Skip to content
Volume 66, Issue 1
  • ISSN: 2056-5135


Photoelectrocatalysis offers a way to generate hydrogen and oxygen from water under ambient light. Here, a series of hydrogen evolving photocatalysts based on a ruthenium(II) bipyridyl sensitiser covalently linked to platinum or palladium catalytic centres were adsorbed onto mesoporous nickel oxide and tested for hydrogen evolution in a photoelectrochemical half-cell. The electrolyte buffer was varied and certain catalysts performed better at pH 7 than pH 3 (for example, PC3 with photocurrent density = 8 μA cm–2), which is encouraging for coupling with an oxygen evolving photoanode in tandem water splitting devices. The molecular catalysts were surprisingly robust when integrated into devices, but the overall performance appears to be limited by rapid recombination at the photocatalyst|NiO interface. Our findings provide further insight towards basic design principles for hydrogen evolving photoelectrochemical systems and guidelines for further development.


Article metrics loading...

Loading full text...

Full text loading...



  1. Gust D., Moore T. A., and Moore A. L. Acc. Chem. Res., 2009, 42, (12), 1890 LINK [Google Scholar]
  2. Meyer T. J. Acc. Chem. Res., 1989, 22, (5), 163 LINK [Google Scholar]
  3. Graetzel M. Acc. Chem. Res., 1981, 14, (12), 376 LINK [Google Scholar]
  4. Tachibana Y., Vayssieres L., and Durrant J. R. Nat. Photonics, 2012, 6, (8), 511 LINK [Google Scholar]
  5. Wasielewski M. R. Chem. Rev., 1992, 92, (3), 435 LINK [Google Scholar]
  6. Benniston A. C., Harriman A., and Yang S. Phil. Trans. R. Soc. A, 2013, 371, (1995), 20120334 LINK [Google Scholar]
  7. Kudo A., and Miseki Y. Chem. Soc. Rev., 2009, 38, (1), 253 LINK [Google Scholar]
  8. Wang X., Maeda K., Chen X., Takanabe K., Domen K., Hou Y., Fu X., and Antonietti M. J. Am. Chem. Soc., 2009, 131, (5), 1680 LINK [Google Scholar]
  9. Bard A. J. J. Photochem., 1979, 10, (1), 59 LINK [Google Scholar]
  10. Li X., Yu J., Low J., Fang Y., Xiao J., and Chen X. J. Mater. Chem. A, 2015, 3, (6), 2485 LINK [Google Scholar]
  11. Zhang T., and Lin W. Chem. Soc. Rev., 2014, 43, (16), 5982 LINK [Google Scholar]
  12. Gersten S. W., Samuels G. J., and Meyer T. J. J. Am. Chem. Soc., 1982, 104, (14), 4029 LINK [Google Scholar]
  13. Fihri A., Artero V., Razavet M., Baffert C., Leibl W., and Fontecave M. Angew. Chem. Int. Ed., 2008, 47, (3), 564 LINK [Google Scholar]
  14. Roger I., Shipman M. A., and Symes M. D. Nat. Rev. Chem., 2017, 1, 0003 LINK [Google Scholar]
  15. Lewis N. S., and Nocera D. G. Proc. Natl. Acad. Sci. USA, 2006, 103, (43), 15729 LINK [Google Scholar]
  16. Adamson A. W., and Demas J. N. J. Am. Chem. Soc., 1971, 93, (7), 1800 LINK [Google Scholar]
  17. Van Houten J., and Watts R. J. J. Am. Chem. Soc., 1976, 98, (16), 4853 LINK [Google Scholar]
  18. Caspar J. V., and Meyer T. J. Inorg. Chem., 1983, 22, (17), 2444 LINK [Google Scholar]
  19. Creutz C., and Sutin N. Inorg. Chem., 1976, 15, (2), 496 LINK [Google Scholar]
  20. Kowacs T., Pan Q., Lang P., O’Reilly L., Rau S., Browne W. R., Pryce M. T., Huijser A., and Vos J. G. Faraday Discuss., 2015, 185, 143 LINK [Google Scholar]
  21. Sun L., Hammarström L., Åkermark B., and Styring S. Chem. Soc. Rev., 2001, 30, (1), 36 LINK [Google Scholar]
  22. Lehn J.-M. Science, 1985, 227, (4689), 849 LINK [Google Scholar]
  23. Tachikawa T., Fujitsuka M., and Majima T. J. Phys. Chem. C, 2007, 111, (14), 5259 LINK [Google Scholar]
  24. Youngblood W. J., Lee S.-H. A., Maeda K., and Mallouk T. E. Acc. Chem. Res., 2009, 42, (12), 1966 LINK [Google Scholar]
  25. Concepcion J. J., Jurss J. W., Brennaman M. K., Hoertz P. G., Patrocinio A. O. T., Iha N. Y. M., Templeton J. L., and Meyer T. J. Acc. Chem. Res., 2009, 42, (12), 1954 LINK [Google Scholar]
  26. Brennaman M. K., Dillon R. J., Alibabaei L., Gish M. K., Dares C. J., Ashford D. L., House R. L., Meyer G. J., Papanikolas J. M., and Meyer T. J. J. Am. Chem. Soc., 2016, 138, (40), 13085 LINK [Google Scholar]
  27. Shan B., Nayak A., Sampaio R. N., Eberhart M. S., Troian-Gautier L., Brennaman M. K., Meyer G. J., and Meyer T. J. Energy Environ. Sci., 2018, 11, (2), 447 LINK [Google Scholar]
  28. Gibson E. A. Chem. Soc. Rev., 2017, 46, (20), 6194 LINK [Google Scholar]
  29. Yu Z., Li F., and Sun L. Energy Environ. Sci., 2015, 8, (3), 760 LINK [Google Scholar]
  30. Ji Z., He M., Huang Z., Ozkan U., and Wu Y. J. Am. Chem. Soc., 2013, 135, (32), 11696 LINK [Google Scholar]
  31. Swierk J. R., and Mallouk T. E. Chem. Soc. Rev., 2013, 42, (6), 2357 LINK [Google Scholar]
  32. Windle C. D., Kumagai H., Higashi M., Brisse R., Bold S., Jousselme B., Chavarot-Kerlidou M., Maeda K., Abe R., Ishitani O., and Artero V. J. Am. Chem. Soc., 2019, 141, (24), 9593 LINK [Google Scholar]
  33. Kaeffer N., Windle C. D., Brisse R., Gablin C., Leonard D., Jousselme B., Chavarot-Kerlidou M., and Artero V. Chem. Sci., 2018, 9, (32), 6721 LINK [Google Scholar]
  34. Materna K. L., Lalaoui N., Laureanti J. A., Walsh A. P., Rimgard B. P., Lomoth R., Thapper A., Ott S., Shaw W. J., Tian H., and Hammarström L. ACS Appl. Mater. Interfaces, 2019, 12, (4), 4501 LINK [Google Scholar]
  35. Lyu S., Massin J., Pavone M., Muñoz-García A. B., Labrugère C., Toupance T., Chavarot-Kerlidou M., Artero V., and Olivier C. ACS Appl. Energy Mater., 2019, 2, (7), 4971 LINK [Google Scholar]
  36. Põldme N., O’Reilly L., Fletcher I., Portoles J., Sazanovich I.V, Towrie M., Long C., Vos J. G., Pryce M. T., and Gibson E. A. Chem. Sci., 2019, 10, (1), 99 LINK [Google Scholar]
  37. Wood C. J., Summers G. H., Clark C. A., Kaeffer N., Braeutigam M., Carbone L. R., D’Amario L., Fan K., Farré Y., Narbey S., Oswald F., Stevens L. A., Parmenter C. D. J., Fay M. W., La Torre A., Snape C. E., Dietzek B., Dini D., Hammarström L., Pellegrin Y., Odobel F., Sun L., Artero V., and Gibson E. A. Phys. Chem. Chem. Phys., 2016, 18, (16), 10727 LINK [Google Scholar]
  38. Abrahamsson M., Johansson P. G., Ardo S., Kopecky A., Galoppini E., and Meyer G. J. J. Phys. Chem. Lett., 2010, 1, (11), 1725 LINK [Google Scholar]
  39. Bensasson R., Salet C., and Balzani V. J. Am. Chem. Soc., 1976, 98, (12), 3722 LINK [Google Scholar]
  40. De Angelis F., Fantacci S., and Gebauer R. J. Phys. Chem. Lett., 2011, 2, (7), 813 LINK [Google Scholar]
  41. De Angelis F., Fantacci S., Mosconi E., Nazeeruddin M. K., and Grätzel M. J. Phys. Chem. C, 2011, 115, (17), 8825 LINK [Google Scholar]
  42. Abrahamsson M., Hedberg J. H. J., Becker H.-C., Staniszewski A., Pearson W. H., Heuer W. B., and Meyer G. J. ChemPhysChem, 2014, 15, (6), 1154 LINK [Google Scholar]
  43. D’Amario L., Antila L. J., Pettersson Rimgard B., Boschloo G., and Hammarström L. J. Phys. Chem. Lett., 2015, 6, (5), 779 LINK [Google Scholar]
  44. Dillon R. J., Alibabaei L., Meyer T. J., and Papanikolas J. M. ACS Appl. Mater. Interfaces, 2017, 9, (32), 26786 LINK [Google Scholar]
  45. Rothenberger G., Fitzmaurice D., and Graetzel M. J. Phys. Chem., 1992, 96, (14), 5983 LINK [Google Scholar]
  46. Massin J., Bräutigam M., Kaeffer N., Queyriaux N., Field M. J., Schacher F. H., Popp J., Chavarot-Kerlidou M., Dietzek B., and Artero V. Interface Focus, 2015, 5, (3), 20140083 LINK [Google Scholar]
  47. Shan B., Das A. K., Marquard S., Farnum B. H., Wang D., Bullock R. M., and Meyer T. J. Energy Environ. Sci., 2016, 9, (12), 3693 LINK [Google Scholar]
  48. Engel D. C., Versteeg G. F., and van Swaaij W. P. M. J. Chem. Eng. Data, 1996, 41, (3), 546 LINK [Google Scholar]
  49. Crozier T. E., and Yamamoto S. J. Chem. Eng. Data, 1974, 19, (3), 242 LINK [Google Scholar]
  50. Click K. A., Beauchamp D. R., Huang Z., Chen W., and Wu Y. J. Am. Chem. Soc., 2016, 138, (4), 1174 LINK [Google Scholar]
  51. Castillo C. E., Gennari M., Stoll T., Fortage J., Deronzier A., Collomb M.-N., Sandroni M., Légalité F., Blart E., Pellegrin Y., Delacote C., Boujtita M., Odobel F., Rannou P., and Sadki S. J. Phys. Chem. C, 2015, 119, (11), 5806 LINK [Google Scholar]
  52. Boschloo G., and Fitzmaurice D. J. Phys. Chem. B, 1999, 103, (12), 2228 LINK [Google Scholar]
  53. Smeigh A. L., Le Pleux L., Fortage J., Pellegrin Y., Blart E., Odobel F., and Hammarström L. Chem. Commun., 2012, 48, (5), 678 LINK [Google Scholar]
  54. Potts N. T. Z., Sloboda T., Wächtler M., Wahyuono R. A., D’Annibale V., Dietzek B., Cappel U. B., and Gibson E. A. J. Chem. Phys., 2020, 153, (18), 184704 LINK [Google Scholar]
  55. Li F., Fan K., Xu B., Gabrielsson E., Daniel Q., Li L., and Sun L. J. Am. Chem. Soc., 2015, 137, (28), 9153 LINK [Google Scholar]
  56. Decavoli C., Boldrini C. L., Manfredi N., and Abbotto A. Eur. J. Inorg. Chem., 2020, (11–12), 978 LINK [Google Scholar]
  57. Creissen C. E., Warnan J., and Reisner E. Chem. Sci., 2018, 9, (6), 1439 LINK [Google Scholar]
  58. Karlsson J., Gibson E., and Seddon A. A. ‘Photoelectrochemical Hydrogen Evolution Using Dye-Sensitised NiO: Environmental Effects and Photocatalyst Design Considerations’, 2021 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error