Skip to content
Volume 66, Issue 1
  • ISSN: 2056-5135


In this work, seven different extracts from pomegranate ( L., cv. Hicaz nar) peel were prepared by using different solvents (ethanol, methanol, either alone or in combination with acid, acetone and water). The phenolics (punicalagins and ellagic acid), organic acids (citric acid and malic acid) and sugars of pomegranate peel extracts (PPEs) were determined. The highest amounts of punicalagins and ellagic acid were detected by ethanol-acid extract as 13.86% and 17.19% w/v respectively, whereas the lowest levels were obtained with acetone and water extracts. Moreover, the methanol-acid (3.19% malic acid) and ethanol-acid (1.13% citric acid) extracts contained the highest levels of organic acids. The antimicrobial activities of extracts were investigated by agar well diffusion method. Methanol-acid and ethanol-acid extracts exhibited the highest antimicrobial effects on all tested microorganisms, giving inhibition zones ranging in size from 17 mm to 36 mm. Although similar antimicrobial activities were observed by ethanol, methanol and acetone extracts (up to 24 mm), the lowest antimicrobial activities were attained by water extract (0–15 mm). All extracts were generally more effective against Gram-positive bacteria: , , than Gram-negative ones: and ). It was shown that extracts from pomegranate peels represent a good source of bioactive compounds.


Article metrics loading...

Loading full text...

Full text loading...



  1. Holland D., Hatib K., Bar-Ya’akov I., ‘Pomegranate: Botany, Horticulture, Breeding’, in “Horticultural Reviews”, ed. and Janick J. 35, John Wiley and Sons, Hoboken, USA, 2009, pp. 127–191 LINK [Google Scholar]
  2. Panichayupakaranant P., Tewtrakul S., and Yuenyongsawad S. Food Chem., 2010, 123, (2), 400 LINK [Google Scholar]
  3. Doostkam A., Bassiri-Jahromi S., and Iravani K. Int. J. Fruit Sci., 2020, 20, (3), 471 LINK [Google Scholar]
  4. Jurenka J. S. Altern. Med. Rev., 2008, 13, (2), 128 LINK [Google Scholar]
  5. Thangavelu A., Elavarasu S., Sundaram R., Kumar T., Rajendran D., and Prem F. J Pharm Bioall Sci., 2017, 9, (5), 11 LINK [Google Scholar]
  6. Singh B., Singh J. P., Kaur A., and Singh N. Food Chem., 2018, 261, 75 LINK [Google Scholar]
  7. Singh B., Singh J. P., Kaur A., and Singh N. Int. J. Food Sci. Technol., 2019, 54, (4), 959 LINK [Google Scholar]
  8. Wang Z., Pan Z., Ma H., and Atungulu G. G. Open Food Sci. J., 2011, 5, 17 LINK [Google Scholar]
  9. Fourati M., Smaoui S., Ennouri K., Hlima H. B., Elhadef K., Chakchouk-Mtibaa A., Sallem I., and Mellouli L. Evid. Based Complement Altern. Med., 2019, 1542615 LINK [Google Scholar]
  10. Malviya S., Arvind A. Jha, and Hettiarachchy N. J. Food Sci. Technol., 2014, 51, (12), 4132 LINK [Google Scholar]
  11. Jalal H., Pal M. A., Ahmad S. R., Rather M., Andrabi M., and Hamdani S. Pharma Innov. J., 2018, 7, (4), 1127 LINK [Google Scholar]
  12. Abdollahzadeh S., Mashouf R. Y., Mortazavi H., Moghaddam M. H., Roozbahani N., and Vahedi M. J. Dent. (Tehran), 2011, 8, (1), 1 LINK [Google Scholar]
  13. Growther L., Sukritha K., Savitha N., and Andrew N. S. Int. J. Life Sci. Biotech. Pharma Res., 2012, 1, (4), 164 LINK [Google Scholar]
  14. Türkyılmaz M., Tağı Ş., and Özkan M. Akad. Gıda, 2017, 15, (2), 109 LINK [Google Scholar]
  15. Zhang L., Fu Q., and Zhang Y. Food Chem., 2011, 127, (4), 1444 LINK [Google Scholar]
  16. Kumar D., Bhat Z. A., Singh P., Khatanglakar V., and Bhujbal S. S. Rev. Bras. Farmacogn., 2011, 21, (1), 139 LINK [Google Scholar]
  17. Grösz J., and Braunsteiner W. J Planar Chromatogr., 1989, 2, 420 [Google Scholar]
  18. Baugh S., Revell J., and Eastman K. ‘Determination of the Punicalagins Found in Pomegranate by High Performance Liquid Chromatography’, Customer Application Note 106, Dionex Corp, Sunnyvale, CA, USA, 2009 LINK [Google Scholar]
  19. Sar T., Stark B. C., and Akbas M. Y. Bioengineered, 2017, 8, (2), 171 LINK [Google Scholar]
  20. Türkyılmaz M. Int. J. Food Sci. Technol., 2013, 48, (10), 2086 LINK [Google Scholar]
  21. Akowuah G. A., Ismail Z., Norhayati I., and Sadikun A. Food Chem., 2005, 93, (2), 311 LINK [Google Scholar]
  22. Turkmen N., Sari F., and Velioglu Y. S. Food Chem., 2006, 99, (4), 835 LINK [Google Scholar]
  23. Singh M., Jha A., Kumar A., Hettiarachchy N., Rai A. K., and Sharma D. J. Food Sci. Technol., 2014, 51, (9), 2070 LINK [Google Scholar]
  24. Thiem B., and Goślińska O. Fitoterapia, 2004, 75, (1), 93 LINK [Google Scholar]
  25. Akhtar S., Ismail T., Fraternale D., and Sestili P. Food Chem., 2015, 174, 417 LINK [Google Scholar]
  26. Geissman T. A., ‘Flavonoid Compounds, Tannins, Lignins and, Related Compounds’, in: “Comprehensive Biochemistry: Pyrrole Pigments, Isoprenoid Compounds and Phenolic Plant Constituents”, eds. Florkin M., and Stotz E.H. American Elsevier Publishing Co Inc, New York, USA, 1963, pp. 213–250 LINK [Google Scholar]
  27. Minatel I. O., Borges C. V., Ferreira M. I., Gomez H. A. G., Chen C.-Y. O., Lima G. P. P., Palma-Tenango M., and Garcia-Mateos M. R. ‘Phenolic Compounds: Functional Properties, Impact of Processing and Bioavailability’, in “Phenolic Compounds: Biological Activity”, eds. Soto-Hernandez M., InTech Open, London, UK, 2017, pp. 1–24 LINK [Google Scholar]
  28. Booth I. R., Kroll R. G., ‘The Preservation of Foods by Low pH’, in “Mechanisms of Action of Food Preservation Procedures”, ed. and Gould G. W. Elsevier Science Publishers Ltd, London, UK, 1989, pp. 119–160 [Google Scholar]
  29. Beales N. Compr. Rev. Food Sci. Food Saf., 2004, 3, (1), 1 LINK [Google Scholar]
  30. Reddy M. K., Gupta S. K., Jacob M. R., Khan S. I., and Ferreira D. Planta Med., 2007, 73, (5), 461 LINK [Google Scholar]
  31. Akbas M. Y., and Ölmez H. Lett. Appl. Microbiol., 2007, 44, (6), 619 LINK [Google Scholar]
  32. Akbas M. Y., and Kokumer T. Int. J. Food Sci. Technol., 2015, 50, (7), 1666 LINK [Google Scholar]
  33. Cosentino S., Tuberoso C. I. G., Pisano B., Satta M., Mascia V., Arzedi E., and Palmas F. Lett. Appl. Microbiol., 1999, 29, (2), 130 LINK [Google Scholar]
  34. Dahham S. S., Ali M. N., Tabassum H., and Khan M. Am.-Eur. J. Agric. Environ. Sci., 2010, 9, (3), 273 LINK [Google Scholar]
  35. Alexandre E. M. C., Silva S., Santos S. A. O., Silvestre A. J. D., Duarte M. F., Saraiva J. A., and Pintado M. Food Res. Int., 2019, 115, 167 LINK [Google Scholar]
  36. Ramadan H., Min B., Tiwari A. K., Reddy G., Adesiyun A., Hinton A., and Abdela W. Int. J. Poult. Sci., 2015, 14, (4), 229 LINK [Google Scholar]
  37. Hama A. A., Taha Y., and Qadir S. A. Int. J. Sci. Eng. Res., 2014, 5, (9), 796 LINK [Google Scholar]
  38. Naz S., Siddiqi R., Ahmad S., Rasool S. A., and Sayeed S. A. J. Food Sci., 2007, 72, (9), M 341 LINK [Google Scholar]
  39. Duman A. D., Ozgen M., Dayisoylu K. S., Erbil N., and Durgac C. Molecules, 2009, 14, (5), 1808 LINK [Google Scholar]
  40. Endo E. H., Garcia Cortez D. A., Ueda-Nakamura T., Nakamura C. V., and Filho B. P. D. Res. Microbiol., 2010, 161, (7), 534 LINK [Google Scholar]
  41. Mehta V. V., Rajesh G., Rao A., Shenoy R., and Pai M. B. H. J. Clin. Diagn. Res., 2014, 8, (7), ZC65 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error