Skip to content
1887
Volume 66, Issue 2
  • ISSN: 2056-5135

Abstract

The design of catalyst products to reduce harmful emissions is currently an intensive process of expert-driven discovery, taking several years to develop a product. Machine learning can accelerate this timescale, leveraging historic experimental data from related products to guide which new formulations and experiments will enable a project to most directly reach its targets. We used machine learning to accurately model 16 key performance targets for catalyst products, enabling detailed understanding of the factors governing catalyst performance and realistic suggestions of future experiments to rapidly develop more effective products. The proposed formulations are currently undergoing experimental validation.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16270488736796
2021-07-23
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/2/Intellegens_16a_Imp.html?itemId=/content/journals/10.1595/205651322X16270488736796&mimeType=html&fmt=ahah

References

  1. Zhang K., and Batterman S. Sci. Total Environ., 2013, 450–451, 307 LINK https://doi.org/10.1016/j.scitotenv.2013.01.074 [Google Scholar]
  2. Brugge D., Durant J. L., and Rioux C. Environ. Health, 2007, 6, 23 LINK https://doi.org/10.1186/1476-069X-6-23 [Google Scholar]
  3. Morgan C. Johnson Matthey Technol. Rev., 2014, 58, (4), 217 LINK https://www.technology.matthey.com/article/58/4/217-220/ [Google Scholar]
  4. Shakouri K., Behler J., Meyer J., and Kroes G.-J. J. Phys. Chem. Lett., 2017, 8, (10), 2131 LINK https://doi.org/10.1021/acs.jpclett.7b00784 [Google Scholar]
  5. Ulissi Z. W., Medford A. J., Bligaard T., and Nørskov J. K. Nat. Commun., 2017, 8, 14621 LINK https://doi.org/10.1038/ncomms14621 [Google Scholar]
  6. Kitchin J. R. Nat. Catal., 2018, 1, (4), 230 LINK https://doi.org/10.1038/s41929-018-0056-y [Google Scholar]
  7. Yang W., Fidelis T. T., and Sun W.-H. ACS Omega, 2019, 5, (1), 83 LINK https://doi.org/10.1021/acsomega.9b03673 [Google Scholar]
  8. Goldsmith B. R., Esterhuizen J., Liu J.-X., Bartel C. J., and Sutton C. AIChE J., 2018, 64, (7), 2311 LINK https://doi.org/10.1002/aic.16198 [Google Scholar]
  9. Li Z., Wang S., Chin W. S., Achenie L. E., and Xin H. J. Mater. Chem. A, 2017, 5, (46), 24131 LINK https://doi.org/10.1039/c7ta01812f [Google Scholar]
  10. Ulissi Z. W., Tang M. T., Xiao J., Liu X., Torelli D. A., Karamad M., Cummins K., Hahn C., Lewis N. S., Jaramillo T. F., Chan K., and Nørskov J. K. ACS Catal., 2017, 7, (10), 6600 LINK https://doi.org/10.1021/acscatal.7b01648 [Google Scholar]
  11. Williams T., McCullough K., and Lauterbach J. A. Chem. Mater., 2020, 32, (1), 157 LINK https://doi.org/10.1021/acs.chemmater.9b03043 [Google Scholar]
  12. Li Z., Ma X., and Xin H. Catal. Today, 2017, 280, (2), 232 LINK https://doi.org/10.1016/j.cattod.2016.04.013. [Google Scholar]
  13. Takigawa I., Shimizu K.-i., Tsuda K., and Takakusagi S. RSC Adv., 2016, 6, (58), 52587 LINK https://doi.org/10.1039/c6ra04345c [Google Scholar]
  14. Suzuki K., Toyao T., Maeno Z., Takakusagi S., Shimizu K.-i., and Takigawa I. ChemCatChem, 2019, 11, (18), 4537 LINK https://doi.org/10.1002/cctc.201900971 [Google Scholar]
  15. Conduit B. D., Jones N. G., Stone H. J., and Conduit G. J. Scr. Mater., 2018, 146, 82 LINK https://doi.org/10.1016/j.scriptamat.2017.11.008 [Google Scholar]
  16. Santak P., and Conduit G. Fluid Phase Equilib., 2019, 501, 112259 LINK https://doi.org/10.1016/j.fluid.2019.112259 [Google Scholar]
  17. Whitehead T. M., Irwin B. W. J., Hunt P., Segall M. D., and Conduit G. J. J. Chem. Inf. Model., 2019, 59, (3), 1197 LINK https://doi.org/10.1021/acs.jcim.8b00768 [Google Scholar]
  18. Bergstra J., Bardenet R., Bengio Y., and Kégl B. ‘Algorithms for Hyper-Parameter Optimization’, NIPS’11: Proceedings of the 24th International Conference on Neural Information Processing Systems, 12th–15th December, 2011, Granada, Spain, Curran Associates Inc, New York, USA, 2011, 9 pp LINK https://dl.acm.org/doi/10.5555/2986459.2986743 [Google Scholar]
  19. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., and Duchesnay É. J. Mach. Learn. Res., 2011, 12, 2825 LINK https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf [Google Scholar]
  20. Frénay B., Doquire G., and Verleysen M. Neural Networks, 2013, 48, 1 LINK https://doi.org/10.1016/j.neunet.2013.07.003. [Google Scholar]
  21. Irwin B. W. J., Levell J. R., Whitehead T. M., Segall M. D., and Conduit G. J. J. Chem. Inf. Model., 2020, 60, (6), 2848 LINK https://doi.org/10.1021/acs.jcim.0c00443 [Google Scholar]
  22. McInnes L., Healy J., and Melville J. ‘UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction’, arXiv:1802.03426v3 [stat.ML], 18th September, 2020, preprint LINK https://arxiv.org/abs/1802.03426v3 [Google Scholar]
  23. Conduit B. D., Jones N. G., Stone H. J., and Conduit G. J. Mater. Des., 2017, 131, 358 LINK https://doi.org/10.1016/j.matdes.2017.06.007. [Google Scholar]
  24. Ng M.-F., Zhao J., Yan Q., Conduit G. J., and Seh Z. W. Nat. Mach. Intell., 2020, 2, (3), 161 LINK https://doi.org/10.1038/s42256-020-0156-7 [Google Scholar]
/content/journals/10.1595/205651322X16270488736796
Loading
/content/journals/10.1595/205651322X16270488736796
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error