Skip to content
1887
Volume 66, Issue 3
  • ISSN: 2056-5135

Abstract

Transition metal carbides are attracting growing attention as robust and affordable alternative heterogeneous catalysts to platinum group metals (pgms), for a host of contemporary and established hydrogenation, dehydrogenation and isomerisation reactions. In particular, the metastable α-MoC phase has been shown to exhibit interesting catalytic properties for low-temperature processes reliant on O–H and C–H bond activation. While demonstrating exciting catalytic properties, a significant challenge exists in the application of metastable carbides, namely the challenging procedure for their preparation. In this review we will briefly discuss the properties and catalytic applications of α-MoC, followed by a more detailed discussion on available synthesis methods and important parameters that influence carbide properties. Techniques are contrasted, with properties of phase, surface area, morphology and Mo:C being considered. Further, we briefly relate these observations to experimental and theoretical studies of α-MoC in catalytic applications. Synthetic strategies discussed are: the original temperature programmed ammonolysis followed by carburisation, alternative oxycarbide or hydrogen bronze precursor phases, heat treatment of molybdate-amide compounds and other low-temperature synthetic routes. The importance of carbon removal and catalyst passivation in relation to surface and bulk properties are also discussed. Novel techniques that bypass the apparent bottleneck of ammonolysis are reported, however a clear understanding of intermediate phases is required to be able to fully apply these techniques. Pragmatically, the scaled application of these techniques requires the pre-pyrolysis wet chemistry to be simple and scalable. Further, there is a clear opportunity to correlate observed morphologies or phases and catalytic properties with findings from computational theoretical studies. Detailed characterisation throughout the synthetic process is essential and will undoubtedly provide fundamental insights that can be used for the controllable and scalable synthesis of metastable α-MoC.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16383716226126
2021-12-01
2024-07-14
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/3/Kondrat_16a_Imp.html?itemId=/content/journals/10.1595/205651322X16383716226126&mimeType=html&fmt=ahah

References

  1. Fu Q., Saltsburg H., and Flytzani-Stephanopoulos M. Science, 2003, 301, (5635), 935 LINK https://doi.org/10.1126/science.1085721 [Google Scholar]
  2. Zugic B., Zhang S., Bell D. C., Tao F., and Flytzani-Stephanopoulos M. J. Am. Chem. Soc., 2014, 136, (8), 3238 LINK https://doi.org/10.1021/ja4123889 [Google Scholar]
  3. Holton O. T., and Stevenson J. W. Platinum Metals Rev., 2013, 57, (4), 259 LINK https://www.technology.matthey.com/article/57/4/259-271/ [Google Scholar]
  4. Cheng N., Stambula S., Wang D., Banis M. N., Liu J., Riese A., Xiao B., Li R., Sham T.-K., Liu L.-M., Botton G. A., and Sun X. Nat. Commun., 2016, 7, 13638 LINK https://doi.org/10.1038/ncomms13638 [Google Scholar]
  5. Lee Y., Suntivich J., May K. J., Perry E. E., and Shao-Horn Y. J. Phys. Chem. Lett., 2012, 3, (3), 399 LINK https://doi.org/10.1021/jz2016507 [Google Scholar]
  6. Cherevko S., Geiger S., Kasian O., Kulyk N., Grote J.-P., Savan A., Shrestha B. R., Merzlikin S., Breitbach B., Ludwig A., and Mayrhofer K. J. J. Catal. Today, 2016, 262, 170 LINK https://doi.org/10.1016/j.cattod.2015.08.014 [Google Scholar]
  7. Michel C., and Gallezot P. ACS Catal., 2015, 5, (7), 4130 LINK https://doi.org/10.1021/acscatal.5b00707 [Google Scholar]
  8. Coronado I., Stekrova M., Reinikainen M., Simell P., Lefferts L., and Lehtonen J. Int. J. Hydrogen Energy, 2016, 41, (26), 11003 LINK https://doi.org/10.1016/j.ijhydene.2016.05.032 [Google Scholar]
  9. Larimi A., and Khorasheh F. Int. J. Hydrogen Energy, 2019, 44, (16), 8243 LINK https://doi.org/10.1016/j.ijhydene.2019.01.251 [Google Scholar]
  10. Zhang X., Cui G., Feng H., Chen L., Wang H., Wang B., Zhang X., Zheng L., Hong S., and Wei M. Nat. Commun., 2019, 10, 5812 LINK https://doi.org/10.1038/s41467-019-13685-2 [Google Scholar]
  11. Reynoso A. J., Ayastuy J. L., Iriarte-Velasco U., and Gutiérrez-Ortiz M. Á. Catalysts, 2020, 10, (8), 830 LINK https://doi.org/10.3390/catal10080830 [Google Scholar]
  12. Besson M., Gallezot P., and Pinel C. Chem. Rev., 2014, 114, (3), 1827 LINK https://doi.org/10.1021/cr4002269 [Google Scholar]
  13. Nuss P., and Eckelman M. J. PLoS ONE, 2014, 9, (7), e101298 LINK https://doi.org/10.1371/journal.pone.0101298 [Google Scholar]
  14. Zhou M., Bao S., and Bard A. J. J. Am. Chem. Soc., 2019, 141, (18), 7327 LINK https://doi.org/10.1021/jacs.8b13366 [Google Scholar]
  15. Yang T. T., Tan T. L., and Saidi W. A. Chem. Mater., 2020, 32, (3), 1315 LINK https://doi.org/10.1021/acs.chemmater.9b05244 [Google Scholar]
  16. Serna P., and Gates B. C. Acc. Chem. Res., 2014, 47, (8), 2612 LINK https://doi.org/10.1021/ar500170k [Google Scholar]
  17. Hofmann O. T., Glowatzki H., Bürker C., Rangger G. M., Bröker B., Niederhausen J., Hosokai T., Salzmann I., Blum R.-P., Rieger R., Vollmer A., Rajput P., Gerlach A., Müllen K., Schreiber F., Zojer E., Koch N., and Duhm S. J. Phys. Chem. C, 2017, 121, (44), 24657 LINK https://doi.org/10.1021/acs.jpcc.7b08451 [Google Scholar]
  18. Mitchell S., and Pérez-Ramírez J. Nat. Commun., 2020, 11, 4302 LINK https://doi.org/10.1038/s41467-020-18182-5 [Google Scholar]
  19. Malta G., Kondrat S. A., Freakley S. J., Davies C. J., Lu L., Dawson S., Thetford A., Gibson E. K., Morgan D. J., Jones W., Wells P. P., Johnston P., Catlow C. R. A., Kiely C. J., and Hutchings G. J. Science, 2017, 355, (6332), 1399 LINK https://doi.org/10.1126/science.aal3439 [Google Scholar]
  20. Thomas J. M. Phys. Chem. Chem. Phys., 2014, 16, (17), 7647 LINK https://doi.org/10.1039/c4cp00513a [Google Scholar]
  21. Kondrat S. A., and van Bokhoven J. A. Top. Catal., 2019, 62, (17–20), 1218 LINK https://doi.org/10.1007/s11244-018-1057-4 [Google Scholar]
  22. Hirayama J., Orlowski I., Iqbal S., Douthwaite M., Ishikawa S., Miedziak P. J., Bartley J. K., Edwards J., He Q., Jenkins R. L., Murayama T., Reece C., Ueda W., Willock D. J., and Hutchings G. J. J. Phys. Chem. C, 2019, 123, (13), 7879 LINK https://doi.org/10.1021/acs.jpcc.8b07108 [Google Scholar]
  23. Hengne A. M., and Rode C. V. Green Chem., 2012, 14, (4), 1064 LINK https://doi.org/10.1039/c2gc16558a [Google Scholar]
  24. Arandia A., Coronado I., Remiro A., Gayubo A. G., and Reinikainen M. Int. J. Hydrogen Energy, 2019, 44, (26), 13157 LINK https://doi.org/10.1016/j.ijhydene.2019.04.007 [Google Scholar]
  25. Wang T., Mpourmpakis G., Lonergan W. W., Vlachos D. G., and Chen J. G. Phys. Chem. Chem. Phys., 2013, 15, (29), 12156 LINK https://doi.org/10.1039/c3cp44688c [Google Scholar]
  26. Giannakakis G., Flytzani-Stephanopoulos M., and Sykes E. C. H. Acc. Chem. Res., 2019, 52, (1), 237 LINK https://doi.org/10.1021/acs.accounts.8b00490 [Google Scholar]
  27. Tanksale A., Zhou C. H., Beltramini J. N., and Lu G. Q. J. Incl. Phenom. Macrocycl. Chem., 2009, 65, (1–2), 83 LINK https://doi.org/10.1007/s10847-009-9618-6 [Google Scholar]
  28. Nguyen L., Zhang S., Tan L., Tang Y., Liu J., and Tao F. F. ACS Sustain. Chem. Eng., 2019, 7, (23), 18793 LINK https://doi.org/10.1021/acssuschemeng.9b03247 [Google Scholar]
  29. Toth L. E. “Transition Metal Carbides and Nitrides: Refractory Materials: A Series of Monographs”, Vol. 7, Academic Press, New York, USA, 1971, 296 pp LINK https://www.elsevier.com/books/transition-metal-carbides-and-nitrides/toth/978-0-12-695950-5 [Google Scholar]
  30. Levy R. B., and Boudart M. Science, 1973, 181, (4099), 547 LINK https://doi.org/10.1126/science.181.4099.547 [Google Scholar]
  31. Xu W., Ramirez P. J., Stacchiola D., and Rodriguez J. A. Catal. Lett., from Catal. Letters, 2014, 144, (8), 1418 LINK https://doi.org/10.1007/s10562-014-1278-5 [Google Scholar]
  32. Chen Y., Choi S., and Thompson L. T. J. Catal., 2016, 343, 147 LINK https://doi.org/10.1016/j.jcat.2016.01.016 [Google Scholar]
  33. Posada-Pérez S., Viñes F., Ramirez P. J., Vidal A. B., Rodriguez J. A., and Illas F. Phys. Chem. Chem. Phys., 2014, 16, (28), 14912 LINK https://doi.org/10.1039/c4cp01943a [Google Scholar]
  34. Baddour F. G., Roberts E. J., To A. T., Wang L., Habas S. E., Ruddy D. A., Bedford N. M., Wright J., Nash C. P., Schaidle J. A., Brutchey R. L., and Malmstadt N. J. Am. Chem. Soc., 2020, 142, (2), 1010 LINK https://doi.org/10.1021/jacs.9b11238 [Google Scholar]
  35. Xiao T., York A. P. E., Williams V. C., Al-Megren H., Hanif A., Zhou X., and Green M. L. H. Chem. Mater., 2000, 12, (12), 3896 LINK https://doi.org/10.1021/cm001157t [Google Scholar]
  36. Kelly T. G., and Chen J. G. Green Chem., 2014, 16, (2), 777 LINK https://doi.org/10.1039/c3gc41259h [Google Scholar]
  37. Li J., Tang C., Liang T., Tang C., Lv X., Tang K., and Li C. M. Electroanalysis, 2020, 32, (6), 1243 LINK https://doi.org/10.1002/elan.202000008 [Google Scholar]
  38. Frank B., Cotter T. P., Schuster M. E., Schlögl R., and Trunschke A. Chem. Eur. J., 2013, 19, (50), 16938 LINK https://doi.org/10.1002/chem.201302420 [Google Scholar]
  39. Ranhotra G. S., Bell A. T., and Reimer J. A. J. Catal., 1987, 108, (1), 40 LINK https://doi.org/10.1016/0021-9517(87)90153-9 [Google Scholar]
  40. Zhu J., Uslamin E. A., Kosinov N., and Hensen E. J. M. Catal. Sci. Technol., 2020, 10, (11), 3635 LINK https://doi.org/10.1039/d0cy00484g [Google Scholar]
  41. Souza Macedo L., Oliveira R. R., van Haasterecht T., Teixeira da Silva V., and Bitter H. Appl. Catal. B: Environ., 2019, 241, 81 LINK https://doi.org/10.1016/j.apcatb.2018.09.020 [Google Scholar]
  42. Yao Z., and Shi C. Catal. Lett., 2009, 130, (1–2), 239 LINK https://doi.org/10.1007/s10562-009-9875-4 [Google Scholar]
  43. Han J., Duan J., Chen P., Lou H., Zheng X., and Hong H. Green Chem., 2011, 13, (9), 2561 LINK https://doi.org/10.1039/c1gc15421d [Google Scholar]
  44. Bouchy C., Pham-Huu C., Heinrich B., Chaumont C., and Ledoux M. J. J. Catal., 2000, 190, (1), 92 LINK https://doi.org/10.1006/jcat.1999.2741 [Google Scholar]
  45. Posada-Pérez S., Gutiérrez R. A., Zuo Z., Ramírez P. J., Viñes F., Liu P., Illas F., and Rodriguez J. A. Catal. Sci. Technol., 2017, 7, (22), 5332 LINK https://doi.org/10.1039/c7cy00639j [Google Scholar]
  46. Yao S., Zhang X., Zhou W., Gao R., Xu W., Ye Y., Lin L., Wen X., Liu P., Chen B., Crumlin E., Guo J., Zuo Z., Li W., Xie J., Lu L., Kiely C. J., Gu L., Shi C., Rodriguez J. A., and Ma D. Science, 2017, 357, (6349), 389 LINK https://doi.org/10.1126/science.aah4321 [Google Scholar]
  47. Wyvratt B. M., Gaudet J. R., and Thompson L. T. J. Catal., 2015, 330, 280 LINK https://doi.org/10.1016/j.jcat.2015.07.023 [Google Scholar]
  48. Nagai M., Zahidul A. M., and Matsuda K. Appl. Catal. A: Gen., 2006, 313, (2), 137 LINK https://doi.org/10.1016/j.apcata.2006.07.006 [Google Scholar]
  49. Führer M., van Haasterecht T., and Bitter J. H. Catal. Sci. Technol., 2020, 10, (18), 6089 LINK https://doi.org/10.1039/d0cy01420f [Google Scholar]
  50. He B. B., Van Gerpen J. H., and Thompson J. C. Appl. Eng. Agric., 2009, 25, (2), 223 LINK https://doi.org/10.13031/2013.26319 [Google Scholar]
  51. Schaidle J. A., Lausche A. C., and Thompson L. T. J. Catal., 2010, 272, (2), 235 LINK https://doi.org/10.1016/j.jcat.2010.04.004 [Google Scholar]
  52. Robinson J. M., Barrett S. R., Nhoy K., Pandey R. K., Phillips J., Ramirez O. M., and Rodriguez R. I. Energy Fuels, 2009, 23, (4), 2235 LINK https://doi.org/10.1021/ef800920y [Google Scholar]
  53. Alexander A.-M., and Hargreaves J. S. J. Chem. Soc. Rev., 2010, 39, (11), 4388 LINK https://doi.org/10.1039/b916787k [Google Scholar]
  54. Pang J., Sun J., Zheng M., Li H., Wang Y., and Zhang T. Appl. Catal. B: Environ., 2019, 254, 510 LINK https://doi.org/10.1016/j.apcatb.2019.05.034 [Google Scholar]
  55. Alaba P. A., Abbas A., Huang J., and Daud W. M. A. W. Renew. Sustain. Energy Rev., 2018, 91, 287 LINK https://doi.org/10.1016/j.rser.2018.03.106 [Google Scholar]
  56. Lin L., Zhou W., Gao R., Yao S., Zhang X., Xu W., Zheng S., Jiang Z., Yu Q., Li Y.-W., Shi C., Wen X.-D., and Ma D. Nature, 2017, 544, (7648), 80 LINK https://doi.org/10.1038/nature21672 [Google Scholar]
  57. Deng Y., Ge Y., Xu M., Yu Q., Xiao D., Yao S., and Ma D. Acc. Chem. Res., 2019, 52, (12), 3372 LINK https://doi.org/10.1021/acs.accounts.9b00182 [Google Scholar]
  58. Lin L., Yao S., Gao R., Liang X., Yu Q., Deng Y., Liu J., Peng M., Jiang Z., Li S., Li Y.-W., Wen X.-D., Zhou W., and Ma D. Nat. Nanotechnol., 2019, 14, (4), 354 LINK https://doi.org/10.1038/s41565-019-0366-5 [Google Scholar]
  59. Zhong Y., Xia X., Shi F., Zhan J., Tu J., and Fan H. J. Adv. Sci., 2016, 3, (5), 1500286 LINK https://doi.org/10.1002/advs.201500286 [Google Scholar]
  60. Chen J. G. Chem. Rev., 1996, 96, (4), 1477 LINK https://doi.org/10.1021/cr950232u [Google Scholar]
  61. Kitchin J. R., Nørskov J. K., Barteau M. A., and Chen J. G. Catal. Today, 2005, 105, (1), 66 LINK https://doi.org/10.1016/j.cattod.2005.04.008 [Google Scholar]
  62. Medford A. J., Vojvodic A., Studt F., Abild-Pedersen F., and Nørskov J. K. J. Catal., 2012, 290, 108 LINK https://doi.org/10.1016/j.jcat.2012.03.007 [Google Scholar]
  63. Ma Y., Guan G., Hao X., Cao J., and Abudula A. Renew. Sustain. Energy Rev., 2017, 75, 1101 LINK https://doi.org/10.1016/j.rser.2016.11.092 [Google Scholar]
  64. Hägg G. Z. Phys. Chem, 1931, 12, (B), 33 [Google Scholar]
  65. Brewer L. Science, 1968, 161, (3837), 115 LINK https://doi.org/10.1126/science.161.3837.115 [Google Scholar]
  66. Oyama S. T. Catal. Today, 1992, 15, (2), 179 LINK https://doi.org/10.1016/0920-5861(92)80175-m [Google Scholar]
  67. Johansson L. I. Surf. Sci. Rep., 1995, 21, (5–6), 177 LINK https://doi.org/10.1016/0167-5729(94)00005-0 [Google Scholar]
  68. Nagakura S., and Oketani S. Trans. Iron Steel Inst. Japan, 1968, 8, (5), 265 LINK https://doi.org/10.2355/isijinternational1966.8.265 [Google Scholar]
  69. Velikanova T. Y., Kublii V. Z., and Khaenko B. V Sov. Powder Metall. Met. Ceram., 1988, 27, (11), 891 LINK https://doi.org/10.1007/bf00796975 [Google Scholar]
  70. Lee J. S., Volpe L., Ribeiro F. H., and Boudart M. J. Catal., 1988, 112, (1), 44 LINK https://doi.org/10.1016/0021-9517(88)90119-4 [Google Scholar]
  71. Hugosson H. W., Eriksson O., Nordström L., Jansson U., Fast L., Delin A., Wills J. M., and Johansson B. J. Appl. Phys., 1999, 86, (7), 3758 LINK https://doi.org/10.1063/1.371284 [Google Scholar]
  72. Zaoui A., Kacimi S., Zaoui M., and Bouhafs B. Comput. Mater. Sci., 2009, 44, (4), 1071 LINK https://doi.org/10.1016/j.commatsci.2008.07.029 [Google Scholar]
  73. ‘The Molybdenum–Molybdenum Carbide System’, in “The Refractory Carbides”, ed. Storms E. K. Refractory Materials Book Series, Ch. 8, Vol. 2, Academic Press Inc, New York, USA, 1967, pp. 122142 LINK https://doi.org/10.1016/b978-1-4832-3070-2.50013-6 [Google Scholar]
  74. Sathish C. I., Shirako Y., Tsujimoto Y., Feng H. L., Sun Y., Akaogi M., and Yamaura K. Solid State Commun., 2014, 177, 33 LINK https://doi.org/10.1016/j.ssc.2013.09.024 [Google Scholar]
  75. Sathish C. I., Guo Y., Wang X., Tsujimoto Y., Li J., Zhang S., Matsushita Y., Shi Y., Tian H., Yang H., Li J., and Yamaura K. J. Solid State Chem., 2012, 196, 579 LINK https://doi.org/10.1016/j.jssc.2012.07.037 [Google Scholar]
  76. Dubois J., Epicier T., Esnouf C., Fantozzi G., and Convert P. Acta Metall., 1988, 36, (8), 1891 LINK https://doi.org/10.1016/0001-6160(88)90292-1 [Google Scholar]
  77. Christensen A. N. Acta Chem. Scand. A, 1977, 31, 509 LINK https://doi.org/10.3891/acta.chem.scand.31a-0509 [Google Scholar]
  78. Powder Diffr., 1986, 1, (1), 66 LINK https://doi.org/10.1017/s0885715600011325 [Google Scholar]
  79. Shrestha A., Gao X., Hicks J. C., and Paolucci C. Chem. Mater., 2021, 33, (12), 4606 LINK https://doi.org/10.1021/acs.chemmater.1c01120 [Google Scholar]
  80. Parthé E., and Sadogopan V. Acta Cryst., 1963, 16, (3), 202 LINK https://doi.org/10.1107/s0365110x63000487 [Google Scholar]
  81. Page K., Li J., Savinelli R., Szumila H. N., Zhang J., Stalick J. K., Proffen T., Scott S. L., and Seshadri R. Solid State Sci., 2008, 10, (11), 1499 LINK https://doi.org/10.1016/j.solidstatesciences.2008.03.018 [Google Scholar]
  82. Haines J., Léger J. M., Chateau C., and Lowther J. E. J. Phys.: Condens. Matter, 2001, 13, (11), 2447 LINK https://doi.org/10.1088/0953-8984/13/11/303 [Google Scholar]
  83. St. Clair T. P., Oyama S. T., Cox D. F., Otani S., Ishizawa Y., Lo R.-L., Fukui K., and Iwasawa Y. Surf. Sci., 1999, 426, (2), 187 LINK https://doi.org/10.1016/s0039-6028(99)00289-7 [Google Scholar]
  84. Clougherty E. V., Lothrop K. H., and Kafalas J. A. Nature, 1961, 191, (4794), 1194 LINK https://doi.org/10.1038/1911194a0 [Google Scholar]
  85. Wan C., Regmi Y. N., and Leonard B. M. Angew. Chem. Int. Ed., 2014, 53, (25), 6407 LINK https://doi.org/10.1002/anie.201402998 [Google Scholar]
  86. Tang C., Zhang H., Xu K., Zhang Q., Liu J., He C., Fan L., and Asefa T. J. Mater. Chem. A, 2019, 7, (30), 18030 LINK https://doi.org/10.1039/c9ta04374h [Google Scholar]
  87. Yang T. T., and Saidi W. A. J. Phys. Chem. Lett., 2020, 11, (7), 2759 LINK https://doi.org/10.1021/acs.jpclett.0c00615 [Google Scholar]
  88. Rodriguez J. A., Ramírez P. J., and Gutierrez R. A. Catal. Today, 2017, 289, 47 LINK https://doi.org/10.1016/j.cattod.2016.09.020 [Google Scholar]
  89. Posada-Pérez S., Ramírez P. J., Evans J., Viñes F., Liu P., Illas F., and Rodriguez J. A. J. Am. Chem. Soc., 2016, 138, (26), 8269 LINK https://doi.org/10.1021/jacs.6b04529 [Google Scholar]
  90. Fernández Guillermet A., Häglund J., and Grimvall G. Phys. Rev. B, 1992, 45, (20), 11557 LINK https://doi.org/10.1103/physrevb.45.11557 [Google Scholar]
  91. Hugosson H. W., Nordström L., Jansson U., Johansson B., and Eriksson O. Phys. Rev. B, 1999, 60, (22), 15123 LINK https://doi.org/10.1103/physrevb.60.15123 [Google Scholar]
  92. Epicier T., Dubois J., Esnouf C., Fantozzi G., and Convert P. Acta Metall., 1988, 36, (8), 1903 LINK https://doi.org/10.1016/0001-6160(88)90293-3 [Google Scholar]
  93. Kuo K., and Hägg G. Nature, 1952, 170, (4319), 245 LINK https://doi.org/10.1038/170245a0 [Google Scholar]
  94. Rudy E., Benesovsky F., and Sedlatschek K. Monat. Chem., 1961, 92, (4), 841 LINK https://doi.org/10.1007/bf01187680 [Google Scholar]
  95. Nowotny H., Parthé E., Kieffer R., and Benesovsky F. Monat. Chem., 1954, 85, (1), 255 LINK https://doi.org/10.1007/bf00900444 [Google Scholar]
  96. Schuster J., Rudy E., and Nowotny H. Monat. Chemie, 1976, 107, (5), 1167 LINK https://doi.org/10.1007/bf00903803 [Google Scholar]
  97. dos Santos Politi J. R., Viñes F., Rodriguez J. A., and Illas F. Phys. Chem. Chem. Phys., 2013, 15, (30), 12617 LINK https://doi.org/10.1039/c3cp51389k [Google Scholar]
  98. Yang T. T., and Saidi W. A. Nanoscale, 2017, 9, (9), 3252 LINK https://doi.org/10.1039/c6nr09893b [Google Scholar]
  99. Cheng L., Yu X., Zhang J., Li W., Zhao C., Wang Z., and Jin L. Appl. Surf. Sci., 2019, 497, 143790 LINK https://doi.org/10.1016/j.apsusc.2019.143790 [Google Scholar]
  100. Gong J., Sun R., Cui L., Cao C., Shi K., Zhang M., Gao R., and Hao H. Surf. Interfaces, 2021, 22, 100831 LINK https://doi.org/10.1016/j.surfin.2020.100831 [Google Scholar]
  101. Hugosson H. W., Eriksson O., Jansson U., and Johansson B. Phys. Rev. B, 2001, 63, (13), 134108 LINK https://doi.org/10.1103/physrevb.63.134108 [Google Scholar]
  102. Quesne M. G., Roldan A., de Leeuw N. H., and Catlow C. R. A. Phys. Chem. Chem. Phys., 2018, 20, (10), 6905 LINK https://doi.org/10.1039/c7cp06336a [Google Scholar]
  103. Hargreaves J. S. J., McFarlane A. R., and Laassiri S. ‘Metal Carbide Catalysts’, in “Alternative Catalytic Materials: Carbides, Nitrides, Phosphides and Amorphous Boron Allyos”, eds. Hargreaves J. S. J., Royal Society of Chemistry, London, UK, 2018, pp. 7183 LINK https://doi.org/10.1039/9781788013222-00071 [Google Scholar]
  104. Cai F., Ibrahim J. J., Fu Y., Kong W., Zhang J., and Sun Y. Appl. Catal. B: Environ., 2020, 264, 118500 LINK https://doi.org/10.1016/j.apcatb.2019.118500 [Google Scholar]
  105. Ma Y., Guan G., Shi C., Zhu A., Hao X., Wang Z., Kusakabe K., and Abudula A. Int. J. Hydrogen Energy, 2014, 39, (1), 258 LINK https://doi.org/10.1016/j.ijhydene.2013.09.150 [Google Scholar]
  106. Dong J., Fu Q., Jiang Z., Mei B., and Bao X. J. Am. Chem. Soc., 2018, 140, (42), 13808 LINK https://doi.org/10.1021/jacs.8b08246 [Google Scholar]
  107. Zhou Y., Wang W., Zhang C., Huang D., Lai C., Cheng M., Qin L., Yang Y., Zhou C., Li B., Luo H., and He D. Adv. Colloid Interface Sci., 2020, 279, 102144 LINK https://doi.org/10.1016/j.cis.2020.102144 [Google Scholar]
  108. Chi J.-Q., Yang M., Chai Y.-M., Yang Z., Wang L., and Dong B. J. Energy Chem., 2020, 48, 398 LINK https://doi.org/10.1016/j.jechem.2020.02.013 [Google Scholar]
  109. Kojima R., and Aika K. Appl. Catal. A: Gen., 2001, 219, (1–2), 141 LINK https://doi.org/10.1016/s0926-860x(01)00676-7 [Google Scholar]
  110. Ma R., Hao W., Ma X., Tian Y., and Li Y. Angew. Chem. Int. Ed., 2014, 53, (28), 7310 LINK https://doi.org/10.1002/anie.201402752 [Google Scholar]
  111. Deng Y., Gao R., Lin L., Liu T., Wen X.-D., Wang S., and Ma D. J. Am. Chem. Soc., 2018, 140, (43), 14481 LINK https://doi.org/10.1021/jacs.8b09310 [Google Scholar]
  112. Hamdan M. A., Lilic A., Vecino-Mantilla M., Nikitine C., Vilcocq L., Jahjah M., Pinel C., and Perret N. Ind. Eng. Chem. Res., 2020, 59, (29), 12964 LINK https://doi.org/10.1021/acs.iecr.0c01934 [Google Scholar]
  113. Wu K., Yang C., Zhu Y., Wang J., Wang X., Liu C., Liu Y., Lu H., Liang B., and Li Y. Ind. Eng. Chem. Res., 2019, 58, (44), 20270 LINK https://doi.org/10.1021/acs.iecr.9b04910 [Google Scholar]
  114. Lin L., Yu Q., Peng M., Li A., Yao S., Tian S., Liu X., Li A., Jiang Z., Gao R., Han X., Li Y., Wen X., Zhou W., and Ma D. J. Am. Chem. Soc., 2020, 143, (1), 309 LINK https://doi.org/10.1021/jacs.0c10776 [Google Scholar]
  115. Cai F., Ibrahim J. J., Fu Y., Kong W., Li S., Zhang J., and Sun Y. Ind. Eng. Chem. Res., 2020, 59, (42), 18756 LINK https://doi.org/10.1021/acs.iecr.0c03311 [Google Scholar]
  116. S., Silva H., Brandão L., Sousa J. M., and Mendes A. Appl. Catal. B: Environ., 2010, 99, (1–2), 43 LINK https://doi.org/10.1016/j.apcatb.2010.06.015 [Google Scholar]
  117. Sabnis K. D., Cui Y., Akatay M. C., Shekhar M., Lee W.-S., Miller J. T., Delgass W. N., and Ribeiro F. H. J. Catal., 2015, 331, 162 LINK https://doi.org/10.1016/j.jcat.2015.08.017 [Google Scholar]
  118. Sun L., Xu J., Liu X., Qiao B., Li L., Ren Y., Wan Q., Lin J., Lin S., Wang X., Guo H., and Zhang T. ACS Catal., 2021, 11, (10), 5942 LINK https://doi.org/10.1021/acscatal.1c00231 [Google Scholar]
  119. Rodriguez J. A., and Illas F. Phys. Chem. Chem. Phys., 2012, 14, (2), 427 LINK https://doi.org/10.1039/c1cp22738f [Google Scholar]
  120. Palma V., Ruocco C., Cortese M., Renda S., Meloni E., Festa G., and Martino M. Metals, 2020, 10, (7), 866 LINK https://doi.org/10.3390/met10070866 [Google Scholar]
  121. Gao J., Wu Y., Jia C., Zhong Z., Gao F., Yang Y., and Liu B. Catal. Commun., 2016, 84, 147 LINK https://doi.org/10.1016/j.catcom.2016.06.026 [Google Scholar]
  122. Posada-Pérez S., Ramírez P. J., Gutiérrez R. A., Stacchiola D. J., Viñes F., Liu P., Illas F., and Rodriguez J. A. Catal. Sci. Technol., 2016, 6, (18), 6766 LINK https://doi.org/10.1039/c5cy02143j [Google Scholar]
  123. Li C., Yuan X., and Fujimoto K. Appl. Catal. A: Gen., 2014, 469, 306 LINK https://doi.org/10.1016/j.apcata.2013.10.010 [Google Scholar]
  124. Liu X., Kunkel C., Ramírez de la Piscina P., Homs N., Viñes F., and Illas F. ACS Catal., 2017, 7, (7), 4323 LINK https://doi.org/10.1021/acscatal.7b00735 [Google Scholar]
  125. García Blanco A. A., Furlong O. J., Stacchiola D. J., Sapag K., and Nazzarro M. S. Top. Catal., 2019, 62, (12–16), 1026 LINK https://doi.org/10.1007/s11244-019-01195-w [Google Scholar]
  126. Abou Hamdan M., Nassereddine A., Checa R., Jahjah M., Pinel C., Piccolo L., and Perret N. Front. Chem., 2020, 8, 452 LINK https://doi.org/10.3389/fchem.2020.00452 [Google Scholar]
  127. Prats H., Piñero J. J., Viñes F., Bromley S. T., Sayós R., and Illas F. Chem. Commun., 2019, 55, (85), 12797 LINK https://doi.org/10.1039/c9cc06084g [Google Scholar]
  128. Zhang T., Yang X., and Ge Q. Catal. Today, 2020, 339, 54 LINK https://doi.org/10.1016/j.cattod.2019.03.020 [Google Scholar]
  129. Baek D. S., Jung G. Y., Seo B., Kim J. C., Lee H.-W., Shin T. J., Jeong H. Y., Kwak S. K., and Joo S. H. Adv. Funct. Mater., 2019, 29, (28), 1901217 LINK https://doi.org/10.1002/adfm.201901217 [Google Scholar]
  130. Zhang X., Zhang M., Deng Y., Xu M., Artiglia L., Wen W., Gao R., Chen B., Yao S., Zhang X., Peng M., Yan J., Li A., Jiang Z., Gao X., Cao S., Yang C., Kropf A. J., Shi J., Xie J., Bi M., van Bokhoven J. A., Li Y.-W., Wen X., Flytzani-Stephanopoulos M., Shi C., Zhou W., and Ma D. Nature, 2021, 589, (7842), 396 LINK https://doi.org/10.1038/s41586-020-03130-6 [Google Scholar]
  131. Nørskov J. K., Bligaard T., Logadottir A., Kitchin J. R., Chen J. G., Pandelov S., and Stimming U. J. Electrochem. Soc., 2005, 152, (3), J23 LINK https://doi.org/10.1149/1.1856988 [Google Scholar]
  132. Yang T. T., Patil R. B., McKone J. R., and Saidi W. A. Catal. Sci. Technol., 2021, 11, (20), 6832 LINK https://doi.org/10.1039/d1cy01170g [Google Scholar]
  133. Guo J., Wang J., Wu Z., Lei W., Zhu J., Xia K., and Wang D. J. Mater. Chem. A, 2017, 5, (10), 4879 LINK https://doi.org/10.1039/c6ta10758c [Google Scholar]
  134. Chen W.-F., Muckerman J. T., and Fujita E. Chem. Commun., 2013, 49, (79), 8896 LINK https://doi.org/10.1039/c3cc44076a [Google Scholar]
  135. Wang J., Xu F., Jin H., Chen Y., and Wang Y. Adv. Mater., 2017, 29, (14), 1605838 LINK https://doi.org/10.1002/adma.201605838 [Google Scholar]
  136. Zhang X., Wang J., Guo T., Liu T., Wu Z., Cavallo L., Cao Z., and Wang D. Appl. Catal. B: Environ., 2019, 247, 78 LINK https://doi.org/10.1016/j.apcatb.2019.01.086 [Google Scholar]
  137. Vrubel H., and Hu X. Angew. Chem. Int. Ed., 2012, 51, (51), 12703 LINK https://doi.org/10.1002/anie.201207111 [Google Scholar]
  138. Chen Y.-Y., Zhang Y., Jiang W.-J., Zhang X., Dai Z., Wan L.-J., and Hu J.-S. ACS Nano, 2016, 10, (9), 8851 LINK https://doi.org/10.1021/acsnano.6b04725 [Google Scholar]
  139. Song H. J., Sung M.-C., Yoon H., Ju B., and Kim D.-W. Adv. Sci., 2019, 6, (8), 1802135 LINK https://doi.org/10.1002/advs.201802135 [Google Scholar]
  140. Zhang H., Jin H., Yang Y., Sun F., Liu Y., Du X., Zhang S., Song F., Wang J., Wang Y., and Jiang Z. J. Energy Chem., 2019, 35, 66 LINK https://doi.org/10.1016/j.jechem.2018.10.010 [Google Scholar]
  141. Lin L., Sun Z., Yuan M., Yang H., Li H., Nan C., Jiang H., Ge S., and Sun G. ACS Sustain. Chem. Eng., 2019, 7, (10), 9637 LINK https://doi.org/10.1021/acssuschemeng.9b01196 [Google Scholar]
  142. Liu Y., Yu G., Li G.-D., Sun Y., Asefa T., Chen W., and Zou X. Angew. Chem. Int. Ed., 2015, 54, (37), 10752 LINK https://doi.org/10.1002/anie.201504376 [Google Scholar]
  143. Liu T., Zhang X., Guo T., Wu Z., and Wang D. Electrochim. Acta, 2020, 334, 135624 LINK https://doi.org/10.1016/j.electacta.2020.135624 [Google Scholar]
  144. Hargreaves J. S. J. Coord. Chem. Rev., 2013, 257, (13–14), 2015 LINK https://doi.org/10.1016/j.ccr.2012.10.005 [Google Scholar]
  145. Vasilevich A. V., Baklanova O. N., and Lavrenov A. V. Solid Fuel Chem., 2020, 54, (6), 354 LINK https://doi.org/10.3103/s0361521920060130 [Google Scholar]
  146. Lee J., Oyama S. T., and Boudart M. J. Catal., 1987, 106, (1), 125 LINK https://doi.org/10.1016/0021-9517(87)90218-1 [Google Scholar]
  147. Volpe L., and Boudart M. J. Solid State Chem., 1985, 59, (3), 332 LINK https://doi.org/10.1016/0022-4596(85)90301-9 [Google Scholar]
  148. Volpe L., and Boudart M. J. Solid State Chem., 1985, 59, (3), 348 LINK https://doi.org/10.1016/0022-4596(85)90302-0 [Google Scholar]
  149. Jung K. T., Kim W. B., Rhee C. H., and Lee J. S. Chem. Mater., 2004, 16, (2), 307 LINK https://doi.org/10.1021/cm030395w [Google Scholar]
  150. Li S., Kim W. B., and Lee J. S. Chem. Mater., 1998, 10, (7), 1853 LINK https://doi.org/10.1021/cm9800229 [Google Scholar]
  151. Yao Z., Liang P., McFarlane A. R., and Laassiri S. ‘Preparation Methods for Nitride and Carbide Catalysts’, in “Alternative Catalytic Materials: Carbides, Nitrides, Phosphides and Amorphous Boron Allyos”, eds. Hargreaves J. S. J., Royal Society of Chemistry, London, UK, 2018, pp. 2745 LINK https://doi.org/10.1039/9781788013222-00027 [Google Scholar]
  152. Bouchy C., Pham-huu C., and Ledoux M. J. J. Mol. Catal. A: Chem., 2000, 162, (1–2), 317 LINK https://doi.org/10.1016/s1381-1169(00)00300-9 [Google Scholar]
  153. Chen L., Cooper A. C., Pez G. P., and Cheng H. J. Phys. Chem. C, 2008, 112, (6), 1755 LINK https://doi.org/10.1021/jp7119137 [Google Scholar]
  154. Sun X., Yu J., Tong X., Yang M., Zhang J., and Sun J. J. Energy Chem., 2021, 62, 191 LINK https://doi.org/10.1016/j.jechem.2021.03.022 [Google Scholar]
  155. Bouchy C., Derouane-Abd Hamid S. B., and Derouane E. G. Chem. Commun., 2000, (2), 125 LINK https://doi.org/10.1039/a907534h [Google Scholar]
  156. Bouchy C., Pham-Huu C., Heinrich B., Derouane E. G., Derouane-Abd Hamid S. B., and Ledoux M. J. Appl. Catal. A: Gen., 2001, 215, (1–2), 175 LINK https://doi.org/10.1016/s0926-860x(01)00532-4 [Google Scholar]
  157. Bouchy C., Schmidt I., Anderson J. R., Jacobsen C. J. H., Derouane E. G., and Derouane-Abd Hamid S. B. J. Mol. Catal. A: Chem., 2000, 163, (1–2), 283 LINK https://doi.org/10.1016/s1381-1169(00)00392-7 [Google Scholar]
  158. Xiao T., York A. P. E., Coleman K. S., Claridge J. B., Sloan J., Charnock J., and Green M. L. H. J. Mater. Chem., 2001, 11, (12), 3094 LINK https://doi.org/10.1039/b104011c [Google Scholar]
  159. Claridge J. B., York A. P. E., Brungs A. J., and Green M. L. H. Chem. Mater., 2000, 12, (1), 132 LINK https://doi.org/10.1021/cm9911060 [Google Scholar]
  160. Xiao T., Wang H., Da J., Coleman K. S., and Green M. L. H. J. Catal., 2002, 211, (1), 183 LINK https://doi.org/10.1006/jcat.2002.3718 [Google Scholar]
  161. Xiao T.-C., York A. P. E., Al-Megren H., Williams C. V., Wang H.-T., and Green M. L. H. J. Catal., 2001, 202, (1), 100 LINK https://doi.org/10.1006/jcat.2001.3247 [Google Scholar]
  162. Hanif A., Xiao T., York A. P. E., Sloan J., and Green M. L. H. Chem. Mater., 2002, 14, (3), 1009 LINK https://doi.org/10.1021/cm011096e [Google Scholar]
  163. Wang X.-H., Hao H.-L., Zhang M.-H., Li W., and Tao K.-Y. J. Solid State Chem., 2006, 179, (2), 538 LINK https://doi.org/10.1016/j.jssc.2005.11.009 [Google Scholar]
  164. Guzmán H. J., Xu W., Stacchiola D., Vitale G., Scott C. E., Rodríguez J. A., and Pereira-Almao P. Can. J. Chem., 2013, 91, (7), 573 LINK https://doi.org/10.1139/cjc-2012-0516 [Google Scholar]
  165. York A. P. E., Pham-Huu C., Del Gallo P., Blekkan E. A., and Ledoux M. J. Ind. Eng. Chem. Res., 1996, 35, (3), 672 LINK https://doi.org/10.1021/ie950409a [Google Scholar]
  166. Carrales-Alvarado D. H., Dongil A. B., Fernández-Morales J. M., Fernández-García M., Guerrero-Ruiz A., and Rodríguez-Ramos I. Catal. Sci. Technol., 2020, 10, (20), 6790 LINK https://doi.org/10.1039/d0cy01088j [Google Scholar]
  167. Frank B., Friedel K., Girgsdies F., Huang X., Schlögl R., and Trunschke A. ChemCatChem, 2013, 5, (8), 2296 LINK https://doi.org/10.1002/cctc.201300010 [Google Scholar]
  168. Frank B., Xie Z.-L., Friedel Ortega K., Scherzer M., Schlögl R., and Trunschke A. Catal. Sci. Technol., 2016, 6, (10), 3468 LINK https://doi.org/10.1039/c5cy01480h [Google Scholar]
  169. Bayati M., Liu X., Abellan P., Pocock D., Dixon M., and Scott K. ACS Appl. Energy Mater., 2020, 3, (1), 843 LINK https://doi.org/10.1021/acsaem.9b01979 [Google Scholar]
  170. Wan C., Knight N. A., and Leonard B. M. Chem. Commun., 2013, 49, (88), 10409 LINK https://doi.org/10.1039/c3cc46551a [Google Scholar]
  171. Chen Z., Guo T., Wu Z., and Wang D. Nanotechnology, 2020, 31, (10), 105707 LINK https://doi.org/10.1088/1361-6528/ab5a25 [Google Scholar]
  172. Baddour F. G., Nash C. P., Schaidle J. A., and Ruddy D. A. Angew. Chem. Int. Ed., 2016, 55, (31), 9026 LINK https://doi.org/10.1002/anie.201602878 [Google Scholar]
  173. Zhao Y., Kamiya K., Hashimoto K., and Nakanishi S. J. Am. Chem. Soc., 2015, 137, (1), 110 LINK https://doi.org/10.1021/ja5114529 [Google Scholar]
  174. Baek D. S., Lee K. A., Park J., Kim J. H., Lee J., Lim J. S., Lee S. Y., Shin T. J., Jeong H. Y., Son J. S., Kang S. J., Kim J. Y., and Joo S. H. Angew. Chem. Int. Ed., 2021, 60, (3), 1441 LINK https://doi.org/10.1002/anie.202012936 [Google Scholar]
  175. Roy A., Serov A., Artyushkova K., Brosha E. L., Atanassov P., and Ward T. L. J. Solid State Chem., 2015, 228, 232 LINK https://doi.org/10.1016/j.jssc.2015.05.007 [Google Scholar]
  176. Zhang Y., Hsieh Y.-C., Volkov V., Su D., An W., Si R., Zhu Y., Liu P., Wang J. X., and Adzic R. R. ACS Catal., 2014, 4, (3), 738 LINK https://doi.org/10.1021/cs401091u [Google Scholar]
  177. Gao C., Meng T., Yang P., Guo W., and Cao M. Chem. Asian J., 2019, 14, (11), 1977 LINK https://doi.org/10.1002/asia.201900312 [Google Scholar]
  178. Pan X., Lu S., Zhang D., Zhang Y., Duan F., Zhu H., Gu H., Wang S., and Du M. J. Mater. Chem. A, 2020, 8, (9), 4911 LINK https://doi.org/10.1039/c9ta12613a [Google Scholar]
  179. Lander J. J., and Germer L. H. Trans. AIME, 1948, 175, 648 [Google Scholar]
  180. Ferguson I. F., Ainscough J. B., Morse D., and Miller A. W. Nature, 1964, 202, (4939), 1327 LINK https://doi.org/10.1038/2021327b0 [Google Scholar]
  181. Mehdad A., Jentoft R. E., and Jentoft F. C. J. Catal., 2017, 347, 89 LINK https://doi.org/10.1016/j.jcat.2017.01.002 [Google Scholar]
  182. Wu W., Wu Z., Liang C., Chen X., Ying P., and Li C. J. Phys. Chem. B, 2003, 107, (29), 7088 LINK https://doi.org/10.1021/jp027582m [Google Scholar]
  183. Wang H.-M., Wang X.-H., Zhang M.-H., Du X.-Y., Li W., and Tao K.-Y. Chem. Mater., 2007, 19, (7), 1801 LINK https://doi.org/10.1021/cm0615471 [Google Scholar]
  184. Wu W., Wu Z., Liang C., Ying P., Feng Z., and Li C. Phys. Chem. Chem. Phys., 2004, 6, (24), 5603 LINK https://doi.org/10.1039/b411849a [Google Scholar]
  185. Kolb V. “Synthesis of a Molybdenum Carbide Catalyst for the Application in the Reductive Carbonyl Coupling of Trans-Cinnamaldehyde to the All-Trans Polyene Diphenylhexatriene”, PhD Thesis, Technical Faculty, Friedrich Alexander Erlangen-Nuremburg University, Germany, 17th May, 2018, 181 pp LINK https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-101450 [Google Scholar]
  186. Demczyk B. G., Choi J.-G., and Thompson L. T. Appl. Surf. Sci., 1994, 78, (1), 63 LINK https://doi.org/10.1016/0169-4332(94)90032-9 [Google Scholar]
  187. Schweitzer N. M., Schaidle J. A., Ezekoye O. K., Pan X., Linic S., and Thompson L. T. J. Am. Chem. Soc., 2011, 133, (8), 2378 LINK https://doi.org/10.1021/ja110705a [Google Scholar]
  188. Setthapun W., Bej S. K., and Thompson L. T. Top. Catal., 2008, 49, (1–2), 73 LINK https://doi.org/10.1007/s11244-008-9070-7 [Google Scholar]
  189. Leary K., Michaels J. N., and Stacy A. M. J. Catal., 1986, 101, (2), 301 LINK https://doi.org/10.1016/0021-9517(86)90257-5 [Google Scholar]
  190. LaMont D. C., Gilligan A. J., Darujati A. R. S., Chellappa A. S., and Thomson W. J. Appl. Catal. A: Gen., 2003, 255, (2), 239 LINK https://doi.org/10.1016/s0926-860x(03)00567-2 [Google Scholar]
  191. Ranhotra G., Haddix G. W., Bell A. T., and Reimer J. A. J. Catal., 1987, 108, (1), 24 LINK https://doi.org/10.1016/0021-9517(87)90152-7 [Google Scholar]
  192. Darujati A., LaMont D. C., and Thomson W. J. Appl. Catal. A: Gen., 2003, 253, (2), 397 LINK https://doi.org/10.1016/s0926-860x(03)00531-3 [Google Scholar]
  193. Gao H., Yao Z., Shi Y., Jia R., Liang F., Sun Y., Mao W., and Wang H. Inorg. Chem. Front., 2018, 5, (1), 90 LINK https://doi.org/10.1039/c7qi00532f [Google Scholar]
  194. Murugappan K., Anderson E. M., Teschner D., Jones T. E., Skorupska K., and Román-Leshkov Y. Nat. Catal., 2018, 1, (12), 960 LINK https://doi.org/10.1038/s41929-018-0171-9 [Google Scholar]
  195. Lee J. S., Locatelli S., Oyama S. T., and Boudart M. J. Catal., 1990, 125, (1), 157 LINK https://doi.org/10.1016/0021-9517(90)90086-y [Google Scholar]
  196. Li S., Sung Lee J., Hyeon T., and Suslick K. S. Appl. Catal. A: Gen., 1999, 184, (1), 1 LINK https://doi.org/10.1016/s0926-860x(99)00044-7 [Google Scholar]
/content/journals/10.1595/205651322X16383716226126
Loading
/content/journals/10.1595/205651322X16383716226126
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error