Skip to content
1887
Volume 66, Issue 1
  • ISSN: 2056-5135

Abstract

Photoelectrocatalysis offers a way to generate hydrogen and oxygen from water under ambient light. Here, a series of hydrogen evolving photocatalysts based on a ruthenium(II) bipyridyl sensitiser covalently linked to platinum or palladium catalytic centres were adsorbed onto mesoporous nickel oxide and tested for hydrogen evolution in a photoelectrochemical half-cell. The electrolyte buffer was varied and certain catalysts performed better at pH 7 than pH 3 (for example, PC3 with photocurrent density = 8 μA cm–2), which is encouraging for coupling with an oxygen evolving photoanode in tandem water splitting devices. The molecular catalysts were surprisingly robust when integrated into devices, but the overall performance appears to be limited by rapid recombination at the photocatalyst|NiO interface. Our findings provide further insight towards basic design principles for hydrogen evolving photoelectrochemical systems and guidelines for further development.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16269403109779
2021-07-20
2024-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/1/Gibson_16a_Imp.html?itemId=/content/journals/10.1595/205651322X16269403109779&mimeType=html&fmt=ahah

References

  1. D. Gust, T. A. Moore, A. L. Moore, Acc. Chem. Res., 2009, 42, (12), 1890 LINK https://doi.org/10.1021/ar900209b [Google Scholar]
  2. T. J. Meyer, Acc. Chem. Res., 1989, 22, (5), 163 LINK https://doi.org/10.1021/ar00161a001 [Google Scholar]
  3. M. Graetzel, Acc. Chem. Res., 1981, 14, (12), 376 LINK https://doi.org/10.1021/ar00072a003 [Google Scholar]
  4. Y. Tachibana, L. Vayssieres, J. R. Durrant, Nat. Photonics, 2012, 6, (8), 511 LINK https://doi.org/10.1038/nphoton.2012.175 [Google Scholar]
  5. M. R. Wasielewski, Chem. Rev., 1992, 92, (3), 435 LINK https://doi.org/10.1021/cr00011a005 [Google Scholar]
  6. A. C. Benniston, A. Harriman, S. Yang, Phil. Trans. R. Soc. A, 2013, 371, (1995), 20120334 LINK https://doi.org/10.1098/rsta.2012.0334 [Google Scholar]
  7. A. Kudo, Y. Miseki, Chem. Soc. Rev., 2009, 38, (1), 253 LINK https://doi.org/10.1039/b800489g [Google Scholar]
  8. X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, J. Am. Chem. Soc., 2009, 131, (5), 1680 LINK https://doi.org/10.1021/ja809307s [Google Scholar]
  9. A. J. Bard, J. Photochem., 1979, 10, (1), 59 LINK https://doi.org/10.1016/0047-2670(79)80037-4 [Google Scholar]
  10. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, X. Chen, J. Mater. Chem. A, 2015, 3, (6), 2485 LINK https://doi.org/10.1039/c4ta04461d [Google Scholar]
  11. T. Zhang, W. Lin, Chem. Soc. Rev., 2014, 43, (16), 5982 LINK https://doi.org/10.1039/c4cs00103f [Google Scholar]
  12. S. W. Gersten, G. J. Samuels, T. J. Meyer, J. Am. Chem. Soc., 1982, 104, (14), 4029 LINK https://doi.org/10.1021/ja00378a053 [Google Scholar]
  13. A. Fihri, V. Artero, M. Razavet, C. Baffert, W. Leibl, M. Fontecave, Angew. Chem. Int. Ed., 2008, 47, (3), 564 LINK https://doi.org/10.1002/anie.200702953 [Google Scholar]
  14. I. Roger, M. A. Shipman, M. D. Symes, Nat. Rev. Chem., 2017, 1, 0003 LINK https://doi.org/10.1038/s41570-016-0003 [Google Scholar]
  15. N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA, 2006, 103, (43), 15729 LINK https://doi.org/10.1073/pnas.0603395103 [Google Scholar]
  16. A. W. Adamson, J. N. Demas, J. Am. Chem. Soc., 1971, 93, (7), 1800 LINK https://doi.org/10.1021/ja00736a049 [Google Scholar]
  17. J. Van Houten, R. J. Watts, J. Am. Chem. Soc., 1976, 98, (16), 4853 LINK https://doi.org/10.1021/ja00432a028 [Google Scholar]
  18. J. V. Caspar, T. J. Meyer, Inorg. Chem., 1983, 22, (17), 2444 LINK https://doi.org/10.1021/ic00159a021 [Google Scholar]
  19. C. Creutz, N. Sutin, Inorg. Chem., 1976, 15, (2), 496 LINK https://doi.org/10.1021/ic50156a062 [Google Scholar]
  20. T. Kowacs, Q. Pan, P. Lang, L. O’Reilly, S. Rau, W. R. Browne, M. T. Pryce, A. Huijser, J. G. Vos, Faraday Discuss., 2015, 185, 143 LINK https://doi.org/10.1039/c5fd00068h [Google Scholar]
  21. L. Sun, L. Hammarström, B. Åkermark, S. Styring, Chem. Soc. Rev., 2001, 30, (1), 36 LINK https://doi.org/10.1039/a801490f [Google Scholar]
  22. J.-M. Lehn, Science, 1985, 227, (4689), 849 LINK https://doi.org/10.1126/science.227.4689.849 [Google Scholar]
  23. T. Tachikawa, M. Fujitsuka, T. Majima, J. Phys. Chem. C, 2007, 111, (14), 5259 LINK https://doi.org/10.1021/jp069005u [Google Scholar]
  24. W. J. Youngblood, S.-H. A. Lee, K. Maeda, T. E. Mallouk, Acc. Chem. Res., 2009, 42, (12), 1966 LINK https://doi.org/10.1021/ar9002398 [Google Scholar]
  25. J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio, N. Y. M. Iha, J. L. Templeton, T. J. Meyer, Acc. Chem. Res., 2009, 42, (12), 1954 LINK https://doi.org/10.1021/ar9001526 [Google Scholar]
  26. M. K. Brennaman, R. J. Dillon, L. Alibabaei, M. K. Gish, C. J. Dares, D. L. Ashford, R. L. House, G. J. Meyer, J. M. Papanikolas, T. J. Meyer, J. Am. Chem. Soc., 2016, 138, (40), 13085 LINK https://doi.org/10.1021/jacs.6b06466 [Google Scholar]
  27. B. Shan, A. Nayak, R. N. Sampaio, M. S. Eberhart, L. Troian-Gautier, M. K. Brennaman, G. J. Meyer, T. J. Meyer, Energy Environ. Sci., 2018, 11, (2), 447 LINK https://doi.org/10.1039/c7ee03115g [Google Scholar]
  28. E. A. Gibson, Chem. Soc. Rev., 2017, 46, (20), 6194 LINK https://doi.org/10.1039/c7cs00322f [Google Scholar]
  29. Z. Yu, F. Li, L. Sun, Energy Environ. Sci., 2015, 8, (3), 760 LINK https://doi.org/10.1039/c4ee03565h [Google Scholar]
  30. Z. Ji, M. He, Z. Huang, U. Ozkan, Y. Wu, J. Am. Chem. Soc., 2013, 135, (32), 11696 LINK https://doi.org/10.1021/ja404525e [Google Scholar]
  31. J. R. Swierk, T. E. Mallouk, Chem. Soc. Rev., 2013, 42, (6), 2357 LINK https://doi.org/10.1039/c2cs35246j [Google Scholar]
  32. C. D. Windle, H. Kumagai, M. Higashi, R. Brisse, S. Bold, B. Jousselme, M. Chavarot-Kerlidou, K. Maeda, R. Abe, O. Ishitani, V. Artero, J. Am. Chem. Soc., 2019, 141, (24), 9593 LINK https://doi.org/10.1021/jacs.9b02521 [Google Scholar]
  33. N. Kaeffer, C. D. Windle, R. Brisse, C. Gablin, D. Leonard, B. Jousselme, M. Chavarot-Kerlidou, V. Artero, Chem. Sci., 2018, 9, (32), 6721 LINK https://doi.org/10.1039/c8sc00899j [Google Scholar]
  34. K. L. Materna, N. Lalaoui, J. A. Laureanti, A. P. Walsh, B. P. Rimgard, R. Lomoth, A. Thapper, S. Ott, W. J. Shaw, H. Tian, L. Hammarström, ACS Appl. Mater. Interfaces, 2019, 12, (4), 4501 LINK https://doi.org/10.1021/acsami.9b19003 [Google Scholar]
  35. S. Lyu, J. Massin, M. Pavone, A. B. Muñoz-García, C. Labrugère, T. Toupance, M. Chavarot-Kerlidou, V. Artero, C. Olivier, ACS Appl. Energy Mater., 2019, 2, (7), 4971 LINK https://doi.org/10.1021/acsaem.9b00652 [Google Scholar]
  36. N. Põldme, L. O’Reilly, I. Fletcher, J. Portoles, I.V Sazanovich, M. Towrie, C. Long, J. G. Vos, M. T. Pryce, E. A. Gibson, Chem. Sci., 2019, 10, (1), 99 LINK https://doi.org/10.1039/c8sc02575d [Google Scholar]
  37. C. J. Wood, G. H. Summers, C. A. Clark, N. Kaeffer, M. Braeutigam, L. R. Carbone, L. D’Amario, K. Fan, Y. Farré, S. Narbey, F. Oswald, L. A. Stevens, C. D. J. Parmenter, M. W. Fay, A. La Torre, C. E. Snape, B. Dietzek, D. Dini, L. Hammarström, Y. Pellegrin, F. Odobel, L. Sun, V. Artero, E. A. Gibson, Phys. Chem. Chem. Phys., 2016, 18, (16), 10727 LINK https://doi.org/10.1039/c5cp05326a [Google Scholar]
  38. M. Abrahamsson, P. G. Johansson, S. Ardo, A. Kopecky, E. Galoppini, G. J. Meyer, J. Phys. Chem. Lett., 2010, 1, (11), 1725 LINK https://doi.org/10.1021/jz100546y [Google Scholar]
  39. R. Bensasson, C. Salet, V. Balzani, J. Am. Chem. Soc., 1976, 98, (12), 3722 LINK https://doi.org/10.1021/ja00428a064 [Google Scholar]
  40. F. De Angelis, S. Fantacci, R. Gebauer, J. Phys. Chem. Lett., 2011, 2, (7), 813 LINK https://doi.org/10.1021/jz200191u [Google Scholar]
  41. F. De Angelis, S. Fantacci, E. Mosconi, M. K. Nazeeruddin, M. Grätzel, J. Phys. Chem. C, 2011, 115, (17), 8825 LINK https://doi.org/10.1021/jp111949a [Google Scholar]
  42. M. Abrahamsson, J. H. J. Hedberg, H.-C. Becker, A. Staniszewski, W. H. Pearson, W. B. Heuer, G. J. Meyer, ChemPhysChem, 2014, 15, (6), 1154 LINK https://doi.org/10.1002/cphc.201301193 [Google Scholar]
  43. L. D’Amario, L. J. Antila, B. Pettersson Rimgard, G. Boschloo, L. Hammarström, J. Phys. Chem. Lett., 2015, 6, (5), 779 LINK https://doi.org/10.1021/acs.jpclett.5b00048 [Google Scholar]
  44. R. J. Dillon, L. Alibabaei, T. J. Meyer, J. M. Papanikolas, ACS Appl. Mater. Interfaces, 2017, 9, (32), 26786 LINK https://doi.org/10.1021/acsami.7b05856 [Google Scholar]
  45. G. Rothenberger, D. Fitzmaurice, M. Graetzel, J. Phys. Chem., 1992, 96, (14), 5983 LINK https://doi.org/10.1021/j100193a062 [Google Scholar]
  46. J. Massin, M. Bräutigam, N. Kaeffer, N. Queyriaux, M. J. Field, F. H. Schacher, J. Popp, M. Chavarot-Kerlidou, B. Dietzek, V. Artero, Interface Focus, 2015, 5, (3), 20140083 LINK https://doi.org/10.1098/rsfs.2014.0083 [Google Scholar]
  47. B. Shan, A. K. Das, S. Marquard, B. H. Farnum, D. Wang, R. M. Bullock, T. J. Meyer, Energy Environ. Sci., 2016, 9, (12), 3693 LINK https://doi.org/10.1039/c6ee02903e [Google Scholar]
  48. D. C. Engel, G. F. Versteeg, W. P. M. van Swaaij, J. Chem. Eng. Data, 1996, 41, (3), 546 LINK https://doi.org/10.1021/je9503012 [Google Scholar]
  49. T. E. Crozier, S. Yamamoto, J. Chem. Eng. Data, 1974, 19, (3), 242 LINK https://doi.org/10.1021/je60062a007 [Google Scholar]
  50. K. A. Click, D. R. Beauchamp, Z. Huang, W. Chen, Y. Wu, J. Am. Chem. Soc., 2016, 138, (4), 1174 LINK https://doi.org/10.1021/jacs.5b07723 [Google Scholar]
  51. C. E. Castillo, M. Gennari, T. Stoll, J. Fortage, A. Deronzier, M.-N. Collomb, M. Sandroni, F. Légalité, E. Blart, Y. Pellegrin, C. Delacote, M. Boujtita, F. Odobel, P. Rannou, S. Sadki, J. Phys. Chem. C, 2015, 119, (11), 5806 LINK https://doi.org/10.1021/jp511469f [Google Scholar]
  52. G. Boschloo, D. Fitzmaurice, J. Phys. Chem. B, 1999, 103, (12), 2228 LINK https://doi.org/10.1021/jp984414e [Google Scholar]
  53. A. L. Smeigh, L. Le Pleux, J. Fortage, Y. Pellegrin, E. Blart, F. Odobel, L. Hammarström, Chem. Commun., 2012, 48, (5), 678 LINK https://doi.org/10.1039/c1cc16144j [Google Scholar]
  54. N. T. Z. Potts, T. Sloboda, M. Wächtler, R. A. Wahyuono, V. D’Annibale, B. Dietzek, U. B. Cappel, E. A. Gibson, J. Chem. Phys., 2020, 153, (18), 184704 LINK https://doi.org/10.1063/5.0023000 [Google Scholar]
  55. F. Li, K. Fan, B. Xu, E. Gabrielsson, Q. Daniel, L. Li, L. Sun, J. Am. Chem. Soc., 2015, 137, (28), 9153 LINK https://doi.org/10.1021/jacs.5b04856 [Google Scholar]
  56. C. Decavoli, C. L. Boldrini, N. Manfredi, A. Abbotto, Eur. J. Inorg. Chem., 2020, (11–12), 978 LINK https://doi.org/10.1002/ejic.202000026 [Google Scholar]
  57. C. E. Creissen, J. Warnan, E. Reisner, Chem. Sci., 2018, 9, (6), 1439 LINK https://doi.org/10.1039/c7sc04476c [Google Scholar]
  58. J. Karlsson, E. Gibson, A. A. Seddon, ‘Photoelectrochemical Hydrogen Evolution Using Dye-Sensitised NiO: Environmental Effects and Photocatalyst Design Considerations’, 2021 LINK https://doi.org/10.25405/data.ncl.c.5490753.v1 [Google Scholar]
/content/journals/10.1595/205651322X16269403109779
Loading
/content/journals/10.1595/205651322X16269403109779
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test