-
oa Discrete Simulation Model of Industrial Natural Gas Primary Reformer in Ammonia Production and Related Evaluation of the Catalyst Performance
Optimising catalyst performance and lifetime
- Source: Johnson Matthey Technology Review, Volume 66, Issue 2, Apr 2022, p. 137 - 153
-
- 04 Mar 2021
- 26 May 2021
- 28 May 2021
Abstract
The catalytic steam reforming process of natural gas consumes up to approximately 60% of overall energy used in ammonia production. The optimisation of the reforming catalyst performance can significantly improve the operation of the whole ammonia plant. An online model uses actual process parameters to optimise and reconcile the data of primary reforming products with possibility to predict the catalyst performance. The model uses a combination of commercial simulator and open-source code based on scripts and functions in the form of m-files to calculate various physical properties of reacting gases. The optimisation of steady-state flowsheet, based on real-time plant data from the distributed control system (DCS), is essential for the application of the model at the industrial level. The simplicity of the calculation method used by the model provides the fundamental basis for industrial application in the frame of digitalisation initiative. The principal aim of the optimisation procedure is to change the working curve for methane regarding its equilibrium curve as well as methane outlet molar concentration. This is the critical process parameter in reforming catalyst operation. An industrial top fired primary reformer unit based on Kellogg Inc technology design served for the validation of the model. Calculation procedure is used for continuous online evaluation of the most commercially available primary reformer catalysts. Based on the conducted evaluation, the model can indicate possible recommendations which can mitigate marginal performance and prolong reformer catalyst lifetime.