loading...

Loading full text...

Full text loading...



  1. ‘Paris Agreement’, United Nations, Paris, France, 12th December, 2015 LINK [Google Scholar]
  2. Manthiram A. ACS Cent. Sci., 2017, 3, (10), 1063 LINK [Google Scholar]
  3. Tarascon J.-M., and Armand M. Nature, 2001, 414, (6861), 359 LINK [Google Scholar]
  4. Tarascon J.-M. Nat. Chem., 2010, 2, (6), 510 LINK [Google Scholar]
  5. Hunt T. ‘Is There Enough Lithium to Maintain the Growth of the Lithium-Ion Battery Market?’, Greentech Media, Fleet, UK, 2nd June, 2015 LINK [Google Scholar]
  6. Chen L., Fiore M., Wang J. E., Ruffo R., Kim D.-K., and Longoni G. Adv. Sustain. Syst., 2018, 2, (3), 1700153 LINK [Google Scholar]
  7. Larcher D., and Tarascon J.-M. Nat. Chem., 2015, 7, (1), 19 LINK [Google Scholar]
  8. Wadia C., Albertus P., and Srinivasan V. J. Power Sources, 2011, 196, (3), 1593 LINK [Google Scholar]
  9. Tahil W. ‘The Trouble with Lithium: Implications of Future PHEV Production for Lithium Demand’, Meridian International Research, Martainville, France, January, 2007 LINK [Google Scholar]
  10. ‘The Trouble with Lithium 2: Under the Microscope’, Meridian International Research, Martainville, France, 29th May, 2008 LINK [Google Scholar]
  11. Hwang J.-Y., Myung S.-T., and Sun Y.-K. Chem. Soc. Rev., 2017, 46, (12), 3529 LINK [Google Scholar]
  12. “Mineral Commodity Summaries 2021”, US Geological Survey, Reston, USA, 1st February, 2021 LINK [Google Scholar]
  13. “Practical Handbook of Physical Properties of Rocks and Minerals”, ed. Carmichael R. S. CRC Press, Boca Raton, USA, 1989 LINK [Google Scholar]
  14. Liu T., Zhang Y., Jiang Z., Zeng X., Ji J., Li Z., Gao X., Sun M., Lin Z., Ling M., Zheng J., and Liang C. Energy Environ. Sci., 2019, 12, (5), 1512 LINK [Google Scholar]
  15. Gruber P. W., Medina P. A., Keoleian G. A., Kesler S. E., Everson M. P., and Wallington T. J. J. Ind. Ecol., 2011, 15, (5), 760 LINK [Google Scholar]
  16. Yabuuchi N., Kubota K., Dahbi M., and Komaba S. Chem. Rev., 2014, 114, (23), 11636 LINK [Google Scholar]
  17. Vaalma C., Buchholz D., Weil M., and Passerini S. Nat. Rev. Mater., 2018, 3, 18013 LINK [Google Scholar]
  18. Liu Q., Hu Z., Chen M., Zou C., Jin H., Wang S., Chou S.-L., Liu Y., and Dou S.-X. Adv. Funct. Mater., 2020, 30, (14), 1909530 LINK [Google Scholar]
  19. Murray J. L. Bull. Alloy Phase Diagrams, 1983, 4, 407 LINK [Google Scholar]
  20. Rudola A., Rennie A. J. R., Heap R., Meysami S. S., Lowbridge A., Mazzali F., Sayers R., Wright C. J., and Barker J. J. Mater. Chem. A, 2021, 9, (13), 8279 LINK [Google Scholar]
  21. Kim Y., Ha K.-H., Oh S. M., and Lee K. T. Chem. Eur. J., 2014, 20, (38), 11980 LINK [Google Scholar]
  22. Choi J. W., and Aurbach D. Nat. Rev. Mater., 2016, 1, 16013 LINK [Google Scholar]
  23. Perveen T., Siddiq M., Shahzad N., Ihsan R., Ahmad A., and Shahzad M. I. Renew. Sustain. Energy Rev., 2020, 119, 109549 LINK [Google Scholar]
  24. Chayambuka K., Mulder G., Danilov D. L., and Notten P. H. L. Adv. Energy Mater., 2018, 8, (16), 1800079 LINK [Google Scholar]
  25. Xiao B., Rojo T., and Li X. ChemSusChem, 2019, 12, (1), 133 LINK [Google Scholar]
  26. Wang L., Światowska J., Dai S., Cao M., Zhong Z., Shen Y., and Wang M. Mater. Today Energy, 2019, 11, 46 LINK [Google Scholar]
  27. Liang S., Cheng Y.-J., Zhu J., Xia Y., and Müller-Buschbaum P. Small Methods, 2020, 4, (8), 2000218 LINK [Google Scholar]
  28. Tan H., Chen D., Rui X., and Yu Y. Adv. Funct. Mater., 2019, 29, (14), 1808745 LINK [Google Scholar]
  29. Lao M., Zhang Y., Luo W., Yan Q., Sun W., and Dou S. X. Adv. Mater., 2017, 29, (48), 1700622 LINK [Google Scholar]
  30. Wu C., Dou S.-X., and Yu Y. Small, 2018, 14, (22), 1703671 LINK [Google Scholar]
  31. Wen Y., He K., Zhu Y., Han F., Xu Y., Matsuda I., Ishii Y., Cumings J., and Wang C. Nat. Commun., 2014, 5, 4033 LINK [Google Scholar]
  32. Doeff M. M., Cabana J., and Shirpour M. J. Inorg. Organomet. Polym. Mater., 2014, 24, 5 LINK [Google Scholar]
  33. Zhang Y., Jiang Z., Huang J., Lim L. Y., Li W., Deng J., Gong D., Tang Y., Lai Y., and Chen Z. RSC Adv., 2015, 5, (97), 79479 LINK [Google Scholar]
  34. Costa S. I. R., Choi Y.-S., Fielding A. J., Naylor A. J., Griffin J. M., Sofer Z., Scanlon D. O., and Tapia-Ruiz N. Chem. Eur. J., 2021, 27, (11), 3875 LINK [Google Scholar]
  35. Ge P., and Fouletier M. Solid State Ionics, 1988, 2830, (2), 1172 LINK [Google Scholar]
  36. Doeff M. M., Ma Y., Visco S. J., and De Jonghe L. C. J. Electrochem. Soc., 1993, 140, (12), L 169 LINK [Google Scholar]
  37. Stevens D. A., and Dahn J. R. J. Electrochem. Soc., 2001, 148, (8), A 803 LINK [Google Scholar]
  38. DiVincenzo D. P., and Mele E. J. Phys. Rev. B, 1985, 32, (4), 2538 LINK [Google Scholar]
  39. Tsai P.-c., Chung S.-C., Lin S.-k., and Yamada A. J. Mater. Chem. A, 2015, 3, (18), 9763 LINK [Google Scholar]
  40. Liu Y., Merinov B. V., and Goddard W. A. Proc. Natl. Acad. Sci., 2016, 113, (14), 3735 LINK [Google Scholar]
  41. Li Y., Lu Y., Adelhelm P., Titirici M.-M., and Hu Y.-S. Chem. Soc. Rev., 2019, 48, (17), 4655 LINK [Google Scholar]
  42. Jache B., and Adelhelm P. Angew. Chem. Int. Ed., 2014, 53, (38), 10169 LINK [Google Scholar]
  43. Kim H., Hong J., Park Y.-U., Kim J., Hwang I., and Kang K. Adv. Funct. Mater., 2015, 25, (4), 534 LINK [Google Scholar]
  44. Zhu Z., Cheng F., Hu Z., Niu Z., and Chen J. J. Power Sources, 2015, 293, 626 LINK [Google Scholar]
  45. Kim H., Hong J., Yoon G., Kim H., Park K.-Y., Park M.-S., Yoon W.-S., and Kang K. Energy Environ. Sci., 2015, 8, (10), 2963 LINK [Google Scholar]
  46. Jache B., Binder J. O., Abe T., and Adelhelm P. Phys. Chem. Chem. Phys., 2016, 18, (21), 14299 LINK [Google Scholar]
  47. Saurel D., Orayech B., Xiao B., Carriazo D., Li X., and Rojo T. Adv. Energy Mater., 2018, 8, (17), 1703268 LINK [Google Scholar]
  48. Yu P., Tang W., Wu F.-F., Zhang C., Luo H.-Y., Liu H., and Wang Z.-G. Rare Met., 2020, 39, (9), 1019 LINK [Google Scholar]
  49. Asenbauer J., Eisenmann T., Kuenzel M., Kazzazi A., Chen Z., and Bresser D. Sustain. Energy Fuels, 2020, 4, (11), 5387 LINK [Google Scholar]
  50. Bommier C., Mitlin D., and Ji X. Prog. Mater. Sci., 2018, 97, 170 LINK [Google Scholar]
  51. Wahid M., Puthusseri D., Gawli Y., Sharma N., and Ogale S. ChemSusChem, 2018, 11, (3), 506 LINK [Google Scholar]
  52. Xie F., Xu Z., Guo Z., and Titirici M.-M. Prog. Energy, 2020, 2, (4), 042002 LINK [Google Scholar]
  53. Dou X., Hasa I., Saurel D., Vaalma C., Wu L., Buchholz D., Bresser D., Komaba S., and Passerini S. Mater. Today, 2019, 23, 87 LINK [Google Scholar]
  54. Irisarri E., Ponrouch A., and Palacin M. R. J. Electrochem. Soc., 2015, 162, (14), A 2476 LINK [Google Scholar]
  55. McDonald-Wharry J. S., Manley-Harris M., and Pickering K. L. Energy Fuels, 2016, 30, (10), 7811 LINK [Google Scholar]
  56. Liu Y., Xue J. S., Zheng T., and Dahn J. R. Carbon, 1996, 34, (2), 193 LINK [Google Scholar]
  57. Buiel E. R., George A. E., and Dahn J. R. Carbon, 1999, 37, (9), 1399 LINK [Google Scholar]
  58. Dahn J. R., Xing W., and Gao Y. Carbon, 1997, 35, (6), 825 LINK [Google Scholar]
  59. Franklin R. E. Proc. R. Soc. A. Math. Phys. Eng. Sci., 1951, 209, (1097), 196 LINK [Google Scholar]
  60. Alptekin H., Au H., Jensen A. C. S., Olsson E., Goktas M., Headen T. F., Adelhelm P., Cai Q., Drew A. J., and Titirici M.-M. ACS Appl. Energy Mater., 2020, 3, (10), 9918 LINK [Google Scholar]
  61. Kim Y., Kim J.-K., Vaalma C., Bae G. H., Kim G.-T., Passerini S., and Kim Y. Carbon, 2018, 129, 564 LINK [Google Scholar]
  62. Kubota K., and Komaba S. J. Electrochem. Soc., 2015, 162, (14), A 2538 LINK [Google Scholar]
  63. Li X., Sun X., Hu X., Fan F., Cai S., Zheng C., and Stucky G. D. Nano Energy, 2020, 77, 105143 LINK [Google Scholar]
  64. Ding F., Xu W., Choi D., Wang W., Li X., Engelhard M. H., Chen X., Yang Z., and Zhang J.-G. J. Mater. Chem., 2012, 22, (25), 12745 LINK [Google Scholar]
  65. Hasegawa G., Kanamori K., Kannari N., Ozaki J.-i., Nakanishi K., and Abe T. ChemElectroChem, 2015, 2, (12), 1917 LINK [Google Scholar]
  66. Bommier C., Luo W., Gao W.-Y., Greaney A., Ma S., and Ji X. Carbon, 2014, 76, 165 LINK [Google Scholar]
  67. Lotfabad E. M., Kalisvaart P., Kohandehghan A., Karpuzov D., and Mitlin D. J. Mater. Chem. A, 2014, 2, (46), 19685 LINK [Google Scholar]
  68. Xiao L., Lu H., Fang Y., Sushko M. L., Cao Y., Ai X., Yang H., and Liu J. Adv. Energy Mater., 2018, 8, (20), 1703238 LINK [Google Scholar]
  69. Pan Y., Zhang Y., Parimalam B. S., Nguyen C. C., Wang G., and Lucht B. L. J. Electroanal. Chem., 2017, 799, 181 LINK [Google Scholar]
  70. Verma P., Maire P., and Novák P. Electrochim. Acta, 2010, 55, (22), 6332 LINK [Google Scholar]
  71. An S. J., Li J., Daniel C., Mohanty D., Nagpure S., and Wood D. L. Carbon, 2016, 105, 52 LINK [Google Scholar]
  72. Heiskanen S. K., Kim J., and Lucht B. L. Joule, 2019, 3, (10), 2322 LINK [Google Scholar]
  73. Song J., Xiao B., Lin Y., Xu K., and Li X. Adv. Energy Mater., 2018, 8, (17), 1703082 LINK [Google Scholar]
  74. Mogensen R., Brandell D., and Younesi R. ACS Energy Lett., 2016, 1, (6), 1173 LINK [Google Scholar]
  75. Kumar H., Detsi E., Abraham D. P., and Shenoy V. B. Chem. Mater., 2016, 28, (24), 8930 LINK [Google Scholar]
  76. Philippe B., Valvo M., Lindgren F., Rensmo H., and Edström K. Chem. Mater., 2014, 26, (17), 5028 LINK [Google Scholar]
  77. de la Llave E., Borgel V., Zinigrad E., Chesneau F.-F., Hartmann P., Sun Y.-K., and Aurbach D. Isr. J. Chem., 2015, 55, (11–12), 1260 LINK [Google Scholar]
  78. Bommier C., Surta T. W., Dolgos M., and Ji X. Nano Lett., 2015, 15, (9), 5888 LINK [Google Scholar]
  79. Stevens D. A., and Dahn J. R. J. Electrochem. Soc., 2000, 147, (4), 1271 LINK [Google Scholar]
  80. Cao Y., Xiao L., Sushko M. L., Wang W., Schwenzer B., Xiao J., Nie Z., Saraf L. V., Yang Z., and Liu J. Nano Lett., 2012, 12, (7), 3783 LINK [Google Scholar]
  81. Qiu S., Xiao L., Sushko M. L., Han K. S., Shao Y., Yan M., Liang X., Mai L., Feng J., Cao Y., Ai X., Yang H., and Liu J. Adv. Energy Mater., 2017, 7, (17), 1700403 LINK [Google Scholar]
  82. Zhang B., Ghimbeu C. M., Laberty C., Vix-Guterl C., and Tarascon J.-M. Adv. Energy Mater., 2016, 6, (1), 1501588 LINK [Google Scholar]
  83. Li Y., Hu Y.-S., Titirici M.-M., Chen L., and Huang X. Adv. Energy Mater., 2016, 6, (18), 1600659 LINK [Google Scholar]
  84. Au H., Alptekin H., Jensen A. C. S., Olsson E., O’Keefe C. A., Smith T., Crespo-Ribadeneyra M., Headen T. F., Grey C. P., Cai Q., Drew A. J., and Titirici M.-M. Energy Environ. Sci., 2020, 13, (10), 3469 LINK [Google Scholar]
  85. Stevens D. A., and Dahn J. R. J. Electrochem. Soc., 2000, 147, (12), 4428 LINK [Google Scholar]
  86. Komaba S., Murata W., Ishikawa T., Yabuuchi N., Ozeki T., Nakayama T., Ogata A., Gotoh K., and Fujiwara K. Adv. Funct. Mater., 2011, 21, (20), 3859 LINK [Google Scholar]
  87. Kubota K., Shimadzu S., Yabuuchi N., Tominaka S., Shiraishi S., Abreu-Sepulveda M., Manivannan A., Gotoh K., Fukunishi M., Dahbi M., and Komaba S. Chem. Mater., 2020, 32, (7), 2961 LINK [Google Scholar]
  88. Li Y., Lu Y., Meng Q., Jensen A. C. S., Zhang Q., Zhang Q., Tong Y., Qi Y., Gu L., Titirici M.-M., and Hu Y.-S. Adv. Energy Mater., 2019, 9, (48), 1902852 LINK [Google Scholar]
  89. Sun N., Guan Z., Liu Y., Cao Y., Zhu Q., Liu H., Wang Z., Zhang P., and Xu B. Adv. Energy Mater., 2019, 9, (32), 1901351 LINK [Google Scholar]
  90. Simone V., Boulineau A., de Geyer A., Rouchon D., Simonin L., and Martinet S. J. Energy Chem., 2016, 25, (5), 761 LINK [Google Scholar]
  91. Alvin S., Cahyadi H. S., Hwang J., Chang W., Kwak S. K., and Kim J. Adv. Energy Mater., 2020, 10, (20), 2000283 LINK [Google Scholar]
  92. Gomez-Martin A., Martinez-Fernandez J., Ruttert M., Winter M., Placke T., and Ramirez-Rico J. Chem. Mater., 2019, 31, (18), 7288 LINK [Google Scholar]
  93. Ding J., Wang H., Li Z., Kohandehghan A., Cui K., Xu Z., Zahiri B., Tan X., Lotfabad E. M., Olsen B. C., and Mitlin D. ACS Nano, 2013, 7, (12), 11004 LINK [Google Scholar]
  94. Alvin S., Yoon D., Chandra C., Susanti R. F., Chang W., Ryu C., and Kim J. J. Power Sources, 2019, 430, 157 LINK [Google Scholar]
  95. Xie F., Xu Z., Jensen A. C. S., Au H., Lu Y., Araullo-Peters V., Drew A. J., Hu Y.-S., and Titirici M.-M. Adv. Funct. Mater., 2019, 29, (24), 1901072 LINK [Google Scholar]
  96. Ferrari A., and Robertson J. Phys. Rev. B., 2000, 61, (20), 14095 LINK [Google Scholar]
  97. Zhang G., Zhao Y., Yan L., Zhang L., and Shi Z. J. Mater. Sci. Mater. Electron., 2021, 32, (5), 5645 LINK [Google Scholar]
  98. Morikawa Y., Nishimura S.-i., Hashimoto R.-i., Ohnuma M., and Yamada A. Adv. Energy Mater., 2020, 10, (3), 1903176 LINK [Google Scholar]
  99. Ghimbeu C. M., Górka J., Simone V., Simonin L., Martinet S., and Vix-Guterl C. Nano Energy, 2018, 44, 327 LINK [Google Scholar]
  100. Chen D., Zhang W., Luo K., Song Y., Zhong Y., Liu Y., Wang G., Zhong B., Wu Z., and Guo X. Energy Environ. Sci, 2021, 14, (4), 2244 LINK [Google Scholar]
  101. Stratford J. M., Allan P. K., Pecher O., Chater P. A., and Grey C. P. Chem. Commun., 2016, 52, (84), 12430 LINK [Google Scholar]
  102. Reddy M. A., Helen M., Groß A., Fichtner M., and Euchner H. ACS Energy Lett., 2018, 3, (12), 2851 LINK [Google Scholar]
  103. Bobyleva Z. V., Drozhzhin O. A., Dosaev K. A., Kamiyama A., Ryazantsev S. V., Komaba S., and Antipov E. V. Electrochim. Acta, 2020, 354, 136647 LINK [Google Scholar]
  104. Nagmani, and Puravankara S. ACS Appl. Energy Mater., 2020, 3, (10), 10045 LINK [Google Scholar]
  105. Weaving J. S., Lim A., Millichamp J., Neville T. P., Ledwoch D., Kendrick E., McMillan P. F., Shearing P. R., Howard C. A., and Brett D. J. L. ACS Appl. Energy Mater., 2020, 3, (8), 7474 LINK [Google Scholar]
  106. Li Z., Bommier C., Chong Z. S., Jian Z., Surta T. W., Wang X., Xing Z., Neuefeind J. C., Stickle W. F., Dolgos M., Greaney P. A., and Ji X. Adv. Energy Mater., 2017, 7, (18), 1602894 LINK [Google Scholar]
  107. Kamiyama A., Kubota K., Igarashi D., Youn Y., Tateyama Y., Ando H., Gotoh K., and Komaba S. Angew. Chem. Int. Ed., 2021, 60, (10), 5114 LINK [Google Scholar]
  108. He H., Sun D., Tang Y., Wang H., and Shao M. Energy Storage Mater., 2019, 23, 233 LINK [Google Scholar]
  109. Zhu Y., Chen M., Li Q., Yuan C., and Wang C. Carbon, 2018, 129, 695 LINK [Google Scholar]
  110. Li Y., Xu S., Wu X., Yu J., Wang Y., Hu Y.-S., Li H., Chen L., and Huang X. J. Mater. Chem. A, 2015, 3, (1), 71 LINK [Google Scholar]
  111. Ponrouch A., Marchante E., Courty M., Tarascon J.-M., and Palacín M. R. Energy Environ. Sci., 2012, 5, (9), 8572 LINK [Google Scholar]
  112. Wang H., Xiao Y., Sun C., Lai C., and Ai X. RSC Adv., 2015, 5, (129), 106519 LINK [Google Scholar]
  113. Zhang B., Dugas R., Rousse G., Rozier P., Abakumov A. M., and Tarascon J.-M. Nat. Commun., 2016, 7, 10308 LINK [Google Scholar]
  114. De Ilarduya J. M., Otaegui L., López del Amo J. M., Armand M., and Singh G. J. Power Sources, 2017, 337, 197 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error