Skip to content
1887
Volume 66, Issue 1
  • ISSN: 2056-5135

Abstract

Adsorption is a fundamental process which takes place on a catalyst surface before it dissociates, diffuses over the surface and recombines with other adsorbed species to form the final product. Therefore, in theoretical chemistry understanding of the local geometrical and electronic properties of the adsorbed species on the catalyst surface has been a topic of core focus. In this short review we briefly summarise some of the important developments on theoretical studies related to the adsorption properties of transition metal (TM) catalysts on graphene and graphene-related carbon materials. Prior to this, we will present a discussion on various forms of carbon materials used as catalyst supports, which will be followed by a brief discussion of the fundamentals of the density functional theory (DFT).

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16212512135401
2021-05-17
2024-02-27
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/1/Chutia_16a_Imp.html?itemId=/content/journals/10.1595/205651322X16212512135401&mimeType=html&fmt=ahah

References

  1. Laidler K. J., Meiser J. H., and Sanctuary B. C. “Physical Chemistry”, 4th Edn., Houghton Mifflin Co, Boston, USA, 2003, p. 931 [Google Scholar]
  2. Zhou X., Chu W., Sun W., Zhou Y., and Xue Y. Comput. Theor. Chem., 2017, 1120, 8 LINK https://doi.org/10.1016/j.comptc.2017.09.011 [Google Scholar]
  3. Paier J., Penschke C., and Sauer J. Chem. Rev., 2013, 113, (6), 3949 LINK https://doi.org/10.1021/cr3004949 [Google Scholar]
  4. Chutia A., Silverwood I. P., Farrow M. R., Scanlon D. O., Wells P. P., Bowker M., Parker S. F., and Catlow C. R. A. Surf. Sci., 2016, 653, 45 LINK https://doi.org/10.1016/j.susc.2016.05.002 [Google Scholar]
  5. Chutia A., Willock D. J., and Catlow C. R. A. Faraday Discuss., 2018, 208, 123 LINK https://doi.org/10.1039/c8fd00002f [Google Scholar]
  6. Rogers S. M., Catlow C. R. A., Chan-Thaw C. E., Chutia A., Jian N., Palmer R. E., Perdjon M., Thetford A., Dimitratos N., Villa A., and Wells P. P. ACS Catal., 2017, 7, (4), 2266 LINK https://doi.org/10.1021/acscatal.6b03190 [Google Scholar]
  7. Chutia A., Hamada I., and Tokuyama M. Surf. Sci., 2014, 628, 116 LINK https://doi.org/10.1016/j.susc.2014.05.012 [Google Scholar]
  8. Dann E. K., Gibson E. K., Blackmore R. H., Catlow C. R. A., Collier P., Chutia A., Erden T. E., Hardacre C., Kroner A., Nachtegaal M., Raj A., Rogers S. M., Taylor S. F. R., Thompson P., Tierney G. F., Zeinalipour-Yazdi C. D., Goguet A., and Wells P. P. Nat. Catal., 2019, 2, (2), 157 LINK https://doi.org/10.1038/s41929-018-0213-3 [Google Scholar]
  9. Lahiri A., Chutia A., Carstens T., and Endres F. J. Electrochem. Soc., 2020, 167, (11), 112501 LINK https://doi.org/10.1149/1945-7111/ab9e3c [Google Scholar]
  10. Hernández N. C., Grau-Crespo R., de Leeuw N. H., and Sanz J. F. Phys. Chem. Chem. Phys., 2009, 11, (26), 5246 LINK https://doi.org/10.1039/b820373c [Google Scholar]
  11. Grau-Crespo R., Cruz Hernandez N., Sanz J. F., and de Leeuw N. H. J. Phys. Chem. C, 2007, 111, (28), 10448 LINK https://doi.org/10.1021/jp0704057 [Google Scholar]
  12. Tafreshi S. S., Roldan A., Dzade N. Y., and de Leeuw N. H. Surf. Sci., 2014, 622, 1 LINK https://doi.org/10.1016/j.susc.2013.11.013 [Google Scholar]
  13. Bryant P. J., Gutshall P. L., and Taylor L. H. Wear, 1964, 7, (1), 118 LINK https://doi.org/10.1016/0043-1648(64)90083-3 [Google Scholar]
  14. Hull A. W. Phys. Rev. B, 1917, 10, (6), 661 LINK https://doi.org/10.1103/PhysRev.10.661 [Google Scholar]
  15. Bernal J. D. Proc. R. Soc. A: Math. Phys. Eng. Sci., 1926, 113, (763), 117 LINK https://doi.org/10.1098/rspa.1926.0143 [Google Scholar]
  16. Hassel O., and Mark H. J. Phys., 1924, 25, 317 LINK https://doi.org/10.1007/BF01327534 [Google Scholar]
  17. Taylor A., and Laidler D. Nature, 1940, 146, (3691), 130 LINK https://doi.org/10.1038/146130a0 [Google Scholar]
  18. Lipson H., and Stokes A. R. Proc. R. Soc. A: Math. Phys. Sci., 1942, 181, (984), 101 LINK https://doi.org/10.1098/rspa.1942.0063 [Google Scholar]
  19. Bacon G. E. Acta Cryst., 1952, 5, (4), 492 LINK https://doi.org/10.1107/s0365110x52001416 [Google Scholar]
  20. Jagodzinski H. Acta Cryst., 1949, 2, (5), 298 LINK https://doi.org/10.1107/s0365110x49000771 [Google Scholar]
  21. Boehm H.-P., and Hofmann U. Z. Anorg. Allg. Chem., 1955, 278, (1–2), 58 LINK https://doi.org/10.1002/zaac.19552780109 [Google Scholar]
  22. Z. Kristallogr., 1956, 107, (5–6), 337 LINK https://doi.org/10.1524/zkri.1956.107.5-6.337 [Google Scholar]
  23. Charlier J.-C., Gonze X., and Michenaud J.-P. Carbon, 1994, 32, (2), 289 LINK https://doi.org/10.1016/0008-6223(94)90192-9 [Google Scholar]
  24. Washburn G. E. Ann. Phys., 1915, 353, (18), 236 LINK https://doi.org/10.1002/andp.19153531806 [Google Scholar]
  25. Ryschkewitsch E. Z. Electrochem. Angew. Phys. Chem., 1923, 29, (19–20), 474 LINK https://doi.org/10.1002/bbpc.19230291903 [Google Scholar]
  26. Krishnan K. S., and Ganguli N. Nature, 1939, 144, (3650), 667 LINK https://doi.org/10.1038/144667a0 [Google Scholar]
  27. Kogan E., and Silkin V. M. Basic Solid State Phys., 2017, 254, (9), 1700035 LINK https://doi.org/10.1002/pssb.201700035 [Google Scholar]
  28. Hund F., and Mrowka B. Sächs. Akad. Wiss., Leipzig, 1935, 87, 325 [Google Scholar]
  29. Coulson C. A. Nature, 1947, 159, (4034), 265 LINK https://doi.org/10.1038/159265a0 [Google Scholar]
  30. Wallace P. R. Phys. Rev., 1947, 71, (9), 622 LINK https://doi.org/10.1103/PhysRev.71.622 [Google Scholar]
  31. Brownlie I. C., Fryer J. R., and Webb G. J. Catal., 1969, 14, (3), 263 LINK https://doi.org/10.1016/0021-9517(69)90435-7 [Google Scholar]
  32. Hennig G. R. J. Inorg. Nucl. Chem., 1962, 24, (9), 1129 LINK https://doi.org/10.1016/0022-1902(62)80258-9 [Google Scholar]
  33. Li W., Han C., Liu W., Zhang M., and Tao K. Catal. Today, 2007, 125, (3–4), 278 LINK https://doi.org/10.1016/j.cattod.2007.01.035 [Google Scholar]
  34. Chen M., Lou B., Ni Z., and Xu B. Electrochim. Acta, 2015, 165, 105 LINK https://doi.org/10.1016/j.electacta.2015.03.007 [Google Scholar]
  35. Wen Y., He K., Zhu Y., Han F., Xu Y., Matsuda I., Ishii Y., Cumings J., and Wang C. Nat. Commun., 2014, 5, 4033 LINK https://doi.org/10.1038/ncomms5033 [Google Scholar]
  36. Bhattacharya A., Hazra A., Chatterjee S., Sen P., Laha S., and Basumallick I. J. Power Sources, 2004, 136, (2), 208 LINK https://doi.org/10.1016/j.jpowsour.2004.03.003 [Google Scholar]
  37. Zhang G., Huang C., Qin R., Shao Z., An D., Zhang W., and Wang Y. J. Mater. Chem. A, 2015, 3, (9), 5204 LINK https://doi.org/10.1039/c4ta06076h [Google Scholar]
  38. Srinivasan C. Curr. Sci., 2007, 92, (10), 1338 LINK https://wwwops.currentscience.ac.in/Downloads/article_id_092_10_1338_1339_0.pdf [Google Scholar]
  39. Novoselov K. S., Jiang D., Schedin F., Booth T. J., Khotkevich V. V., Morozov S. V., and Geim A. K. Proc. Natl. Acad. Sci. USA, 2005, 102, (30), 10451 LINK https://doi.org/10.1073/pnas.0502848102 [Google Scholar]
  40. Marinkas A., Arena F., Mitzel J., Prinz G. M., Heinzel A., Peinecke V., and Natter H. Carbon, 2013, 58, 139 LINK https://doi.org/10.1016/j.carbon.2013.02.043 [Google Scholar]
  41. Julkapli N. M., and Bagheri S. Int. J. Hydrogen Energy, 2015, 40, (2), 948 LINK https://doi.org/10.1016/j.ijhydene.2014.10.129 [Google Scholar]
  42. Pantea D., Darmstadt H., Kaliaguine S., Sümmchen L., and Roy C. Carbon, 2001, 39, (8), 1147 LINK https://doi.org/10.1016/S0008-6223(00)00239-6 [Google Scholar]
  43. Kennedy L. J., Vijaya J. J., and Sekaran G. Mater. Chem. Phys., 2005, 91, (2–3), 471 LINK https://doi.org/10.1016/j.matchemphys.2004.12.013 [Google Scholar]
  44. Parker S. F., Walker H. C., Callear S. K., Grünewald E., Petzold T., Wolf D., Möbus K., Adam J., Wieland S. D., Jiménez-Ruiz M., and Albers P. W. Chem. Sci., 2019, 10, (2), 480 LINK https://doi.org/10.1039/c8sc03766c [Google Scholar]
  45. Parker S. F., Imberti S., Callear S. K., and Albers P. W. Chem. Phys., 2013, 427, 44 LINK https://doi.org/10.1016/j.chemphys.2013.05.002 [Google Scholar]
  46. Albers P. W., Weber W., Kunzmann K., Lopez M., and Parker S. F. Surf. Sci., 2008, 602, (23), 3611 LINK https://doi.org/10.1016/j.susc.2008.10.006 [Google Scholar]
  47. Albers P. W., Pietsch J., Krauter J., and Parker S. F. Phys. Chem. Chem. Phys., 2003, 5, (9), 1941 LINK https://doi.org/10.1039/b212210n [Google Scholar]
  48. Albers P., Auer E., Ruth K., and Parker S. F. J. Catal., 2000, 196, (1), 174 LINK https://doi.org/10.1006/jcat.2000.3021 [Google Scholar]
  49. Parker S. F., Williams K. P. J., Meehan P., Adams M. A., and Tomkinson J. Appl. Spectrosc., 1994, 48, (6), 669 LINK https://doi.org/10.1366/000370294774369027 [Google Scholar]
  50. Yu I. K. M., Xiong X., Tsang D. C. W., Ng Y. H., Clark J. H., Fan J., Zhang S., Hu C., and Ok Y. S. Green Chem., 2019, 21, (16), 4341 LINK https://doi.org/10.1039/c9gc00734b [Google Scholar]
  51. Kundu S., Nagaiah T. C., Chen X., Xia W., Bron M., Schuhmann W., and Muhler M. Carbon, 2012, 50, (12), 4534 LINK https://doi.org/10.1016/j.carbon.2012.05.037 [Google Scholar]
  52. Donnet J. B. Carbon, 1982, 20, (4), 267 LINK https://doi.org/10.1016/0008-6223(82)90002-1 [Google Scholar]
  53. Heidenreich R. D., Hess W. M., and Ban L. L. J. Appl. Cryst., 1968, 1, (1), 1 LINK https://doi.org/10.1107/s0021889868004930 [Google Scholar]
  54. Jäger C., Henning Th., Schlögl R., and Spillecke O. J. Non-Cryst. Solids, 1999, 258, (1–3), 161 LINK https://doi.org/10.1016/S0022-3093(99)00436-6 [Google Scholar]
  55. Drushel H. V., and Hallum J. V. J. Phys. Chem., 1958, 62, (12), 1502 LINK https://doi.org/10.1021/j150570a008 [Google Scholar]
  56. Deviney M. L. Adv. Colloid Interface Sci., 1969, 2, (3), 238 LINK https://doi.org/10.1016/0001-8686(69)85001-3 [Google Scholar]
  57. Garten V. A., Weiss D. E., and Willis J. B. Aust. J. Chem., 1957, 10, (3), 309 LINK https://doi.org/10.1071/CH9570309 [Google Scholar]
  58. Studebaker M. L., Huffman E. W. D., Wolfe A. C., and Nabors L. G. Ind. Eng. Chem., 1956, 48, (1), 162 LINK https://doi.org/10.1021/ie50553a044 [Google Scholar]
  59. Boehm H.-P., Diehl E., Heck W., and Sappok R. Angew. Chem. Int. Ed., 1964, 3, (10), 669 LINK https://doi.org/10.1002/anie.196406691 [Google Scholar]
  60. Boehm H. P. Carbon, 1994, 32, (5), 759 LINK https://doi.org/10.1016/0008-6223(94)90031-0 [Google Scholar]
  61. Puri B. R. Carbon, 1966, 4, (3), 391 LINK https://doi.org/10.1016/0008-6223(66)90052-2 [Google Scholar]
  62. Li J., He F., Luo Y., Yin Y., Dai X., and Xu L. Plasma Sci. Technol., 2003, 5, (3), 1815 LINK https://doi.org/10.1088/1009-0630/5/3/010 [Google Scholar]
  63. Pantea D., Darmstadt H., Kaliaguine S., and Roy C. Appl. Surf. Sci., 2003, 217, (1–4), 181 LINK https://doi.org/10.1016/S0169-4332(03)00550-6 [Google Scholar]
  64. Brodie B. C. Phil. Trans. R. Soc., 1858, 149, 249 LINK https://doi.org/10.1098/rstl.1859.0013 [Google Scholar]
  65. Gilje S., Han S., Wang M., Wang K. L., and Kaner R. B. Nano Lett., 2007, 7, (11), 3394 LINK https://doi.org/10.1021/nl0717715 [Google Scholar]
  66. Nakajima T., Mabuchi A., and Hagiwara R. Carbon, 1988, 26, (3), 357 LINK https://doi.org/10.1016/0008-6223(88)90227-8 [Google Scholar]
  67. Hummers W. S., and Offeman R. E. J. Am. Chem. Soc., 1958, 80, (6), 1339 LINK https://doi.org/10.1021/ja01539a017 [Google Scholar]
  68. Nakajima T., and Matsuo Y. Carbon, 1994, 32, (3), 469 LINK https://doi.org/10.1016/0008-6223(94)90168-6 [Google Scholar]
  69. Hontoria-Lucas C., López-Peinado A. J., López-González J. D. D., Rojas-Cervantes M. L., and Martín-Aranda R. M. Carbon, 1995, 33, (11), 1585 LINK https://doi.org/10.1016/0008-6223(95)00120-3 [Google Scholar]
  70. Lerf A., He H., Forster M., and Klinowski J. J. Phys. Chem. B, 1998, 102, (23), 4477 LINK https://doi.org/10.1021/jp9731821 [Google Scholar]
  71. Han Y., and Lu Y. Carbon, 2007, 45, (12), 2394 LINK https://doi.org/10.1016/j.carbon.2007.07.007 [Google Scholar]
  72. Talanov V. S., Talanova G. G., and Yatsimirskii K. B. Theor. Exp. Chem., 1996, 32, (4), 221 LINK https://doi.org/10.1007/BF01374447 [Google Scholar]
  73. Lee D. W., De Los Santos V. L., Seo J. W., Felix L. L., Bustamante A. D., Cole J. M., and Barnes C. H. W. J. Phys. Chem. B, 2010, 114, (17), 5723 LINK https://doi.org/10.1021/jp1002275 [Google Scholar]
  74. Gao W., Alemany L. B., Ci L., and Ajayan P. M. Nat. Chem., 2009, 1, (5), 403 LINK https://doi.org/10.1038/nchem.281 [Google Scholar]
  75. Efremenko I., and Sheintuch M. Langmuir, 2006, 22, (8), 3614 LINK https://doi.org/10.1021/la052100u [Google Scholar]
  76. Bandosz T. J., Jagiello J., and Schwarz J. A. Anal. Chem., 1992, 64, (8), 891 LINK https://doi.org/10.1021/ac00032a012 [Google Scholar]
  77. Noh J. S., and Schwarz J. A. Carbon, 1990, 28, (5), 675 LINK https://doi.org/10.1016/0008-6223(90)90069-B [Google Scholar]
  78. Figueiredo J. L., Pereira M. F. R., Freitas M. M. A., and Órfão J. J. M. Carbon, 1999, 37, (9), 1379 LINK https://doi.org/10.1016/S0008-6223(98)00333-9 [Google Scholar]
  79. Edie D. D. Carbon, 1998, 36, (4), 345 LINK https://doi.org/https://doi.org/10.1016/S0008-6223(97)00185-1 [Google Scholar]
  80. Acatay K., and Misra M. ‘Carbon Fibers’, in “Fiber Technology for Fiber-Reinforced Composites”, ed. Seydibeyoğlu M. Ö., Mohanty A. K., Elsevier Ltd, Duxford, UK, 2017, pp. 123151 LINK https://doi.org/10.1016/B978-0-08-101871-2.00006-0 [Google Scholar]
  81. Dresselhaus M. S., Dresselhaus G., Sugihara K., Spain I. L., and Goldberg H. A. ‘Synthesis of Graphite Fibers and Filaments’, in “Graphite Fibers and Filaments”, Ch. 2, Springer Series in Materials Science, Springer-Verlag, Berlin, Germany, 1988, pp. 1234 LINK https://doi.org/10.1007/978-3-642-83379-3_2 [Google Scholar]
  82. Bradley R. H., Ling X., and Sutherland I. Carbon, 1993, 31, (7), 1115 LINK https://doi.org/10.1016/0008-6223(93)90064-H [Google Scholar]
  83. Gulyás J., Földes E., Lázár A., and Pukánszky B. Compos. Part A: Appl. Sci. Manuf., 2001, 32, (3–4), 353 LINK https://doi.org/10.1016/S1359-835X(00)00123-8 [Google Scholar]
  84. Szabó L., Milotskyi R., Tsukegi T., Wada N., and Takahashi K. Appl. Surf. Sci., 2019, 494, 315 LINK https://doi.org/10.1016/j.apsusc.2019.07.185 [Google Scholar]
  85. Medalia A. I., Rivin D., and Sanders D. R. Sci. Total Environ., 1983, 31, (1), 1 LINK https://doi.org/10.1016/0048-9697(83)90053-0 [Google Scholar]
  86. Stanmore B. R., Brilhac J. F., and Gilot P. Carbon, 2001, 39, (15), 2247 LINK https://doi.org/10.1016/S0008-6223(01)00109-9 [Google Scholar]
  87. Su D. S., Jentoft R. E., Müller J.-O., Rothe D., Jacob E., Simpson C. D., Tomović Ž., Müllen K., Messerer A., Pöschl U., Niessner R., and Schlögl R. Catal. Today, 2004, 90, (1–2), 127 LINK https://doi.org/10.1016/j.cattod.2004.04.017 [Google Scholar]
  88. Hamad S., Mejias J. A., Lago S., Picaud S., and Hoang P. N. M. J. Phys. Chem. B, 2004, 108, (17), 5405 LINK https://doi.org/10.1021/jp037589j [Google Scholar]
  89. Hohenberg W. K. P., and Kohn W. Phys. Rev. B, 1964, 136, B 864 LINK https://doi.org/10.1103/PhysRev.136.B864 [Google Scholar]
  90. Kohn W., and Sham L. J. Phys. Rev., 1965, 140, (4A), A1133 LINK https://doi.org/10.1103/PhysRev.140.A1133 [Google Scholar]
  91. Becke A. D. J. Chem. Phys., 2014, 140, (18), 301 LINK https://doi.org/10.1063/1.4869598 [Google Scholar]
  92. Parr R. G., Yang W., Goodenough J. B., Halpern J., and Rowlinson J. S. “Density-Functional Theory of Atoms and Molecules”, eds. Breslow R., Oxford University Press Inc, New York, USA, 1989, 333 pp [Google Scholar]
  93. Levine I. N. “Quantum Chemistry”, 5th Edn., Prentice Hall, New Jersey, USA, 2000 [Google Scholar]
  94. Kurth S., and Perdew J. Int. J. Quantum Chem., 2000, 77, (5), 814 LINK https://doi.org/10.1002/(SICI)1097-461X(2000)77:5<814::AID-QUA3>3.0.CO;2-F [Google Scholar]
  95. Vosko S. H., Wilk L., and Nusair M. Can. J. Phys., 1980, 58, (8), 1200 LINK https://doi.org/10.1139/p80-159 [Google Scholar]
  96. Perdew J. P., and Zunger A. Phys. Rev. B, 1981, 23, (10), 5048 LINK https://doi.org/10.1103/PhysRevB.23.5048 [Google Scholar]
  97. Perdew J. P., and Wang Y. Phys. Rev. B, 1992, 45, (23), 13244 LINK https://doi.org/10.1103/PhysRevB.45.13244 [Google Scholar]
  98. Perdew J. P., Burke K., and Ernzerhof M. Phys. Rev. Lett., 1996, 77, (18), 3865 LINK https://doi.org/10.1103/PhysRevLett.77.3865 [Google Scholar]
  99. Hammer B., Hansen L. B., and Nørskov J. Phys. Rev. B, 1999, 59, (11), 7413 LINK https://doi.org/10.1103/PhysRevB.59.7413 [Google Scholar]
  100. Zhang Y., and Yang W. Phys. Rev. Lett., 1998, 80, (4), 890 LINK https://doi.org/10.1103/PhysRevLett.80.890 [Google Scholar]
  101. Csonka G. I., Perdew J. P., Ruzsinszky A., Philipsen P. H. T., Lebègue S., Paier J., Vydrov O. A., and Ángyán J. G. Phys. Rev. B, 2009, 79, (15), 155107 LINK https://doi.org/10.1103/PhysRevB.79.155107 [Google Scholar]
  102. Dion M., Rydberg H., Schröder E., Langreth D. C., and Lundqvist B. I. Phys. Rev. Lett., 2004, 92, (24), 1 LINK https://doi.org/10.1103/PhysRevLett.92.246401 [Google Scholar]
  103. Lee K., Murray É. D., Kong L., Lundqvist B. I., and Langreth D. C. Phys. Rev. B, 2010, 82, (8), 081101(R) LINK https://doi.org/10.1103/PhysRevB.82.081101 [Google Scholar]
  104. Thonhauser T., Cooper V. R., Li S., Puzder A., Hyldgaard P., and Langreth D. C. Phys. Rev. B, 2007, 76, (12), 125112 LINK https://doi.org/10.1103/PhysRevB.76.125112 [Google Scholar]
  105. Hamada I. Phys. Rev. B, 2014, 89, (12), 121103(R) LINK https://doi.org/10.1103/PhysRevB.89.121103 [Google Scholar]
  106. Zhao Y., and Truhlar D. G. J. Chem. Phys., 2006, 125, (19), 194101 LINK https://doi.org/10.1063/1.2370993 [Google Scholar]
  107. Zhao Y., and Truhlar D. G. Theor. Chem. Acc., 2008, 120, (1–3), 215 LINK https://doi.org/10.1007/s00214-007-0310-x [Google Scholar]
  108. Tao J., and Perdew J. P. Phys. Rev. Lett., 2003, 91, (14), 146401 LINK https://doi.org/10.1103/PhysRevLett.91.146401 [Google Scholar]
  109. Perdew J. P., Ruzsinszky A., Csonka G. I., Constantin L. A., and Sun J. Phys. Rev. Lett., 2009, 103, (2), 026403 LINK https://doi.org/10.1103/PhysRevLett.103.026403 [Google Scholar]
  110. Becke A. D. J. Chem. Phys., 1993, 98, (7), 5648 LINK https://doi.org/10.1063/1.464913 [Google Scholar]
  111. Cohen A. J., and Handy N. C. Mol. Phys., 2001, 99, (7), 607 LINK https://doi.org/10.1080/00268970010023435 [Google Scholar]
  112. Heyd J., Scuseria G. E., and Ernzerhof M. J. Chem. Phys., 2003, 118, (18), 8207 LINK https://doi.org/10.1063/1.1564060 [Google Scholar]
  113. Krukau A. V., Vydrov O. A., Izmaylov A. F., and Scuseria G. E. J. Chem. Phys., 2006, 125, (22), 224106 LINK https://doi.org/10.1063/1.2404663 [Google Scholar]
  114. Adamo C., and Barone V. J. Chem. Phys., 1999, 110, (13), 6158 LINK https://doi.org/10.1063/1.478522 [Google Scholar]
  115. Yanai T., Tew D. P., and Handy N. C. Chem. Phys. Lett., 2004, 393, (1–3), 51 LINK https://doi.org/10.1016/j.cplett.2004.06.011 [Google Scholar]
  116. Henderson T. M., Izmaylov A. F., Scalmani G., and Scuseria G. E. J. Chem. Phys., 2009, 131, (4), 044108 LINK https://doi.org/10.1063/1.3185673 [Google Scholar]
  117. Appy D., Lei H., Wang C.-Z., Tringides M. C., Liu D.-J., Evans J. W., and Thiel P. A. Prog. Surf. Sci., 2014, 89, (3–4), 219 LINK https://doi.org/10.1016/j.progsurf.2014.08.001 [Google Scholar]
  118. Duffy D. M., and Blackman J. A. Phys. Rev. B, 1998, 58, (11), 7443 LINK https://doi.org/10.1103/PhysRevB.58.7443 [Google Scholar]
  119. Duffy D. M., and Blackman J. A. Surf. Sci., 1998, 415, (3), L1016 LINK https://doi.org/10.1016/S0039-6028(98)00543-3 [Google Scholar]
  120. Delley B. J. Chem. Phys., 1990, 92, (1), 508 LINK https://doi.org/10.1063/1.458452 [Google Scholar]
  121. Delley B. J. Chem. Phys., 2000, 113, (18), 7756 LINK https://doi.org/10.1063/1.1316015 [Google Scholar]
  122. Valencia H., Gil A., and Frapper G. J. Phys. Chem. C, 2010, 114, (33), 14141 LINK https://doi.org/10.1021/jp103445v [Google Scholar]
  123. Hoffmann R., and Lipscomb W. N. J. Chem. Phys., 1962, 36, (8), 2179 LINK https://doi.org/10.1063/1.1732849 [Google Scholar]
  124. Hoffmann R., and Lipscomb W. N. J. Chem. Phys., 1962, 36, (12), 3489 LINK https://doi.org/10.1063/1.1732484 [Google Scholar]
  125. Hoffmann R. J. Chem. Phys., 1963, 39, (6), 1397 LINK https://doi.org/10.1063/1.1734456 [Google Scholar]
  126. Mealli C., and Proserpio D. M. J. Chem. Educ., 1990, 67, (5), 399 LINK https://doi.org/10.1021/ed067p399 [Google Scholar]
  127. Nakada K., and Ishii A. Solid State Commun., 2011, 151, (1), 13 LINK https://doi.org/10.1016/j.ssc.2010.10.036 [Google Scholar]
  128. Manadé M., Viñes F., and Illas F. Carbon, 2015, 95, 525 LINK https://doi.org/10.1016/j.carbon.2015.08.072 [Google Scholar]
  129. Duffy D. M., and Blackman J. A. Surf. Sci., 1998, 415, (3), L1016 LINK https://doi.org/10.1016/S0039-6028(98)00543-3 [Google Scholar]
  130. Jensen P., Blase X., and Ordejón P. Surf. Sci., 2004, 564, (1–3), 173 LINK https://doi.org/10.1016/j.susc.2004.06.188 [Google Scholar]
  131. Wang G. M., BelBruno J. J., Kenny S. D., and Smith R. Surf. Sci., 2003, 541, (1–3), 91 LINK https://doi.org/10.1016/S0039-6028(03)00837-9 [Google Scholar]
  132. Hardcastle T. P., Seabourne C. R., Zan R., Brydson R. M. D., Bangert U., Ramasse Q. M., Novoselov K. S., and Scott A. J. Phys. Rev. B: Condens. Matter Mater. Phys., 2013, 87, (19), 195430 LINK https://doi.org/10.1103/PhysRevB.87.195430 [Google Scholar]
  133. Tkatchenko A., and Scheffler M. Phys. Rev. Lett., 2009, 102, (7), 073005 LINK https://doi.org/10.1103/PhysRevLett.102.073005 [Google Scholar]
  134. Clark S. J., Segall M. D., Pickard C. J., Hasnip P. J., Probert M. I. J., Refson K., and Payne M. C. Z. Kristallogr., 2005, 220, 567 LINK https://doi.org/10.1524/zkri.220.5.567.65075 [Google Scholar]
  135. Engel J., Francis S., and Roldan A. Phys. Chem. Chem. Phys., 2019, 21, (35), 19011 LINK https://doi.org/10.1039/c9cp03066b [Google Scholar]
  136. Wei G.-F., and Liu Z. P. Chem. Sci., 2015, 6, (2), 1485 LINK https://doi.org/10.1039/c4sc02806f [Google Scholar]
  137. Bo Z., Guo X., Wei X., Yang H., Yan J., and Cen K. Phys. E: Low-Dimens. Syst. Nanostruct., 2019, 109, 156 LINK https://doi.org/10.1016/j.physe.2019.01.012 [Google Scholar]
  138. Caglar A., Düzenli D., Onal I., Tezsevin I., Sahin O., and Kivrak H. Int. J. Hydrogen Energy, 2020, 45, (1), 490 LINK https://doi.org/10.1016/j.ijhydene.2019.10.163 [Google Scholar]
  139. Montejo-Alvaro F., Oliva J., Zarate A., Herrera-Trejo M., Hdz-García H. M., and Mtz-Enriquez A. I. Phys. E: Low-Dimens. Syst. Nanostruct., 2019, 110, 52 LINK https://doi.org/10.1016/j.physe.2019.02.005 [Google Scholar]
  140. Banhart F., Kotakoski J., and Krasheninnikov A. V. ACS Nano, 2011, 5, (1), 26 LINK https://doi.org/10.1021/nn102598m [Google Scholar]
  141. Zan R., Ramasse Q. M., Bangert U., and Novoselov K. S. Nano Lett., 2012, 12, (8), 3936 LINK https://doi.org/10.1021/nl300985q [Google Scholar]
  142. Krasheninnikov A. V., Lehtinen P. O., Foster A. S., Pyykkö P., and Nieminen R. M. Phys. Rev. Lett., 2009, 102, (12), 126807 LINK https://doi.org/10.1103/PhysRevLett.102.126807 [Google Scholar]
  143. Krasheninnikov A. V., and Nieminen R. M. Theor. Chem. Acc., 2011, 129, (3–5), 625 LINK https://doi.org/10.1007/s00214-011-0910-3 [Google Scholar]
  144. Sen D., Thapa R., and Chattopadhyay K. K. Int. J. Hydrogen Energy, 2013, 38, (7), 3041 LINK https://doi.org/10.1016/j.ijhydene.2012.12.113 [Google Scholar]
  145. Hamamoto Y., Wella S. A., Inagaki K., Abild-Pedersen F., Bligaard T., Hamada I., and Morikawa Y. Phys. Rev. B, 2020, 102, (7), 075408 LINK https://doi.org/10.1103/PhysRevB.102.075408 [Google Scholar]
  146. Wang H., Maiyalagan T., and Wang X. ACS Catal., 2012, 2, (5), 781 LINK https://doi.org/10.1021/cs200652y [Google Scholar]
  147. Zuo Z., Jiang Z., and Manthiram A. J. Mater. Chem. A, 2013, 1, (43), 13476 LINK https://doi.org/10.1039/c3ta13049e [Google Scholar]
  148. Pinto H., and Markevich A. Beilstein J. Nanotechnol., 2014, 5, 1842 LINK https://doi.org/10.3762/bjnano.5.195 [Google Scholar]
  149. Ren X., Zhu J., Du F., Liu J., and Zhang W. J. Phys. Chem. C, 2014, 118, (39), 22412 LINK https://doi.org/10.1021/jp505876z [Google Scholar]
  150. Sathe B. R., Zou X., and Asefa T. Catal. Sci. Technol., 2014, 4, (7), 2023 LINK https://doi.org/10.1039/c4cy00075g [Google Scholar]
  151. Putri L. K., Ong W.-J., Chang W. S., and Chai S.-P. Appl. Surf. Sci., 2015, 358, (A), 2 LINK https://doi.org/10.1016/j.apsusc.2015.08.177 [Google Scholar]
  152. Xu C., Su Y., Liu D., and He X. Phys. Chem. Chem. Phys., 2015, 17, (38), 25440 LINK https://doi.org/10.1039/c5cp04211a [Google Scholar]
  153. Li X. F., Lian K.-Y., Liu L., Wu Y., Qiu Q., Jiang J., Deng M., and Luo Y. Sci. Rep., 2016, 6, 23495 LINK https://doi.org/10.1038/srep23495 [Google Scholar]
  154. Park S., Hu Y., Hwang J. O., Lee E.-S., Casabianca L. B., Cai W., Potts J. R., Ha H.-W., Chen S., Oh J., Kim S. O., Kim Y.-H., Ishii Y., and Ruoff R. S. Nat. Commun., 2012, 3, 638 LINK https://doi.org/10.1038/ncomms1643 [Google Scholar]
  155. Agnoli S., and Favaro M. J. Mater. Chem. A, 2016, 4, (14), 5002 LINK https://doi.org/10.1039/c5ta10599d [Google Scholar]
  156. Zhang L., and Xia Z. J. Phys. Chem. C, 2011, 115, (22), 11170 LINK https://doi.org/10.1021/jp201991j [Google Scholar]
  157. Ullah S., Denis P. A., and Sato F. ChemPhysChem, 2017, 18, (14), 1864 LINK https://doi.org/10.1002/cphc.201700278 [Google Scholar]
  158. Zhou Q., Yuan L., Yang X., Fu Z., Tang Y., Wang C., and Zhang H. Chem. Phys., 2014, 440, 80 LINK https://doi.org/10.1016/j.chemphys.2014.06.016 [Google Scholar]
  159. Wu G., Li D., Dai C., Wang D., and Li N. Langmuir, 2008, 24, (7), 3566 LINK https://doi.org/10.1021/la7029278 [Google Scholar]
  160. Groves M. N., Chan A. S. W., Malardier-Jugroot C., and Jugroot M. Chem. Phys. Lett., 2009, 481, (4–6), 214 LINK https://doi.org/10.1016/j.cplett.2009.09.074 [Google Scholar]
  161. Kropp T., and Mavrikakis M. ACS Catal., 2019, 9, (8), 6864 LINK https://doi.org/10.1021/acscatal.9b01944 [Google Scholar]
  162. Ni J., Quintana M., and Song S. Phys. E: Low-Dimens. Syst. Nanostruct., 2020, 116, 113768 LINK https://doi.org/10.1016/j.physe.2019.113768 [Google Scholar]
  163. Chutia A., Zhu Z., Sahnoun R., Tsuboi H., Koyama M., Hatekeyama N., Endou A., Takaba H., Kubo M., Del Carpio C. A., and Miyamoto A. Jpn J. Appl. Phys., 2008, 47, (4S), 3147 LINK https://doi.org/10.1143/jjap.47.3147 [Google Scholar]
  164. Chutia A., Sahnoun R., Deka R. C., Zhu Z. G., Tsuboi H., Takaba H., and Miyamoto A. Phys. B: Condensed Matter, 2011, 406, (9), 1665 LINK https://doi.org/10.1016/j.physb.2011.01.012 [Google Scholar]
  165. Chutia A., Cimpoesu F., Tsuboi H., and Miyamoto A. Chem. Phys. Lett., 2011, 503, (1–3), 91 LINK https://doi.org/10.1016/j.cplett.2010.12.057 [Google Scholar]
  166. Chen Y., Zhang W., Yang S., Hobiny A., Alsaedi A., and Wang X. Sci. China Chem., 2016, 59, (4), 412 LINK https://doi.org/10.1007/s11426-015-5549-9 [Google Scholar]
  167. Kim S., Kim K. C., Lee S. W., and Jang S. S. Phys. Chem. Chem. Phys., 2016, 18, (30), 20600 LINK https://doi.org/10.1039/c6cp02692c [Google Scholar]
  168. Jin N., Han J., Wang H., Zhu X., and Ge Q. Int. J. Hydrogen Energy, 2015, 40, (15), 5126 LINK https://doi.org/10.1016/j.ijhydene.2015.02.101 [Google Scholar]
  169. Cui C., Sun M., Zhu X., Han J., Wang H., and Ge Q. Catalysts, 2020, 10, (2), 156 LINK https://doi.org/10.3390/catal10020156 [Google Scholar]
  170. Sahoo L., Mondal S., Gloskovskii A., Chutia A., and Gautam U. K. J. Mater. Chem. A, 2021, 9, 10966 LINK https://doi.org/10.1039/d0ta12618g [Google Scholar]
  171. Rout L., Kumar A., Dhaka R. S., Reddy G. N., Giri S., and Dash P. Appl. Catal. A: Gen., 2017, 538, 107 LINK https://doi.org/10.1016/j.apcata.2017.03.017 [Google Scholar]
  172. Caro M. A., Aarva A., Deringer V. L., Csányi G., and Laurila T. Chem. Mater., 2018, 30, (21), 7446 LINK https://doi.org/10.1021/acs.chemmater.8b03353 [Google Scholar]
  173. Ranganathan R., Rokkam S., Desai T., and Keblinski P. Carbon, 2017, 113, 87 LINK https://doi.org/10.1016/j.carbon.2016.11.024 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651322X16212512135401
Loading
/content/journals/10.1595/205651322X16212512135401
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error