Skip to content
1887
Volume 65, Issue 4
  • ISSN: 2056-5135

Abstract

Surface science methodologies, such as reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD), are ideally suited to studying the interaction of molecules with model astrophysical surfaces. Here we describe the use of RAIRS and TPD to investigate the adsorption, interactions and thermal processing of acetonitrile and water containing model ices grown under astrophysical conditions on a graphitic dust grain analogue surface. Experiments show that acetonitrile physisorbs on the graphitic surface at all exposures. At the lowest coverages, repulsions between the molecules lead to a decreasing desorption energy with increasing coverage. Analysis of TPD data gives monolayer desorption energies ranging from 28.8–39.2 kJ mol−1 and an average multilayer desorption energy of 43.8 kJ mol−1. When acetonitrile is adsorbed in the presence of water ice, the desorption energy of monolayer acetonitrile shows evidence of desorption with a wide range of energies. An estimate of the desorption energy of acetonitrile from crystalline ice (CI) shows that it is increased to ~37 kJ mol−1 at the lowest exposures of acetonitrile. Amorphous water ice also traps acetonitrile on the graphite surface past its natural desorption temperature, leading to volcano and co-desorption. RAIRS data show that the C≡N vibration shifts, indicative of an interaction between the acetonitrile and the water ice surface.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16264409352535
2021-01-01
2024-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/4/Brown_16a_Imp.html?itemId=/content/journals/10.1595/205651321X16264409352535&mimeType=html&fmt=ahah

References

  1. B. T. Draine, Annu. Rev. Astron. Astrophys., 2003, 41, 241 LINK https://doi.org/10.1146/annurev.astro.41.011802.094840 [Google Scholar]
  2. D. A. Williams, E. Herbst, Surf. Sci., 2002, 500, (1–3), 823 LINK https://doi.org/10.1016/S0039-6028(01)01538-2 [Google Scholar]
  3. K. M. Pontoppidan, E. Dartois, E. F. Van Dishoeck, W.-F. Thi, L. d’Hendecourt, Astron. Astrophys., 2003, 404, (1), L17 LINK https://doi.org/10.1051/0004-6361:20030617 [Google Scholar]
  4. E. Herbst, E. F. van Dishoeck, Annu. Rev. Astron. Astrophys., 2009, 47, 427 LINK https://doi.org/10.1146/annurev-astro-082708-101654 [Google Scholar]
  5. V. Wakelam, E. Bron, S. Cazaux, F. Dulieu, C. Gry, P. Guillard, E. Habart, L. Hornekær, S. Morisset, G. Nyman, V. Pirronello, S. D. Price, V. Valdivia, G. Vidali, N. Watanabe, Mol. Astrophys., 2017, 9, 1 LINK https://doi.org/10.1016/j.molap.2017.11.001 [Google Scholar]
  6. G. W. Fuchs, H. M. Cuppen, S. Ioppolo, C. Romanzin, S. E. Bisschop, S. Andersson, E. F. Van Dishoeck, H. Linnartz, Astron. Astrophys., 2009, 505, (2), 629 LINK https://doi.org/10.1051/0004-6361/200810784 [Google Scholar]
  7. R. L. Hudson, M. H. Moore, Icarus, 2004, 172, (2), 466 LINK https://doi.org/10.1016/j.icarus.2004.06.011 [Google Scholar]
  8. A. G. M. Abdulgalil, D. Marchione, A. Rosu-Finsen, M. P. Collings, M. R. S. McCoustra, J. Vac. Sci. Technol. A, 2012, 30, (4), 041505 LINK https://doi.org/10.1116/1.4716463 [Google Scholar]
  9. R. I. Kaiser, K. Roessler, Astrophys. J., 1998, 503, (2), 959 LINK https://doi.org/10.1086/306001 [Google Scholar]
  10. P. Ehrenfreund, L. d’Hendecourt, S. Charnley, R. Ruiterkamp, J. Geophys. Res.: Planets, 2001, 106, (E12), 33291 LINK https://doi.org/10.1029/2000JE001349 [Google Scholar]
  11. Z. Kaňuchová, P. Boduch, A. Domaracka, M. E. Palumbo, H. Rothard, G. Strazzulla, Astron. Astrophys., 2017, 604, A68 LINK https://doi.org/10.1051/0004-6361/201730711 [Google Scholar]
  12. A. Potapov, M. McCoustra, Int. Rev. Phys. Chem., 2021, 40, (2), 299 LINK https://doi.org/10.1080/0144235x.2021.1918498 [Google Scholar]
  13. G. M. Munõz Caro, A. Ciaravella, A. Jiménez-Escobar, C. Cecchi-Pestellini, C. González-Diáz, Y. J. Chen, ACS Earth Space Chem., 2019, 3, (10), 2138 LINK https://doi.org/10.1021/acsearthspacechem.9b00086 [Google Scholar]
  14. J. S. Mathis, Annu. Rev. Astron. Astrophys., 1990, 28, 37 LINK https://doi.org/10.1146/annurev.aa.28.090190.000345 [Google Scholar]
  15. G. R. Carruthers, Astrophys. J., 1970, 161, L81 LINK https://doi.org/10.1086/180575 [Google Scholar]
  16. J. E. Chiar, A. J. Adamson, T. H. Kerr, D. C. B. Whittet, Astrophys. J., 1995, 455, 234 LINK https://doi.org/10.1086/176571 [Google Scholar]
  17. G. Manicò, G. Ragunì, V. Pirronello, J. E. Roser, G. Vidali, Astrophys. J., 2001, 548, (2), L253 LINK https://doi.org/10.1086/319116 [Google Scholar]
  18. S. Ioppolo, H. M. Cuppen, C. Romanzin, E. F. van Dishoeck, H. Linnartz, Astrophys. J., 2008, 686, (2), 1474 LINK https://doi.org/10.1086/591506 [Google Scholar]
  19. N. Miyauchi, H. Hidaka, T. Chigai, A. Nagaoka, N. Watanabe, A. Kouchi, Chem. Phys. Lett., 2008, 456, (1–3), 27 LINK https://doi.org/10.1016/j.cplett.2008.02.095 [Google Scholar]
  20. J. E. Roser, G. Vidali, G. Manicò, V. Pirronello, Astrophys. J., 2001, 555, (1), L61 LINK https://doi.org/10.1086/321732 [Google Scholar]
  21. N. Watanabe, A. Kouchi, Astrophys. J., 2002, 571, (2), L173 LINK https://doi.org/10.1086/341412 [Google Scholar]
  22. A. Wada, N. Mochizuki, K. Hiraoka, Astrophys. J., 2006, 644, (1), 300 LINK https://doi.org/10.1086/503380 [Google Scholar]
  23. R. L. Hudson, M. H. Moore, Icarus, 1999, 140, (2), 451 LINK https://doi.org/10.1006/icar.1999.6144 [Google Scholar]
  24. P. A. Gerakines, M. H. Moore, R. L. Hudson, Astron. Astrophys., 2000, 357, 793 LINK https://ui.adsabs.harvard.edu/abs/2000A&A...357..793G/abstract [Google Scholar]
  25. M. J. Loeffler, G. A. Baratta, M. E. Palumbo, G. Strazzulla, R. A. Baragiola, Astron. Astrophys., 2005, 435, (2), 587 LINK https://doi.org/10.1051/0004-6361:20042256 [Google Scholar]
  26. D. P. P. Andrade, H. M. Boechat-Roberty, R. Martinez, M. G. P. Homem, E. F. da Silveira, M. L. M. Rocco, Surf. Sci., 2009, 603, (9), 1190 LINK https://doi.org/10.1016/j.susc.2009.02.035 [Google Scholar]
  27. C. J. Bennett, R. I. Kaiser, Astrophys. J., 2007, 661, (2), 899 LINK https://doi.org/10.1086/516745 [Google Scholar]
  28. N. J. Mason, B. Nair, S. Jheeta, E. Szymańska, Faraday Discuss., 2014, 168, 235 LINK https://doi.org/10.1039/c4fd00004h [Google Scholar]
  29. F. A. Vasconcelos, S. Pilling, W. R. M. Rocha, H. Rothard, P. Boduch, J. J. Ding, Phys. Chem. Chem. Phys., 2017, 19, (20), 12845 LINK https://doi.org/10.1039/c7cp00883j [Google Scholar]
  30. F. A. de Ribeiro, G. C. Almeida, W. Wolff, H. M. Boechat-Roberty, M. L. M. Rocco, E. F. da Silveira, Mon. Not. R. Astron. Soc., 2020, 492, (2), 2140 LINK https://doi.org/10.1093/mnras/stz3562 [Google Scholar]
  31. M. P. Collings, M. A. Anderson, R. Chen, J. W. Dever, S. Viti, D. A. Williams, M. R. S. McCoustra, Mon. Not. R. Astron. Soc., 2004, 354, (4), 1133 LINK https://doi.org/10.1111/j.1365-2966.2004.08272.x [Google Scholar]
  32. M. Bertin, C. Romanzin, X. Michaut, P. Jeseck, J.-H. Fillion, J. Phys. Chem. C, 2011, 115, (26), 12920 LINK https://doi.org/10.1021/jp201487u [Google Scholar]
  33. D. J. Burke, W. A. Brown, Phys. Chem. Chem. Phys., 2010, 12, (23), 5947 LINK https://doi.org/10.1039/b917005g [Google Scholar]
  34. A. Potapov, C. Jäger, T. Henning, Astrophys. J., 2019, 880, (1), 12 LINK https://doi.org/10.3847/1538-4357/ab25e7 [Google Scholar]
  35. T. Suhasaria, J. D. Thrower, H. Zacharias, Mon. Not. R. Astron. Soc., 2017, 472, (1), 389 LINK https://doi.org/10.1093/MNRAS/STX1965 [Google Scholar]
  36. R. Luna, R. Luna-Ferrándiz, C. Millán, M. Domingo, G. M. M. Caro, C. Santonja, M. Á. Satorre, Astrophys. J., 2017, 842, (1), 51 LINK https://doi.org/10.3847/1538-4357/aa7562 [Google Scholar]
  37. R. Martín-Doménech, G. M. Muñoz Caro, J. Bueno, F. Goesmann, Astron. Astrophys., 2014, 564, A8 LINK https://doi.org/10.1051/0004-6361/201322824 [Google Scholar]
  38. T. L. Salter, J. W. Stubbing, L. Brigham, W. A. Brown, J. Chem. Phys., 2018, 149, (16), 164705 LINK https://doi.org/10.1063/1.5051134 [Google Scholar]
  39. G. W. Fuchs, K. Acharyya, S. E. Bisschop, K. I. Öberg, F. A. Van Broekhuizen, H. J. Fraser, S. Schlemmer, E. F. van Dishoeck, H. Linnartz, Faraday Discuss., 2006, 133, 331 LINK https://doi.org/10.1039/b517262b [Google Scholar]
  40. K. Acharyya, G. W. Fuchs, H. J. Fraser, E. F. Van Dishoeck, H. Linnartz, Astron. Astrophys., 2007, 466, (3), 1005 LINK https://doi.org/10.1051/0004-6361:20066272 [Google Scholar]
  41. H. J. Fraser, M. P. Collings, M. R. S. McCoustra, D. A. Williams, Mon. Not. R. Astron. Soc., 2001, 327, (4), 1165 LINK https://doi.org/10.1046/j.1365-8711.2001.04835.x [Google Scholar]
  42. A. S. Bolina, A. J. Wolff, W. A. Brown, J. Phys. Chem. B, 2005, 109, (35), 16836 LINK https://doi.org/10.1021/jp0528111 [Google Scholar]
  43. H. Ulbricht, R. Zacharia, N. Cindir, T. Hertel, Carbon, 2006, 44, (14), 2931 LINK https://doi.org/10.1016/j.carbon.2006.05.040 [Google Scholar]
  44. O. Gálvez, I. K. Ortega, B. Maté, M. A. Moreno, B. Martín-Llórente, V. J. Herrero, R. Escribano, P. J. Gutiérrez, Astron. Astrophys., 2007, 472, (2), 691 LINK https://doi.org/10.1051/0004-6361:20077421 [Google Scholar]
  45. S. A. Sandford, L. J. Allamandola, Icarus, 1988, 76, (2), 201 LINK https://doi.org/10.1016/0019-1035(88)90069-3 [Google Scholar]
  46. S. A. Sandford, L. J. Allamandola, Astrophys. J., 1993, 417, 815 LINK https://doi.org/10.1086/173362 [Google Scholar]
  47. F. Salama, L. J. Allamandola, F. C. Witteborn, D. P. Cruikshank, S. A. Sandford, J. D. Bregman, Icarus, 1990, 83, (1), 66 LINK https://doi.org/10.1016/0019-1035(90)90006-U [Google Scholar]
  48. S. Viti, M. P. Collings, J. W. Dever, M. R. S. McCoustra, D. A. Williams, Mon. Not. R. Astron. Soc., 2004, 354, (4), 1141 LINK https://doi.org/10.1111/j.1365-2966.2004.08273.x [Google Scholar]
  49. R. Garrod, I. H. Park, P. Caselli, E. Herbst, Faraday Discuss., 2006, 133, 51 LINK https://doi.org/10.1039/b516202e [Google Scholar]
  50. D. J. Burke, F. Puletti, W. A. Brown, P. M. Woods, S. Viti, B. Slater, Mon. Not. R. Astron. Soc., 2015, 447, (2), 1444 LINK https://doi.org/10.1093/mnras/stu2490 [Google Scholar]
  51. A. S. Bolina, W. A. Brown, Surf. Sci., 2005, 598, (1–3), 45 LINK https://doi.org/10.1016/j.susc.2005.08.025 [Google Scholar]
  52. D. Marchione, A. Rosu-Finsen, S. Taj, J. Lasne, A. G. M. Abdulgalil, J. D. Thrower, V. L. Frankland, M. P. Collings, M. R. S. McCoustra, ACS Earth Space Chem., 2019, 3, (9), 1915 LINK https://doi.org/10.1021/acsearthspacechem.9b00052 [Google Scholar]
  53. R. S. Smith, C. Huang, E. K. L. Wong, B. D. Kay, Phys. Rev. Lett., 1997, 79, (5), 909 LINK https://doi.org/10.1103/PhysRevLett.79.909 [Google Scholar]
  54. A. Kouchi, T. Yamamoto, T. Kozasa, T. Kuroda, J. M. Greenberg, Astron. Astrophys., 1994, 290, 1009 [Google Scholar]
  55. P. Jenniskens, D. F. Blake, Science, 1994, 265, (5173), 753 LINK https://doi.org/10.1126/science.11539186 [Google Scholar]
  56. P. Jenniskens, D. F. Blake, Astrophys. J., 1996, 473, (2), 1104 LINK https://doi.org/10.1086/178220 [Google Scholar]
  57. R. S. Smith, B. D. Kay, Nature, 1999, 398, (6730), 788 LINK https://doi.org/10.1038/19725 [Google Scholar]
  58. M. P. Collings, J. W. Dever, H. J. Fraser, M. R. S. McCoustra, D. A. Williams, Astrophys. J., 2003, 583, (2), 1058 LINK https://doi.org/10.1086/345389 [Google Scholar]
  59. A. Bar-Nun, G. Herman, D. Laufer, M. L. Rappaport, Icarus, 1985, 63, (3), 317 LINK https://doi.org/10.1016/0019-1035(85)90048-X [Google Scholar]
  60. A. Bar-Nun, I. Kleinfeld, E. Kochavi, Phys. Rev. B, 1988, 38, (11), 7749 LINK https://doi.org/10.1103/PhysRevB.38.7749 [Google Scholar]
  61. G. Notesco, A. Bar-Nun, Icarus, 1997, 126, (2), 336 LINK https://doi.org/10.1006/icar.1996.5654 [Google Scholar]
  62. S. C. Creighan, J. S. A. Perry, S. D. Price, J. Chem. Phys., 2006, 124, (11), 114701 LINK https://doi.org/10.1063/1.2174878 [Google Scholar]
  63. L. Hornekær, A. Baurichter, V. V. Petrunin, D. Field, A. C. Luntz, Science, 2003, 302, (5652), 1943 LINK https://doi.org/10.1126/science.1090820 [Google Scholar]
  64. D. Dondi, D. Merli, L. Pretali, M. Fagnoni, A. Albini, N. Serpone, Photochem. Photobiol. Sci., 2007, 6, (11), 1210 LINK https://doi.org/10.1039/b709813h [Google Scholar]
  65. J. Oró, Nature, 1961, 190, (4774), 389 LINK https://doi.org/10.1038/190389a0 [Google Scholar]
  66. L. Le Roy, K. Altwegg, H. Balsiger, J. J. Berthelier, A. Bieler, C. Briois, U. Calmonte, M. R. Combi, J. De Keyser, F. Dhooghe, B. Fiethe, S. A. Fuselier, S. Gasc, T. I. Gombosi, M. Hassig, A. Jackel, M. Rubin, C.-Y. Tzou, Astron. Astrophys., 2015, 583, A1 LINK https://doi.org/10.1051/0004-6361/201526450 [Google Scholar]
  67. A. Marten, T. Hidayat, Y. Braud, R. Moreno, Icarus, 2002, 158, (2), 532 LINK https://doi.org/10.1006/icar.2002.6897 [Google Scholar]
  68. L. M. Lara, E. Lellouch, J. J. López-Moreno, R. Rodrigo, J. Geophys. Res.: Planets, 1996, 101, (E10), 23261 LINK https://doi.org/10.1029/96JE02036 [Google Scholar]
  69. R. A. Loomis, L. I. Cleeves, K. I. Öberg, Y. Aikawa, J. Bergner, K. Furuya, V. V. Guzman, C. Walsh, Astrophys. J., 2018, 859, (2), 131 LINK https://doi.org/10.3847/1538-4357/aac169 [Google Scholar]
  70. K. I. Öberg, V. V. Guzmán, K. Furuya, C. Qi, Y. Aikawa, S. M. Andrews, R. Loomis, D. J. Wilner, Nature, 2015, 520, (7546), 198 LINK https://doi.org/10.1038/nature14276 [Google Scholar]
  71. J. B. Bergner, V. G. Guzmán, K. I. Öberg, R. A. Loomis, J. Pegues, Astrophys. J., 2018, 857, (1), 69 LINK https://doi.org/10.3847/1538-4357/aab664 [Google Scholar]
  72. M. J. Mumma, S. B. Charnley, Annu. Rev. Astron. Astrophys., 2011, 49, 471 LINK https://doi.org/10.1146/annurev-astro-081309-130811 [Google Scholar]
  73. N. Biver, D. Bockelée-Morvan, J. Crovisier, P. Colom, F. Henry, R. Moreno, G. Paubert, D. Despois, D. C. Lis, Earth, Moon Planets, 2002, 90, (1–4), 323 LINK https://doi.org/10.1023/A:1021530316352 [Google Scholar]
  74. J. Crovisier, N. Biver, D. Bockelée-Morvan, P. Colom, Planet. Space Sci., 2009, 57, (10), 1162 LINK https://doi.org/10.1016/j.pss.2008.08.019 [Google Scholar]
  75. R. T. Garrod, S. L. W. Weaver, E. Herbst, Astrophys. J., 2008, 682, (1), 283 LINK https://doi.org/10.1086/588035 [Google Scholar]
  76. P. M. Solomon, K. B. Jefferts, A. A. Penzias, R. W. Wilson, Astrophys. J., 1971, 168, L107 LINK https://doi.org/10.1086/180794 [Google Scholar]
  77. B. L. Ulich, E. K. Conklin, Nature, 1974, 248, (5444), 121 LINK https://doi.org/10.1038/248121a0 [Google Scholar]
  78. M. T. Beltrán, R. Cesaroni, C. Codella, L. Testi, R. S. Furuya, L. Olmi, Nature, 2006, 443, (7110), 427 LINK https://doi.org/10.1038/nature05074 [Google Scholar]
  79. L. E. Snyder, D. Buhl, Astrophys. J., 1971, 163, L47 LINK https://doi.org/10.1086/180664 [Google Scholar]
  80. F. Koubowetz, J. Latzel, H. Noller, J. Colloid Interface Sci., 1980, 74, (2), 322 LINK https://doi.org/10.1016/0021-9797(80)90201-5 [Google Scholar]
  81. G. Ritter, H. Noller, J. A. Lercher, J. Chem. Soc., Faraday Trans. 1, 1982, 78, (7), 2239 LINK https://doi.org/10.1039/F19827802239 [Google Scholar]
  82. B. A. Sexton, N. R. Avery, Surf. Sci., 1983, 129, (1), 21 LINK https://doi.org/10.1016/0039-6028(83)90092-4 [Google Scholar]
  83. S. Bahr, V. Kempter, J. Chem. Phys., 2009, 130, (21), 214509 LINK https://doi.org/10.1063/1.3139967 [Google Scholar]
  84. A. G. M. Abdulgalil, D. Marchione, J. D. Thrower, M. P. Collings, M. R. S. McCoustra, F. Islam, M. E. Palumbo, E. Congiu, F. Dulieu, Philos. Trans. R. Soc. A, 2013, 371, (1994), 20110586 LINK https://doi.org/10.1098/rsta.2011.0586 [Google Scholar]
  85. M. Tylinski, R. S. Smith, B. D. Kay, J. Phys. Chem. C, 2020, 124, (4), 2521 LINK https://doi.org/10.1021/acs.jpcc.9b10579 [Google Scholar]
  86. F. W. Parker, A. H. Nielsen, W. H. Fletcher, J. Mol. Spectrosc., 1957, 1, (1–4), 107 LINK https://doi.org/10.1016/0022-2852(57)90014-0 [Google Scholar]
  87. J. L. Duncan, D. C. McKean, F. Tullini, G. D. Nivellini, J. Perez Peña, J. Mol. Spectrosc., 1978, 69, (1), 123 LINK https://doi.org/10.1016/0022-2852(78)90033-4 [Google Scholar]
  88. C. Shannon, A. Campion, Surf. Sci., 1990, 227, (3), 219 LINK https://doi.org/10.1016/S0039-6028(05)80009-3 [Google Scholar]
  89. J. E. Schaff, J. T. Roberts, Surf. Sci., 1999, 426, (3), 384 LINK https://doi.org/10.1016/S0039-6028(99)00375-1 [Google Scholar]
  90. N. Dello Russo, R. K. Khanna, Icarus, 1996, 123, (2), 366 LINK https://doi.org/10.1006/icar.1996.0165 [Google Scholar]
  91. C. Ennis, R. Auchettl, M. Ruzi, E. G. Robertson, Phys. Chem. Chem. Phys., 2017, 19, (4), 2915 LINK https://doi.org/10.1039/c6cp08110j [Google Scholar]
  92. R. L. Hudson, Icarus, 2020, 338, 113548 LINK https://doi.org/10.1016/j.icarus.2019.113548 [Google Scholar]
  93. M. H. Moore, R. F. Ferrante, W. J. Moore, R. Hudson, Astrophys. J.: Suppl. Ser., 2010, 191, (1), 96 LINK https://doi.org/10.1088/0067-0049/191/1/96 [Google Scholar]
  94. R. S. Smith, M. Tylinski, G. A. Kimmel, B. D. Kay, J. Chem. Phys., 2021, 154, (14), 144703 LINK https://doi.org/10.1063/5.0045461 [Google Scholar]
  95. M. Bertin, M. Doronin, J.-H. Fillion, X. Michaut, L. Philippe, M. Lattelais, A. Markovits, F. Pauzat, Y. Ellinger, J.-C. Guillemin, Astron. Astrophys., 2017, 598, A18 LINK https://doi.org/10.1051/0004-6361/201629394 [Google Scholar]
  96. R. G. Bhuin, R. R. J. Methikkalam, B. Sivaraman, T. Pradeep, J. Phys. Chem. C, 2015, 119, (21), 11524 LINK https://doi.org/10.1021/jp512607v [Google Scholar]
  97. J. E. Schaff, J. T. Roberts, Langmuir, 1999, 15, (21), 7232 LINK https://doi.org/10.1021/la990394b [Google Scholar]
  98. R. L. Hudson, M. H. Moore, J. P. Dworkin, M. P. Martin, Z. D. Pozun, Astrobiology, 2008, 8, (4), 771 LINK https://doi.org/10.1089/ast.2007.0131 [Google Scholar]
  99. T. L. Salter, L. Wootton, W. A. Brown, ACS Earth Space Chem., 2019, 3, (8), 1524 LINK https://doi.org/10.1021/acsearthspacechem.9b00091 [Google Scholar]
  100. S. A. Ayling, D. J. Burke, T. L. Salter, W. A. Brown, RSC Adv., 2017, 7, (81), 51621 LINK https://doi.org/10.1039/C7RA10410C [Google Scholar]
  101. J. D. Thrower, M. P. Collings, F. J. M. Rutten, M. R. S. McCoustra, Mon. Not. R. Astron. Soc., 2009, 394, (3), 1510 LINK https://doi.org/10.1111/j.1365-2966.2009.14420.x [Google Scholar]
  102. D. J. Burke, A. J. Wolff, J. L. Edridge, W. A. Brown, J. Chem. Phys., 2008, 128, (10), 104702 LINK https://doi.org/10.1063/1.2888556 [Google Scholar]
  103. D. J. Burke, F. Puletti, P. M. Woods, S. Viti, B. Slater, W. A. Brown, J. Chem. Phys., 2015, 143, (16), 164704 LINK https://doi.org/10.1063/1.4934264 [Google Scholar]
  104. O. Gálvez, I. K. Ortega, B. Maté, M. A. Moreno, B. Martín-Llórente, V. J. Herrero, R. Escribano, P. J. Gutiérrez, Astron. Astrophys., 2007, 472, (2), 691 LINK https://doi.org/10.1051/0004-6361:20077421 [Google Scholar]
  105. R. Souda, Phys. Rev. B, 2007, 75, (18), 184116 LINK https://doi.org/10.1103/PhysRevB.75.184116 [Google Scholar]
  106. W. A. Brown, A. S. Bolina, Mon. Not. R. Astron. Soc., 2007, 374, (3), 1006 LINK https://doi.org/10.1111/j.1365-2966.2006.11216.x [Google Scholar]
  107. K. I. Öberg, H. J. Fraser, A. C. A. Boogert, S. E. Bisschop, G. W. Fuchs, E. F. van Dishoeck, H. Linnartz, Astron. Astrophys., 2007, 462, (3), 1187 LINK https://doi.org/10.1051/0004-6361:20065881 [Google Scholar]
/content/journals/10.1595/205651321X16264409352535
Loading
/content/journals/10.1595/205651321X16264409352535
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test