Skip to content
1887
Volume 66, Issue 1
  • ISSN: 2056-5135

Abstract

Adsorption is a fundamental process which takes place on a catalyst surface before it dissociates, diffuses over the surface and recombines with other adsorbed species to form the final product. Therefore, in theoretical chemistry understanding of the local geometrical and electronic properties of the adsorbed species on the catalyst surface has been a topic of core focus. In this short review we briefly summarise some of the important developments on theoretical studies related to the adsorption properties of transition metal (TM) catalysts on graphene and graphene-related carbon materials. Prior to this, we will present a discussion on various forms of carbon materials used as catalyst supports, which will be followed by a brief discussion of the fundamentals of the density functional theory (DFT).

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16212512135401
2021-05-17
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/1/Chutia_16a_Imp.html?itemId=/content/journals/10.1595/205651322X16212512135401&mimeType=html&fmt=ahah

References

  1. K. J. Laidler, J. H. Meiser, B. C. Sanctuary, “Physical Chemistry”, 4th Edn., Houghton Mifflin Co, Boston, USA, 2003, p. 931 [Google Scholar]
  2. X. Zhou, W. Chu, W. Sun, Y. Zhou, Y. Xue, Comput. Theor. Chem., 2017, 1120, 8 LINK https://doi.org/10.1016/j.comptc.2017.09.011 [Google Scholar]
  3. J. Paier, C. Penschke, J. Sauer, Chem. Rev., 2013, 113, (6), 3949 LINK https://doi.org/10.1021/cr3004949 [Google Scholar]
  4. A. Chutia, I. P. Silverwood, M. R. Farrow, D. O. Scanlon, P. P. Wells, M. Bowker, S. F. Parker, C. R. A. Catlow, Surf. Sci., 2016, 653, 45 LINK https://doi.org/10.1016/j.susc.2016.05.002 [Google Scholar]
  5. A. Chutia, D. J. Willock, C. R. A. Catlow, Faraday Discuss., 2018, 208, 123 LINK https://doi.org/10.1039/c8fd00002f [Google Scholar]
  6. S. M. Rogers, C. R. A. Catlow, C. E. Chan-Thaw, A. Chutia, N. Jian, R. E. Palmer, M. Perdjon, A. Thetford, N. Dimitratos, A. Villa, P. P. Wells, ACS Catal., 2017, 7, (4), 2266 LINK https://doi.org/10.1021/acscatal.6b03190 [Google Scholar]
  7. A. Chutia, I. Hamada, M. Tokuyama, Surf. Sci., 2014, 628, 116 LINK https://doi.org/10.1016/j.susc.2014.05.012 [Google Scholar]
  8. E. K. Dann, E. K. Gibson, R. H. Blackmore, C. R. A. Catlow, P. Collier, A. Chutia, T. E. Erden, C. Hardacre, A. Kroner, M. Nachtegaal, A. Raj, S. M. Rogers, S. F. R. Taylor, P. Thompson, G. F. Tierney, C. D. Zeinalipour-Yazdi, A. Goguet, P. P. Wells, Nat. Catal., 2019, 2, (2), 157 LINK https://doi.org/10.1038/s41929-018-0213-3 [Google Scholar]
  9. A. Lahiri, A. Chutia, T. Carstens, F. Endres, J. Electrochem. Soc., 2020, 167, (11), 112501 LINK https://doi.org/10.1149/1945-7111/ab9e3c [Google Scholar]
  10. N. C. Hernández, R. Grau-Crespo, N. H. de Leeuw, J. F. Sanz, Phys. Chem. Chem. Phys., 2009, 11, (26), 5246 LINK https://doi.org/10.1039/b820373c [Google Scholar]
  11. R. Grau-Crespo, N. Cruz Hernandez, J. F. Sanz, N. H. de Leeuw, J. Phys. Chem. C, 2007, 111, (28), 10448 LINK https://doi.org/10.1021/jp0704057 [Google Scholar]
  12. S. S. Tafreshi, A. Roldan, N. Y. Dzade, N. H. de Leeuw, Surf. Sci., 2014, 622, 1 LINK https://doi.org/10.1016/j.susc.2013.11.013 [Google Scholar]
  13. P. J. Bryant, P. L. Gutshall, L. H. Taylor, Wear, 1964, 7, (1), 118 LINK https://doi.org/10.1016/0043-1648(64)90083-3 [Google Scholar]
  14. A. W. Hull, Phys. Rev. B, 1917, 10, (6), 661 LINK https://doi.org/10.1103/PhysRev.10.661 [Google Scholar]
  15. J. D. Bernal, Proc. R. Soc. A: Math. Phys. Eng. Sci., 1926, 113, (763), 117 LINK https://doi.org/10.1098/rspa.1926.0143 [Google Scholar]
  16. O. Hassel, H. Mark, J. Phys., 1924, 25, 317 LINK https://doi.org/10.1007/BF01327534 [Google Scholar]
  17. A. Taylor, D. Laidler, Nature, 1940, 146, (3691), 130 LINK https://doi.org/10.1038/146130a0 [Google Scholar]
  18. H. Lipson, A. R. Stokes, Proc. R. Soc. A: Math. Phys. Sci., 1942, 181, (984), 101 LINK https://doi.org/10.1098/rspa.1942.0063 [Google Scholar]
  19. G. E. Bacon, Acta Cryst., 1952, 5, (4), 492 LINK https://doi.org/10.1107/s0365110x52001416 [Google Scholar]
  20. H. Jagodzinski, Acta Cryst., 1949, 2, (5), 298 LINK https://doi.org/10.1107/s0365110x49000771 [Google Scholar]
  21. H.-P. Boehm, U. Hofmann, Z. Anorg. Allg. Chem., 1955, 278, (1–2), 58 LINK https://doi.org/10.1002/zaac.19552780109 [Google Scholar]
  22. Z. Kristallogr., 1956, 107, (5–6), 337 LINK https://doi.org/10.1524/zkri.1956.107.5-6.337 [Google Scholar]
  23. J.-C. Charlier, X. Gonze, J.-P. Michenaud, Carbon, 1994, 32, (2), 289 LINK https://doi.org/10.1016/0008-6223(94)90192-9 [Google Scholar]
  24. G. E. Washburn, Ann. Phys., 1915, 353, (18), 236 LINK https://doi.org/10.1002/andp.19153531806 [Google Scholar]
  25. E. Ryschkewitsch, Z. Electrochem. Angew. Phys. Chem., 1923, 29, (19–20), 474 LINK https://doi.org/10.1002/bbpc.19230291903 [Google Scholar]
  26. K. S. Krishnan, N. Ganguli, Nature, 1939, 144, (3650), 667 LINK https://doi.org/10.1038/144667a0 [Google Scholar]
  27. E. Kogan, V. M. Silkin, Basic Solid State Phys., 2017, 254, (9), 1700035 LINK https://doi.org/10.1002/pssb.201700035 [Google Scholar]
  28. F. Hund, B. Mrowka, Sächs. Akad. Wiss., Leipzig, 1935, 87, 325 [Google Scholar]
  29. C. A. Coulson, Nature, 1947, 159, (4034), 265 LINK https://doi.org/10.1038/159265a0 [Google Scholar]
  30. P. R. Wallace, Phys. Rev., 1947, 71, (9), 622 LINK https://doi.org/10.1103/PhysRev.71.622 [Google Scholar]
  31. I. C. Brownlie, J. R. Fryer, G. Webb, J. Catal., 1969, 14, (3), 263 LINK https://doi.org/10.1016/0021-9517(69)90435-7 [Google Scholar]
  32. G. R. Hennig, J. Inorg. Nucl. Chem., 1962, 24, (9), 1129 LINK https://doi.org/10.1016/0022-1902(62)80258-9 [Google Scholar]
  33. W. Li, C. Han, W. Liu, M. Zhang, K. Tao, Catal. Today, 2007, 125, (3–4), 278 LINK https://doi.org/10.1016/j.cattod.2007.01.035 [Google Scholar]
  34. M. Chen, B. Lou, Z. Ni, B. Xu, Electrochim. Acta, 2015, 165, 105 LINK https://doi.org/10.1016/j.electacta.2015.03.007 [Google Scholar]
  35. Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Nat. Commun., 2014, 5, 4033 LINK https://doi.org/10.1038/ncomms5033 [Google Scholar]
  36. A. Bhattacharya, A. Hazra, S. Chatterjee, P. Sen, S. Laha, I. Basumallick, J. Power Sources, 2004, 136, (2), 208 LINK https://doi.org/10.1016/j.jpowsour.2004.03.003 [Google Scholar]
  37. G. Zhang, C. Huang, R. Qin, Z. Shao, D. An, W. Zhang, Y. Wang, J. Mater. Chem. A, 2015, 3, (9), 5204 LINK https://doi.org/10.1039/c4ta06076h [Google Scholar]
  38. C. Srinivasan, Curr. Sci., 2007, 92, (10), 1338 LINK https://wwwops.currentscience.ac.in/Downloads/article_id_092_10_1338_1339_0.pdf [Google Scholar]
  39. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Proc. Natl. Acad. Sci. USA, 2005, 102, (30), 10451 LINK https://doi.org/10.1073/pnas.0502848102 [Google Scholar]
  40. A. Marinkas, F. Arena, J. Mitzel, G. M. Prinz, A. Heinzel, V. Peinecke, H. Natter, Carbon, 2013, 58, 139 LINK https://doi.org/10.1016/j.carbon.2013.02.043 [Google Scholar]
  41. N. M. Julkapli, S. Bagheri, Int. J. Hydrogen Energy, 2015, 40, (2), 948 LINK https://doi.org/10.1016/j.ijhydene.2014.10.129 [Google Scholar]
  42. D. Pantea, H. Darmstadt, S. Kaliaguine, L. Sümmchen, C. Roy, Carbon, 2001, 39, (8), 1147 LINK https://doi.org/10.1016/S0008-6223(00)00239-6 [Google Scholar]
  43. L. J. Kennedy, J. J. Vijaya, G. Sekaran, Mater. Chem. Phys., 2005, 91, (2–3), 471 LINK https://doi.org/10.1016/j.matchemphys.2004.12.013 [Google Scholar]
  44. S. F. Parker, H. C. Walker, S. K. Callear, E. Grünewald, T. Petzold, D. Wolf, K. Möbus, J. Adam, S. D. Wieland, M. Jiménez-Ruiz, P. W. Albers, Chem. Sci., 2019, 10, (2), 480 LINK https://doi.org/10.1039/c8sc03766c [Google Scholar]
  45. S. F. Parker, S. Imberti, S. K. Callear, P. W. Albers, Chem. Phys., 2013, 427, 44 LINK https://doi.org/10.1016/j.chemphys.2013.05.002 [Google Scholar]
  46. P. W. Albers, W. Weber, K. Kunzmann, M. Lopez, S. F. Parker, Surf. Sci., 2008, 602, (23), 3611 LINK https://doi.org/10.1016/j.susc.2008.10.006 [Google Scholar]
  47. P. W. Albers, J. Pietsch, J. Krauter, S. F. Parker, Phys. Chem. Chem. Phys., 2003, 5, (9), 1941 LINK https://doi.org/10.1039/b212210n [Google Scholar]
  48. P. Albers, E. Auer, K. Ruth, S. F. Parker, J. Catal., 2000, 196, (1), 174 LINK https://doi.org/10.1006/jcat.2000.3021 [Google Scholar]
  49. S. F. Parker, K. P. J. Williams, P. Meehan, M. A. Adams, J. Tomkinson, Appl. Spectrosc., 1994, 48, (6), 669 LINK https://doi.org/10.1366/000370294774369027 [Google Scholar]
  50. I. K. M. Yu, X. Xiong, D. C. W. Tsang, Y. H. Ng, J. H. Clark, J. Fan, S. Zhang, C. Hu, Y. S. Ok, Green Chem., 2019, 21, (16), 4341 LINK https://doi.org/10.1039/c9gc00734b [Google Scholar]
  51. S. Kundu, T. C. Nagaiah, X. Chen, W. Xia, M. Bron, W. Schuhmann, M. Muhler, Carbon, 2012, 50, (12), 4534 LINK https://doi.org/10.1016/j.carbon.2012.05.037 [Google Scholar]
  52. J. B. Donnet, Carbon, 1982, 20, (4), 267 LINK https://doi.org/10.1016/0008-6223(82)90002-1 [Google Scholar]
  53. R. D. Heidenreich, W. M. Hess, L. L. Ban, J. Appl. Cryst., 1968, 1, (1), 1 LINK https://doi.org/10.1107/s0021889868004930 [Google Scholar]
  54. C. Jäger, Th. Henning, R. Schlögl, O. Spillecke, J. Non-Cryst. Solids, 1999, 258, (1–3), 161 LINK https://doi.org/10.1016/S0022-3093(99)00436-6 [Google Scholar]
  55. H. V. Drushel, J. V. Hallum, J. Phys. Chem., 1958, 62, (12), 1502 LINK https://doi.org/10.1021/j150570a008 [Google Scholar]
  56. M. L. Deviney, Adv. Colloid Interface Sci., 1969, 2, (3), 238 LINK https://doi.org/10.1016/0001-8686(69)85001-3 [Google Scholar]
  57. V. A. Garten, D. E. Weiss, J. B. Willis, Aust. J. Chem., 1957, 10, (3), 309 LINK https://doi.org/10.1071/CH9570309 [Google Scholar]
  58. M. L. Studebaker, E. W. D. Huffman, A. C. Wolfe, L. G. Nabors, Ind. Eng. Chem., 1956, 48, (1), 162 LINK https://doi.org/10.1021/ie50553a044 [Google Scholar]
  59. H.-P. Boehm, E. Diehl, W. Heck, R. Sappok, Angew. Chem. Int. Ed., 1964, 3, (10), 669 LINK https://doi.org/10.1002/anie.196406691 [Google Scholar]
  60. H. P. Boehm, Carbon, 1994, 32, (5), 759 LINK https://doi.org/10.1016/0008-6223(94)90031-0 [Google Scholar]
  61. B. R. Puri, Carbon, 1966, 4, (3), 391 LINK https://doi.org/10.1016/0008-6223(66)90052-2 [Google Scholar]
  62. J. Li, F. He, Y. Luo, Y. Yin, X. Dai, L. Xu, Plasma Sci. Technol., 2003, 5, (3), 1815 LINK https://doi.org/10.1088/1009-0630/5/3/010 [Google Scholar]
  63. D. Pantea, H. Darmstadt, S. Kaliaguine, C. Roy, Appl. Surf. Sci., 2003, 217, (1–4), 181 LINK https://doi.org/10.1016/S0169-4332(03)00550-6 [Google Scholar]
  64. B. C. Brodie, Phil. Trans. R. Soc., 1858, 149, 249 LINK https://doi.org/10.1098/rstl.1859.0013 [Google Scholar]
  65. S. Gilje, S. Han, M. Wang, K. L. Wang, R. B. Kaner, Nano Lett., 2007, 7, (11), 3394 LINK https://doi.org/10.1021/nl0717715 [Google Scholar]
  66. T. Nakajima, A. Mabuchi, R. Hagiwara, Carbon, 1988, 26, (3), 357 LINK https://doi.org/10.1016/0008-6223(88)90227-8 [Google Scholar]
  67. W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc., 1958, 80, (6), 1339 LINK https://doi.org/10.1021/ja01539a017 [Google Scholar]
  68. T. Nakajima, Y. Matsuo, Carbon, 1994, 32, (3), 469 LINK https://doi.org/10.1016/0008-6223(94)90168-6 [Google Scholar]
  69. C. Hontoria-Lucas, A. J. López-Peinado, J. D. D. López-González, M. L. Rojas-Cervantes, R. M. Martín-Aranda, Carbon, 1995, 33, (11), 1585 LINK https://doi.org/10.1016/0008-6223(95)00120-3 [Google Scholar]
  70. A. Lerf, H. He, M. Forster, J. Klinowski, J. Phys. Chem. B, 1998, 102, (23), 4477 LINK https://doi.org/10.1021/jp9731821 [Google Scholar]
  71. Y. Han, Y. Lu, Carbon, 2007, 45, (12), 2394 LINK https://doi.org/10.1016/j.carbon.2007.07.007 [Google Scholar]
  72. V. S. Talanov, G. G. Talanova, K. B. Yatsimirskii, Theor. Exp. Chem., 1996, 32, (4), 221 LINK https://doi.org/10.1007/BF01374447 [Google Scholar]
  73. D. W. Lee, L. De Los Santos V., J. W. Seo, L. L. Felix, A. D. Bustamante, J. M. Cole, C. H. W. Barnes, J. Phys. Chem. B, 2010, 114, (17), 5723 LINK https://doi.org/10.1021/jp1002275 [Google Scholar]
  74. W. Gao, L. B. Alemany, L. Ci, P. M. Ajayan, Nat. Chem., 2009, 1, (5), 403 LINK https://doi.org/10.1038/nchem.281 [Google Scholar]
  75. I. Efremenko, M. Sheintuch, Langmuir, 2006, 22, (8), 3614 LINK https://doi.org/10.1021/la052100u [Google Scholar]
  76. T. J. Bandosz, J. Jagiello, J. A. Schwarz, Anal. Chem., 1992, 64, (8), 891 LINK https://doi.org/10.1021/ac00032a012 [Google Scholar]
  77. J. S. Noh, J. A. Schwarz, Carbon, 1990, 28, (5), 675 LINK https://doi.org/10.1016/0008-6223(90)90069-B [Google Scholar]
  78. J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, J. J. M. Órfão, Carbon, 1999, 37, (9), 1379 LINK https://doi.org/10.1016/S0008-6223(98)00333-9 [Google Scholar]
  79. D. D. Edie, Carbon, 1998, 36, (4), 345 LINK https://doi.org/https://doi.org/10.1016/S0008-6223(97)00185-1 [Google Scholar]
  80. K. Acatay, M. Misra, ‘Carbon Fibers’, in “Fiber Technology for Fiber-Reinforced Composites”, ed. M. Ö. Seydibeyoğlu, A. K. Mohanty, Elsevier Ltd, Duxford, UK, 2017, pp. 123151 LINK https://doi.org/10.1016/B978-0-08-101871-2.00006-0 [Google Scholar]
  81. M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg, ‘Synthesis of Graphite Fibers and Filaments’, in “Graphite Fibers and Filaments”, Ch. 2, Springer Series in Materials Science, Springer-Verlag, Berlin, Germany, 1988, pp. 1234 LINK https://doi.org/10.1007/978-3-642-83379-3_2 [Google Scholar]
  82. R. H. Bradley, X. Ling, I. Sutherland, Carbon, 1993, 31, (7), 1115 LINK https://doi.org/10.1016/0008-6223(93)90064-H [Google Scholar]
  83. J. Gulyás, E. Földes, A. Lázár, B. Pukánszky, Compos. Part A: Appl. Sci. Manuf., 2001, 32, (3–4), 353 LINK https://doi.org/10.1016/S1359-835X(00)00123-8 [Google Scholar]
  84. L. Szabó, R. Milotskyi, T. Tsukegi, N. Wada, K. Takahashi, Appl. Surf. Sci., 2019, 494, 315 LINK https://doi.org/10.1016/j.apsusc.2019.07.185 [Google Scholar]
  85. A. I. Medalia, D. Rivin, D. R. Sanders, Sci. Total Environ., 1983, 31, (1), 1 LINK https://doi.org/10.1016/0048-9697(83)90053-0 [Google Scholar]
  86. B. R. Stanmore, J. F. Brilhac, P. Gilot, Carbon, 2001, 39, (15), 2247 LINK https://doi.org/10.1016/S0008-6223(01)00109-9 [Google Scholar]
  87. D. S. Su, R. E. Jentoft, J.-O. Müller, D. Rothe, E. Jacob, C. D. Simpson, Ž. Tomović, K. Müllen, A. Messerer, U. Pöschl, R. Niessner, R. Schlögl, Catal. Today, 2004, 90, (1–2), 127 LINK https://doi.org/10.1016/j.cattod.2004.04.017 [Google Scholar]
  88. S. Hamad, J. A. Mejias, S. Lago, S. Picaud, P. N. M. Hoang, J. Phys. Chem. B, 2004, 108, (17), 5405 LINK https://doi.org/10.1021/jp037589j [Google Scholar]
  89. W. K. P. Hohenberg, W. Kohn, Phys. Rev. B, 1964, 136, B 864 LINK https://doi.org/10.1103/PhysRev.136.B864 [Google Scholar]
  90. W. Kohn, L. J. Sham, Phys. Rev., 1965, 140, (4A), A1133 LINK https://doi.org/10.1103/PhysRev.140.A1133 [Google Scholar]
  91. A. D. Becke, J. Chem. Phys., 2014, 140, (18), 301 LINK https://doi.org/10.1063/1.4869598 [Google Scholar]
  92. R. G. Parr, W. Yang, J. B. Goodenough, J. Halpern, J. S. Rowlinson, “Density-Functional Theory of Atoms and Molecules”, eds. R. Breslow, Oxford University Press Inc, New York, USA, 1989, 333 pp [Google Scholar]
  93. I. N. Levine, “Quantum Chemistry”, 5th Edn., Prentice Hall, New Jersey, USA, 2000 [Google Scholar]
  94. S. Kurth, J. Perdew, Int. J. Quantum Chem., 2000, 77, (5), 814 LINK https://doi.org/10.1002/(SICI)1097-461X(2000)77:5<814::AID-QUA3>3.0.CO;2-F [Google Scholar]
  95. S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys., 1980, 58, (8), 1200 LINK https://doi.org/10.1139/p80-159 [Google Scholar]
  96. J. P. Perdew, A. Zunger, Phys. Rev. B, 1981, 23, (10), 5048 LINK https://doi.org/10.1103/PhysRevB.23.5048 [Google Scholar]
  97. J. P. Perdew, Y. Wang, Phys. Rev. B, 1992, 45, (23), 13244 LINK https://doi.org/10.1103/PhysRevB.45.13244 [Google Scholar]
  98. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, (18), 3865 LINK https://doi.org/10.1103/PhysRevLett.77.3865 [Google Scholar]
  99. B. Hammer, L. B. Hansen, J. Nørskov, Phys. Rev. B, 1999, 59, (11), 7413 LINK https://doi.org/10.1103/PhysRevB.59.7413 [Google Scholar]
  100. Y. Zhang, W. Yang, Phys. Rev. Lett., 1998, 80, (4), 890 LINK https://doi.org/10.1103/PhysRevLett.80.890 [Google Scholar]
  101. G. I. Csonka, J. P. Perdew, A. Ruzsinszky, P. H. T. Philipsen, S. Lebègue, J. Paier, O. A. Vydrov, J. G. Ángyán, Phys. Rev. B, 2009, 79, (15), 155107 LINK https://doi.org/10.1103/PhysRevB.79.155107 [Google Scholar]
  102. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, B. I. Lundqvist, Phys. Rev. Lett., 2004, 92, (24), 1 LINK https://doi.org/10.1103/PhysRevLett.92.246401 [Google Scholar]
  103. K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, D. C. Langreth, Phys. Rev. B, 2010, 82, (8), 081101(R) LINK https://doi.org/10.1103/PhysRevB.82.081101 [Google Scholar]
  104. T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, D. C. Langreth, Phys. Rev. B, 2007, 76, (12), 125112 LINK https://doi.org/10.1103/PhysRevB.76.125112 [Google Scholar]
  105. I. Hamada, Phys. Rev. B, 2014, 89, (12), 121103(R) LINK https://doi.org/10.1103/PhysRevB.89.121103 [Google Scholar]
  106. Y. Zhao, D. G. Truhlar, J. Chem. Phys., 2006, 125, (19), 194101 LINK https://doi.org/10.1063/1.2370993 [Google Scholar]
  107. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc., 2008, 120, (1–3), 215 LINK https://doi.org/10.1007/s00214-007-0310-x [Google Scholar]
  108. J. Tao, J. P. Perdew, Phys. Rev. Lett., 2003, 91, (14), 146401 LINK https://doi.org/10.1103/PhysRevLett.91.146401 [Google Scholar]
  109. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, J. Sun, Phys. Rev. Lett., 2009, 103, (2), 026403 LINK https://doi.org/10.1103/PhysRevLett.103.026403 [Google Scholar]
  110. A. D. Becke, J. Chem. Phys., 1993, 98, (7), 5648 LINK https://doi.org/10.1063/1.464913 [Google Scholar]
  111. A. J. Cohen, N. C. Handy, Mol. Phys., 2001, 99, (7), 607 LINK https://doi.org/10.1080/00268970010023435 [Google Scholar]
  112. J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys., 2003, 118, (18), 8207 LINK https://doi.org/10.1063/1.1564060 [Google Scholar]
  113. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, J. Chem. Phys., 2006, 125, (22), 224106 LINK https://doi.org/10.1063/1.2404663 [Google Scholar]
  114. C. Adamo, V. Barone, J. Chem. Phys., 1999, 110, (13), 6158 LINK https://doi.org/10.1063/1.478522 [Google Scholar]
  115. T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett., 2004, 393, (1–3), 51 LINK https://doi.org/10.1016/j.cplett.2004.06.011 [Google Scholar]
  116. T. M. Henderson, A. F. Izmaylov, G. Scalmani, G. E. Scuseria, J. Chem. Phys., 2009, 131, (4), 044108 LINK https://doi.org/10.1063/1.3185673 [Google Scholar]
  117. D. Appy, H. Lei, C.-Z. Wang, M. C. Tringides, D.-J. Liu, J. W. Evans, P. A. Thiel, Prog. Surf. Sci., 2014, 89, (3–4), 219 LINK https://doi.org/10.1016/j.progsurf.2014.08.001 [Google Scholar]
  118. D. M. Duffy, J. A. Blackman, Phys. Rev. B, 1998, 58, (11), 7443 LINK https://doi.org/10.1103/PhysRevB.58.7443 [Google Scholar]
  119. D. M. Duffy, J. A. Blackman, Surf. Sci., 1998, 415, (3), L1016 LINK https://doi.org/10.1016/S0039-6028(98)00543-3 [Google Scholar]
  120. B. Delley, J. Chem. Phys., 1990, 92, (1), 508 LINK https://doi.org/10.1063/1.458452 [Google Scholar]
  121. B. Delley, J. Chem. Phys., 2000, 113, (18), 7756 LINK https://doi.org/10.1063/1.1316015 [Google Scholar]
  122. H. Valencia, A. Gil, G. Frapper, J. Phys. Chem. C, 2010, 114, (33), 14141 LINK https://doi.org/10.1021/jp103445v [Google Scholar]
  123. R. Hoffmann, W. N. Lipscomb, J. Chem. Phys., 1962, 36, (8), 2179 LINK https://doi.org/10.1063/1.1732849 [Google Scholar]
  124. R. Hoffmann, W. N. Lipscomb, J. Chem. Phys., 1962, 36, (12), 3489 LINK https://doi.org/10.1063/1.1732484 [Google Scholar]
  125. R. Hoffmann, J. Chem. Phys., 1963, 39, (6), 1397 LINK https://doi.org/10.1063/1.1734456 [Google Scholar]
  126. C. Mealli, D. M. Proserpio, J. Chem. Educ., 1990, 67, (5), 399 LINK https://doi.org/10.1021/ed067p399 [Google Scholar]
  127. K. Nakada, A. Ishii, Solid State Commun., 2011, 151, (1), 13 LINK https://doi.org/10.1016/j.ssc.2010.10.036 [Google Scholar]
  128. M. Manadé, F. Viñes, F. Illas, Carbon, 2015, 95, 525 LINK https://doi.org/10.1016/j.carbon.2015.08.072 [Google Scholar]
  129. D. M. Duffy, J. A. Blackman, Surf. Sci., 1998, 415, (3), L1016 LINK https://doi.org/10.1016/S0039-6028(98)00543-3 [Google Scholar]
  130. P. Jensen, X. Blase, P. Ordejón, Surf. Sci., 2004, 564, (1–3), 173 LINK https://doi.org/10.1016/j.susc.2004.06.188 [Google Scholar]
  131. G. M. Wang, J. J. BelBruno, S. D. Kenny, R. Smith, Surf. Sci., 2003, 541, (1–3), 91 LINK https://doi.org/10.1016/S0039-6028(03)00837-9 [Google Scholar]
  132. T. P. Hardcastle, C. R. Seabourne, R. Zan, R. M. D. Brydson, U. Bangert, Q. M. Ramasse, K. S. Novoselov, A. J. Scott, Phys. Rev. B: Condens. Matter Mater. Phys., 2013, 87, (19), 195430 LINK https://doi.org/10.1103/PhysRevB.87.195430 [Google Scholar]
  133. A. Tkatchenko, M. Scheffler, Phys. Rev. Lett., 2009, 102, (7), 073005 LINK https://doi.org/10.1103/PhysRevLett.102.073005 [Google Scholar]
  134. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr., 2005, 220, 567 LINK https://doi.org/10.1524/zkri.220.5.567.65075 [Google Scholar]
  135. J. Engel, S. Francis, A. Roldan, Phys. Chem. Chem. Phys., 2019, 21, (35), 19011 LINK https://doi.org/10.1039/c9cp03066b [Google Scholar]
  136. G.-F. Wei, Z. P. Liu, Chem. Sci., 2015, 6, (2), 1485 LINK https://doi.org/10.1039/c4sc02806f [Google Scholar]
  137. Z. Bo, X. Guo, X. Wei, H. Yang, J. Yan, K. Cen, Phys. E: Low-Dimens. Syst. Nanostruct., 2019, 109, 156 LINK https://doi.org/10.1016/j.physe.2019.01.012 [Google Scholar]
  138. A. Caglar, D. Düzenli, I. Onal, I. Tezsevin, O. Sahin, H. Kivrak, Int. J. Hydrogen Energy, 2020, 45, (1), 490 LINK https://doi.org/10.1016/j.ijhydene.2019.10.163 [Google Scholar]
  139. F. Montejo-Alvaro, J. Oliva, A. Zarate, M. Herrera-Trejo, H. M. Hdz-García, A. I. Mtz-Enriquez, Phys. E: Low-Dimens. Syst. Nanostruct., 2019, 110, 52 LINK https://doi.org/10.1016/j.physe.2019.02.005 [Google Scholar]
  140. F. Banhart, J. Kotakoski, A. V. Krasheninnikov, ACS Nano, 2011, 5, (1), 26 LINK https://doi.org/10.1021/nn102598m [Google Scholar]
  141. R. Zan, Q. M. Ramasse, U. Bangert, K. S. Novoselov, Nano Lett., 2012, 12, (8), 3936 LINK https://doi.org/10.1021/nl300985q [Google Scholar]
  142. A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, P. Pyykkö, R. M. Nieminen, Phys. Rev. Lett., 2009, 102, (12), 126807 LINK https://doi.org/10.1103/PhysRevLett.102.126807 [Google Scholar]
  143. A. V. Krasheninnikov, R. M. Nieminen, Theor. Chem. Acc., 2011, 129, (3–5), 625 LINK https://doi.org/10.1007/s00214-011-0910-3 [Google Scholar]
  144. D. Sen, R. Thapa, K. K. Chattopadhyay, Int. J. Hydrogen Energy, 2013, 38, (7), 3041 LINK https://doi.org/10.1016/j.ijhydene.2012.12.113 [Google Scholar]
  145. Y. Hamamoto, S. A. Wella, K. Inagaki, F. Abild-Pedersen, T. Bligaard, I. Hamada, Y. Morikawa, Phys. Rev. B, 2020, 102, (7), 075408 LINK https://doi.org/10.1103/PhysRevB.102.075408 [Google Scholar]
  146. H. Wang, T. Maiyalagan, X. Wang, ACS Catal., 2012, 2, (5), 781 LINK https://doi.org/10.1021/cs200652y [Google Scholar]
  147. Z. Zuo, Z. Jiang, A. Manthiram, J. Mater. Chem. A, 2013, 1, (43), 13476 LINK https://doi.org/10.1039/c3ta13049e [Google Scholar]
  148. H. Pinto, A. Markevich, Beilstein J. Nanotechnol., 2014, 5, 1842 LINK https://doi.org/10.3762/bjnano.5.195 [Google Scholar]
  149. X. Ren, J. Zhu, F. Du, J. Liu, W. Zhang, J. Phys. Chem. C, 2014, 118, (39), 22412 LINK https://doi.org/10.1021/jp505876z [Google Scholar]
  150. B. R. Sathe, X. Zou, T. Asefa, Catal. Sci. Technol., 2014, 4, (7), 2023 LINK https://doi.org/10.1039/c4cy00075g [Google Scholar]
  151. L. K. Putri, W.-J. Ong, W. S. Chang, S.-P. Chai, Appl. Surf. Sci., 2015, 358, (A), 2 LINK https://doi.org/10.1016/j.apsusc.2015.08.177 [Google Scholar]
  152. C. Xu, Y. Su, D. Liu, X. He, Phys. Chem. Chem. Phys., 2015, 17, (38), 25440 LINK https://doi.org/10.1039/c5cp04211a [Google Scholar]
  153. X. F. Li, K.-Y. Lian, L. Liu, Y. Wu, Q. Qiu, J. Jiang, M. Deng, Y. Luo, Sci. Rep., 2016, 6, 23495 LINK https://doi.org/10.1038/srep23495 [Google Scholar]
  154. S. Park, Y. Hu, J. O. Hwang, E.-S. Lee, L. B. Casabianca, W. Cai, J. R. Potts, H.-W. Ha, S. Chen, J. Oh, S. O. Kim, Y.-H. Kim, Y. Ishii, R. S. Ruoff, Nat. Commun., 2012, 3, 638 LINK https://doi.org/10.1038/ncomms1643 [Google Scholar]
  155. S. Agnoli, M. Favaro, J. Mater. Chem. A, 2016, 4, (14), 5002 LINK https://doi.org/10.1039/c5ta10599d [Google Scholar]
  156. L. Zhang, Z. Xia, J. Phys. Chem. C, 2011, 115, (22), 11170 LINK https://doi.org/10.1021/jp201991j [Google Scholar]
  157. S. Ullah, P. A. Denis, F. Sato, ChemPhysChem, 2017, 18, (14), 1864 LINK https://doi.org/10.1002/cphc.201700278 [Google Scholar]
  158. Q. Zhou, L. Yuan, X. Yang, Z. Fu, Y. Tang, C. Wang, H. Zhang, Chem. Phys., 2014, 440, 80 LINK https://doi.org/10.1016/j.chemphys.2014.06.016 [Google Scholar]
  159. G. Wu, D. Li, C. Dai, D. Wang, N. Li, Langmuir, 2008, 24, (7), 3566 LINK https://doi.org/10.1021/la7029278 [Google Scholar]
  160. M. N. Groves, A. S. W. Chan, C. Malardier-Jugroot, M. Jugroot, Chem. Phys. Lett., 2009, 481, (4–6), 214 LINK https://doi.org/10.1016/j.cplett.2009.09.074 [Google Scholar]
  161. T. Kropp, M. Mavrikakis, ACS Catal., 2019, 9, (8), 6864 LINK https://doi.org/10.1021/acscatal.9b01944 [Google Scholar]
  162. J. Ni, M. Quintana, S. Song, Phys. E: Low-Dimens. Syst. Nanostruct., 2020, 116, 113768 LINK https://doi.org/10.1016/j.physe.2019.113768 [Google Scholar]
  163. A. Chutia, Z. Zhu, R. Sahnoun, H. Tsuboi, M. Koyama, N. Hatekeyama, A. Endou, H. Takaba, M. Kubo, C. A. Del Carpio, A. Miyamoto, Jpn J. Appl. Phys., 2008, 47, (4S), 3147 LINK https://doi.org/10.1143/jjap.47.3147 [Google Scholar]
  164. A. Chutia, R. Sahnoun, R. C. Deka, Z. G. Zhu, H. Tsuboi, H. Takaba, A. Miyamoto, Phys. B: Condensed Matter, 2011, 406, (9), 1665 LINK https://doi.org/10.1016/j.physb.2011.01.012 [Google Scholar]
  165. A. Chutia, F. Cimpoesu, H. Tsuboi, A. Miyamoto, Chem. Phys. Lett., 2011, 503, (1–3), 91 LINK https://doi.org/10.1016/j.cplett.2010.12.057 [Google Scholar]
  166. Y. Chen, W. Zhang, S. Yang, A. Hobiny, A. Alsaedi, X. Wang, Sci. China Chem., 2016, 59, (4), 412 LINK https://doi.org/10.1007/s11426-015-5549-9 [Google Scholar]
  167. S. Kim, K. C. Kim, S. W. Lee, S. S. Jang, Phys. Chem. Chem. Phys., 2016, 18, (30), 20600 LINK https://doi.org/10.1039/c6cp02692c [Google Scholar]
  168. N. Jin, J. Han, H. Wang, X. Zhu, Q. Ge, Int. J. Hydrogen Energy, 2015, 40, (15), 5126 LINK https://doi.org/10.1016/j.ijhydene.2015.02.101 [Google Scholar]
  169. C. Cui, M. Sun, X. Zhu, J. Han, H. Wang, Q. Ge, Catalysts, 2020, 10, (2), 156 LINK https://doi.org/10.3390/catal10020156 [Google Scholar]
  170. L. Sahoo, S. Mondal, A. Gloskovskii, A. Chutia, U. K. Gautam, J. Mater. Chem. A, 2021, 9, 10966 LINK https://doi.org/10.1039/d0ta12618g [Google Scholar]
  171. L. Rout, A. Kumar, R. S. Dhaka, G. N. Reddy, S. Giri, P. Dash, Appl. Catal. A: Gen., 2017, 538, 107 LINK https://doi.org/10.1016/j.apcata.2017.03.017 [Google Scholar]
  172. M. A. Caro, A. Aarva, V. L. Deringer, G. Csányi, T. Laurila, Chem. Mater., 2018, 30, (21), 7446 LINK https://doi.org/10.1021/acs.chemmater.8b03353 [Google Scholar]
  173. R. Ranganathan, S. Rokkam, T. Desai, P. Keblinski, Carbon, 2017, 113, 87 LINK https://doi.org/10.1016/j.carbon.2016.11.024 [Google Scholar]
/content/journals/10.1595/205651322X16212512135401
Loading
/content/journals/10.1595/205651322X16212512135401
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test