Skip to content
Volume 66, Issue 2
  • ISSN: 2056-5135


The design of catalyst products to reduce harmful emissions is currently an intensive process of expert-driven discovery, taking several years to develop a product. Machine learning can accelerate this timescale, leveraging historic experimental data from related products to guide which new formulations and experiments will enable a project to most directly reach its targets. We used machine learning to accurately model 16 key performance targets for catalyst products, enabling detailed understanding of the factors governing catalyst performance and realistic suggestions of future experiments to rapidly develop more effective products. The proposed formulations are currently undergoing experimental validation.


Article metrics loading...

Loading full text...

Full text loading...



  1. Zhang K., and Batterman S. Sci. Total Environ., 2013, 450–451, 307 LINK [Google Scholar]
  2. Brugge D., Durant J. L., and Rioux C. Environ. Health, 2007, 6, 23 LINK [Google Scholar]
  3. Morgan C. Johnson Matthey Technol. Rev., 2014, 58, (4), 217 LINK [Google Scholar]
  4. Shakouri K., Behler J., Meyer J., and Kroes G.-J. J. Phys. Chem. Lett., 2017, 8, (10), 2131 LINK [Google Scholar]
  5. Ulissi Z. W., Medford A. J., Bligaard T., and Nørskov J. K. Nat. Commun., 2017, 8, 14621 LINK [Google Scholar]
  6. Kitchin J. R. Nat. Catal., 2018, 1, (4), 230 LINK [Google Scholar]
  7. Yang W., Fidelis T. T., and Sun W.-H. ACS Omega, 2019, 5, (1), 83 LINK [Google Scholar]
  8. Goldsmith B. R., Esterhuizen J., Liu J.-X., Bartel C. J., and Sutton C. AIChE J., 2018, 64, (7), 2311 LINK [Google Scholar]
  9. Li Z., Wang S., Chin W. S., Achenie L. E., and Xin H. J. Mater. Chem. A, 2017, 5, (46), 24131 LINK [Google Scholar]
  10. Ulissi Z. W., Tang M. T., Xiao J., Liu X., Torelli D. A., Karamad M., Cummins K., Hahn C., Lewis N. S., Jaramillo T. F., Chan K., and Nørskov J. K. ACS Catal., 2017, 7, (10), 6600 LINK [Google Scholar]
  11. Williams T., McCullough K., and Lauterbach J. A. Chem. Mater., 2020, 32, (1), 157 LINK [Google Scholar]
  12. Li Z., Ma X., and Xin H. Catal. Today, 2017, 280, (2), 232 LINK [Google Scholar]
  13. Takigawa I., Shimizu K.-i., Tsuda K., and Takakusagi S. RSC Adv., 2016, 6, (58), 52587 LINK [Google Scholar]
  14. Suzuki K., Toyao T., Maeno Z., Takakusagi S., Shimizu K.-i., and Takigawa I. ChemCatChem, 2019, 11, (18), 4537 LINK [Google Scholar]
  15. Conduit B. D., Jones N. G., Stone H. J., and Conduit G. J. Scr. Mater., 2018, 146, 82 LINK [Google Scholar]
  16. Santak P., and Conduit G. Fluid Phase Equilib., 2019, 501, 112259 LINK [Google Scholar]
  17. Whitehead T. M., Irwin B. W. J., Hunt P., Segall M. D., and Conduit G. J. J. Chem. Inf. Model., 2019, 59, (3), 1197 LINK [Google Scholar]
  18. Bergstra J., Bardenet R., Bengio Y., and Kégl B. ‘Algorithms for Hyper-Parameter Optimization’, NIPS’11: Proceedings of the 24th International Conference on Neural Information Processing Systems, 12th–15th December, 2011, Granada, Spain, Curran Associates Inc, New York, USA, 2011, 9 pp LINK [Google Scholar]
  19. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., and Duchesnay É. J. Mach. Learn. Res., 2011, 12, 2825 LINK [Google Scholar]
  20. Frénay B., Doquire G., and Verleysen M. Neural Networks, 2013, 48, 1 LINK [Google Scholar]
  21. Irwin B. W. J., Levell J. R., Whitehead T. M., Segall M. D., and Conduit G. J. J. Chem. Inf. Model., 2020, 60, (6), 2848 LINK [Google Scholar]
  22. McInnes L., Healy J., and Melville J. ‘UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction’, arXiv:1802.03426v3 [stat.ML], 18th September, 2020, preprint LINK [Google Scholar]
  23. Conduit B. D., Jones N. G., Stone H. J., and Conduit G. J. Mater. Des., 2017, 131, 358 LINK [Google Scholar]
  24. Ng M.-F., Zhao J., Yan Q., Conduit G. J., and Seh Z. W. Nat. Mach. Intell., 2020, 2, (3), 161 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error