Skip to content
Volume 66, Issue 3
  • ISSN: 2056-5135


Transition metal carbides are attracting growing attention as robust and affordable alternative heterogeneous catalysts to platinum group metals (pgms), for a host of contemporary and established hydrogenation, dehydrogenation and isomerisation reactions. In particular, the metastable α-MoC phase has been shown to exhibit interesting catalytic properties for low-temperature processes reliant on O–H and C–H bond activation. While demonstrating exciting catalytic properties, a significant challenge exists in the application of metastable carbides, namely the challenging procedure for their preparation. In this review we will briefly discuss the properties and catalytic applications of α-MoC, followed by a more detailed discussion on available synthesis methods and important parameters that influence carbide properties. Techniques are contrasted, with properties of phase, surface area, morphology and Mo:C being considered. Further, we briefly relate these observations to experimental and theoretical studies of α-MoC in catalytic applications. Synthetic strategies discussed are: the original temperature programmed ammonolysis followed by carburisation, alternative oxycarbide or hydrogen bronze precursor phases, heat treatment of molybdate-amide compounds and other low-temperature synthetic routes. The importance of carbon removal and catalyst passivation in relation to surface and bulk properties are also discussed. Novel techniques that bypass the apparent bottleneck of ammonolysis are reported, however a clear understanding of intermediate phases is required to be able to fully apply these techniques. Pragmatically, the scaled application of these techniques requires the pre-pyrolysis wet chemistry to be simple and scalable. Further, there is a clear opportunity to correlate observed morphologies or phases and catalytic properties with findings from computational theoretical studies. Detailed characterisation throughout the synthetic process is essential and will undoubtedly provide fundamental insights that can be used for the controllable and scalable synthesis of metastable α-MoC.


Article metrics loading...

Loading full text...

Full text loading...



  1. Fu Q., Saltsburg H., and Flytzani-Stephanopoulos M. Science, 2003, 301, (5635), 935 LINK [Google Scholar]
  2. Zugic B., Zhang S., Bell D. C., Tao F., and Flytzani-Stephanopoulos M. J. Am. Chem. Soc., 2014, 136, (8), 3238 LINK [Google Scholar]
  3. Holton O. T., and Stevenson J. W. Platinum Metals Rev., 2013, 57, (4), 259 LINK [Google Scholar]
  4. Cheng N., Stambula S., Wang D., Banis M. N., Liu J., Riese A., Xiao B., Li R., Sham T.-K., Liu L.-M., Botton G. A., and Sun X. Nat. Commun., 2016, 7, 13638 LINK [Google Scholar]
  5. Lee Y., Suntivich J., May K. J., Perry E. E., and Shao-Horn Y. J. Phys. Chem. Lett., 2012, 3, (3), 399 LINK [Google Scholar]
  6. Cherevko S., Geiger S., Kasian O., Kulyk N., Grote J.-P., Savan A., Shrestha B. R., Merzlikin S., Breitbach B., Ludwig A., and Mayrhofer K. J. J. Catal. Today, 2016, 262, 170 LINK [Google Scholar]
  7. Michel C., and Gallezot P. ACS Catal., 2015, 5, (7), 4130 LINK [Google Scholar]
  8. Coronado I., Stekrova M., Reinikainen M., Simell P., Lefferts L., and Lehtonen J. Int. J. Hydrogen Energy, 2016, 41, (26), 11003 LINK [Google Scholar]
  9. Larimi A., and Khorasheh F. Int. J. Hydrogen Energy, 2019, 44, (16), 8243 LINK [Google Scholar]
  10. Zhang X., Cui G., Feng H., Chen L., Wang H., Wang B., Zhang X., Zheng L., Hong S., and Wei M. Nat. Commun., 2019, 10, 5812 LINK [Google Scholar]
  11. Reynoso A. J., Ayastuy J. L., Iriarte-Velasco U., and Gutiérrez-Ortiz M. Á. Catalysts, 2020, 10, (8), 830 LINK [Google Scholar]
  12. Besson M., Gallezot P., and Pinel C. Chem. Rev., 2014, 114, (3), 1827 LINK [Google Scholar]
  13. Nuss P., and Eckelman M. J. PLoS ONE, 2014, 9, (7), e101298 LINK [Google Scholar]
  14. Zhou M., Bao S., and Bard A. J. J. Am. Chem. Soc., 2019, 141, (18), 7327 LINK [Google Scholar]
  15. Yang T. T., Tan T. L., and Saidi W. A. Chem. Mater., 2020, 32, (3), 1315 LINK [Google Scholar]
  16. Serna P., and Gates B. C. Acc. Chem. Res., 2014, 47, (8), 2612 LINK [Google Scholar]
  17. Hofmann O. T., Glowatzki H., Bürker C., Rangger G. M., Bröker B., Niederhausen J., Hosokai T., Salzmann I., Blum R.-P., Rieger R., Vollmer A., Rajput P., Gerlach A., Müllen K., Schreiber F., Zojer E., Koch N., and Duhm S. J. Phys. Chem. C, 2017, 121, (44), 24657 LINK [Google Scholar]
  18. Mitchell S., and Pérez-Ramírez J. Nat. Commun., 2020, 11, 4302 LINK [Google Scholar]
  19. Malta G., Kondrat S. A., Freakley S. J., Davies C. J., Lu L., Dawson S., Thetford A., Gibson E. K., Morgan D. J., Jones W., Wells P. P., Johnston P., Catlow C. R. A., Kiely C. J., and Hutchings G. J. Science, 2017, 355, (6332), 1399 LINK [Google Scholar]
  20. Thomas J. M. Phys. Chem. Chem. Phys., 2014, 16, (17), 7647 LINK [Google Scholar]
  21. Kondrat S. A., and van Bokhoven J. A. Top. Catal., 2019, 62, (17–20), 1218 LINK [Google Scholar]
  22. Hirayama J., Orlowski I., Iqbal S., Douthwaite M., Ishikawa S., Miedziak P. J., Bartley J. K., Edwards J., He Q., Jenkins R. L., Murayama T., Reece C., Ueda W., Willock D. J., and Hutchings G. J. J. Phys. Chem. C, 2019, 123, (13), 7879 LINK [Google Scholar]
  23. Hengne A. M., and Rode C. V. Green Chem., 2012, 14, (4), 1064 LINK [Google Scholar]
  24. Arandia A., Coronado I., Remiro A., Gayubo A. G., and Reinikainen M. Int. J. Hydrogen Energy, 2019, 44, (26), 13157 LINK [Google Scholar]
  25. Wang T., Mpourmpakis G., Lonergan W. W., Vlachos D. G., and Chen J. G. Phys. Chem. Chem. Phys., 2013, 15, (29), 12156 LINK [Google Scholar]
  26. Giannakakis G., Flytzani-Stephanopoulos M., and Sykes E. C. H. Acc. Chem. Res., 2019, 52, (1), 237 LINK [Google Scholar]
  27. Tanksale A., Zhou C. H., Beltramini J. N., and Lu G. Q. J. Incl. Phenom. Macrocycl. Chem., 2009, 65, (1–2), 83 LINK [Google Scholar]
  28. Nguyen L., Zhang S., Tan L., Tang Y., Liu J., and Tao F. F. ACS Sustain. Chem. Eng., 2019, 7, (23), 18793 LINK [Google Scholar]
  29. Toth L. E. “Transition Metal Carbides and Nitrides: Refractory Materials: A Series of Monographs”, Vol. 7, Academic Press, New York, USA, 1971, 296 pp LINK [Google Scholar]
  30. Levy R. B., and Boudart M. Science, 1973, 181, (4099), 547 LINK [Google Scholar]
  31. Xu W., Ramirez P. J., Stacchiola D., and Rodriguez J. A. Catal. Lett., from Catal. Letters, 2014, 144, (8), 1418 LINK [Google Scholar]
  32. Chen Y., Choi S., and Thompson L. T. J. Catal., 2016, 343, 147 LINK [Google Scholar]
  33. Posada-Pérez S., Viñes F., Ramirez P. J., Vidal A. B., Rodriguez J. A., and Illas F. Phys. Chem. Chem. Phys., 2014, 16, (28), 14912 LINK [Google Scholar]
  34. Baddour F. G., Roberts E. J., To A. T., Wang L., Habas S. E., Ruddy D. A., Bedford N. M., Wright J., Nash C. P., Schaidle J. A., Brutchey R. L., and Malmstadt N. J. Am. Chem. Soc., 2020, 142, (2), 1010 LINK [Google Scholar]
  35. Xiao T., York A. P. E., Williams V. C., Al-Megren H., Hanif A., Zhou X., and Green M. L. H. Chem. Mater., 2000, 12, (12), 3896 LINK [Google Scholar]
  36. Kelly T. G., and Chen J. G. Green Chem., 2014, 16, (2), 777 LINK [Google Scholar]
  37. Li J., Tang C., Liang T., Tang C., Lv X., Tang K., and Li C. M. Electroanalysis, 2020, 32, (6), 1243 LINK [Google Scholar]
  38. Frank B., Cotter T. P., Schuster M. E., Schlögl R., and Trunschke A. Chem. Eur. J., 2013, 19, (50), 16938 LINK [Google Scholar]
  39. Ranhotra G. S., Bell A. T., and Reimer J. A. J. Catal., 1987, 108, (1), 40 LINK [Google Scholar]
  40. Zhu J., Uslamin E. A., Kosinov N., and Hensen E. J. M. Catal. Sci. Technol., 2020, 10, (11), 3635 LINK [Google Scholar]
  41. Souza Macedo L., Oliveira R. R., van Haasterecht T., Teixeira da Silva V., and Bitter H. Appl. Catal. B: Environ., 2019, 241, 81 LINK [Google Scholar]
  42. Yao Z., and Shi C. Catal. Lett., 2009, 130, (1–2), 239 LINK [Google Scholar]
  43. Han J., Duan J., Chen P., Lou H., Zheng X., and Hong H. Green Chem., 2011, 13, (9), 2561 LINK [Google Scholar]
  44. Bouchy C., Pham-Huu C., Heinrich B., Chaumont C., and Ledoux M. J. J. Catal., 2000, 190, (1), 92 LINK [Google Scholar]
  45. Posada-Pérez S., Gutiérrez R. A., Zuo Z., Ramírez P. J., Viñes F., Liu P., Illas F., and Rodriguez J. A. Catal. Sci. Technol., 2017, 7, (22), 5332 LINK [Google Scholar]
  46. Yao S., Zhang X., Zhou W., Gao R., Xu W., Ye Y., Lin L., Wen X., Liu P., Chen B., Crumlin E., Guo J., Zuo Z., Li W., Xie J., Lu L., Kiely C. J., Gu L., Shi C., Rodriguez J. A., and Ma D. Science, 2017, 357, (6349), 389 LINK [Google Scholar]
  47. Wyvratt B. M., Gaudet J. R., and Thompson L. T. J. Catal., 2015, 330, 280 LINK [Google Scholar]
  48. Nagai M., Zahidul A. M., and Matsuda K. Appl. Catal. A: Gen., 2006, 313, (2), 137 LINK [Google Scholar]
  49. Führer M., van Haasterecht T., and Bitter J. H. Catal. Sci. Technol., 2020, 10, (18), 6089 LINK [Google Scholar]
  50. He B. B., Van Gerpen J. H., and Thompson J. C. Appl. Eng. Agric., 2009, 25, (2), 223 LINK [Google Scholar]
  51. Schaidle J. A., Lausche A. C., and Thompson L. T. J. Catal., 2010, 272, (2), 235 LINK [Google Scholar]
  52. Robinson J. M., Barrett S. R., Nhoy K., Pandey R. K., Phillips J., Ramirez O. M., and Rodriguez R. I. Energy Fuels, 2009, 23, (4), 2235 LINK [Google Scholar]
  53. Alexander A.-M., and Hargreaves J. S. J. Chem. Soc. Rev., 2010, 39, (11), 4388 LINK [Google Scholar]
  54. Pang J., Sun J., Zheng M., Li H., Wang Y., and Zhang T. Appl. Catal. B: Environ., 2019, 254, 510 LINK [Google Scholar]
  55. Alaba P. A., Abbas A., Huang J., and Daud W. M. A. W. Renew. Sustain. Energy Rev., 2018, 91, 287 LINK [Google Scholar]
  56. Lin L., Zhou W., Gao R., Yao S., Zhang X., Xu W., Zheng S., Jiang Z., Yu Q., Li Y.-W., Shi C., Wen X.-D., and Ma D. Nature, 2017, 544, (7648), 80 LINK [Google Scholar]
  57. Deng Y., Ge Y., Xu M., Yu Q., Xiao D., Yao S., and Ma D. Acc. Chem. Res., 2019, 52, (12), 3372 LINK [Google Scholar]
  58. Lin L., Yao S., Gao R., Liang X., Yu Q., Deng Y., Liu J., Peng M., Jiang Z., Li S., Li Y.-W., Wen X.-D., Zhou W., and Ma D. Nat. Nanotechnol., 2019, 14, (4), 354 LINK [Google Scholar]
  59. Zhong Y., Xia X., Shi F., Zhan J., Tu J., and Fan H. J. Adv. Sci., 2016, 3, (5), 1500286 LINK [Google Scholar]
  60. Chen J. G. Chem. Rev., 1996, 96, (4), 1477 LINK [Google Scholar]
  61. Kitchin J. R., Nørskov J. K., Barteau M. A., and Chen J. G. Catal. Today, 2005, 105, (1), 66 LINK [Google Scholar]
  62. Medford A. J., Vojvodic A., Studt F., Abild-Pedersen F., and Nørskov J. K. J. Catal., 2012, 290, 108 LINK [Google Scholar]
  63. Ma Y., Guan G., Hao X., Cao J., and Abudula A. Renew. Sustain. Energy Rev., 2017, 75, 1101 LINK [Google Scholar]
  64. Hägg G. Z. Phys. Chem, 1931, 12, (B), 33 [Google Scholar]
  65. Brewer L. Science, 1968, 161, (3837), 115 LINK [Google Scholar]
  66. Oyama S. T. Catal. Today, 1992, 15, (2), 179 LINK [Google Scholar]
  67. Johansson L. I. Surf. Sci. Rep., 1995, 21, (5–6), 177 LINK [Google Scholar]
  68. Nagakura S., and Oketani S. Trans. Iron Steel Inst. Japan, 1968, 8, (5), 265 LINK [Google Scholar]
  69. Velikanova T. Y., Kublii V. Z., and Khaenko B. V Sov. Powder Metall. Met. Ceram., 1988, 27, (11), 891 LINK [Google Scholar]
  70. Lee J. S., Volpe L., Ribeiro F. H., and Boudart M. J. Catal., 1988, 112, (1), 44 LINK [Google Scholar]
  71. Hugosson H. W., Eriksson O., Nordström L., Jansson U., Fast L., Delin A., Wills J. M., and Johansson B. J. Appl. Phys., 1999, 86, (7), 3758 LINK [Google Scholar]
  72. Zaoui A., Kacimi S., Zaoui M., and Bouhafs B. Comput. Mater. Sci., 2009, 44, (4), 1071 LINK [Google Scholar]
  73. ‘The Molybdenum–Molybdenum Carbide System’, in “The Refractory Carbides”, ed. Storms E. K. Refractory Materials Book Series, Ch. 8, Vol. 2, Academic Press Inc, New York, USA, 1967, pp. 122142 LINK [Google Scholar]
  74. Sathish C. I., Shirako Y., Tsujimoto Y., Feng H. L., Sun Y., Akaogi M., and Yamaura K. Solid State Commun., 2014, 177, 33 LINK [Google Scholar]
  75. Sathish C. I., Guo Y., Wang X., Tsujimoto Y., Li J., Zhang S., Matsushita Y., Shi Y., Tian H., Yang H., Li J., and Yamaura K. J. Solid State Chem., 2012, 196, 579 LINK [Google Scholar]
  76. Dubois J., Epicier T., Esnouf C., Fantozzi G., and Convert P. Acta Metall., 1988, 36, (8), 1891 LINK [Google Scholar]
  77. Christensen A. N. Acta Chem. Scand. A, 1977, 31, 509 LINK [Google Scholar]
  78. Powder Diffr., 1986, 1, (1), 66 LINK [Google Scholar]
  79. Shrestha A., Gao X., Hicks J. C., and Paolucci C. Chem. Mater., 2021, 33, (12), 4606 LINK [Google Scholar]
  80. Parthé E., and Sadogopan V. Acta Cryst., 1963, 16, (3), 202 LINK [Google Scholar]
  81. Page K., Li J., Savinelli R., Szumila H. N., Zhang J., Stalick J. K., Proffen T., Scott S. L., and Seshadri R. Solid State Sci., 2008, 10, (11), 1499 LINK [Google Scholar]
  82. Haines J., Léger J. M., Chateau C., and Lowther J. E. J. Phys.: Condens. Matter, 2001, 13, (11), 2447 LINK [Google Scholar]
  83. St. Clair T. P., Oyama S. T., Cox D. F., Otani S., Ishizawa Y., Lo R.-L., Fukui K., and Iwasawa Y. Surf. Sci., 1999, 426, (2), 187 LINK [Google Scholar]
  84. Clougherty E. V., Lothrop K. H., and Kafalas J. A. Nature, 1961, 191, (4794), 1194 LINK [Google Scholar]
  85. Wan C., Regmi Y. N., and Leonard B. M. Angew. Chem. Int. Ed., 2014, 53, (25), 6407 LINK [Google Scholar]
  86. Tang C., Zhang H., Xu K., Zhang Q., Liu J., He C., Fan L., and Asefa T. J. Mater. Chem. A, 2019, 7, (30), 18030 LINK [Google Scholar]
  87. Yang T. T., and Saidi W. A. J. Phys. Chem. Lett., 2020, 11, (7), 2759 LINK [Google Scholar]
  88. Rodriguez J. A., Ramírez P. J., and Gutierrez R. A. Catal. Today, 2017, 289, 47 LINK [Google Scholar]
  89. Posada-Pérez S., Ramírez P. J., Evans J., Viñes F., Liu P., Illas F., and Rodriguez J. A. J. Am. Chem. Soc., 2016, 138, (26), 8269 LINK [Google Scholar]
  90. Fernández Guillermet A., Häglund J., and Grimvall G. Phys. Rev. B, 1992, 45, (20), 11557 LINK [Google Scholar]
  91. Hugosson H. W., Nordström L., Jansson U., Johansson B., and Eriksson O. Phys. Rev. B, 1999, 60, (22), 15123 LINK [Google Scholar]
  92. Epicier T., Dubois J., Esnouf C., Fantozzi G., and Convert P. Acta Metall., 1988, 36, (8), 1903 LINK [Google Scholar]
  93. Kuo K., and Hägg G. Nature, 1952, 170, (4319), 245 LINK [Google Scholar]
  94. Rudy E., Benesovsky F., and Sedlatschek K. Monat. Chem., 1961, 92, (4), 841 LINK [Google Scholar]
  95. Nowotny H., Parthé E., Kieffer R., and Benesovsky F. Monat. Chem., 1954, 85, (1), 255 LINK [Google Scholar]
  96. Schuster J., Rudy E., and Nowotny H. Monat. Chemie, 1976, 107, (5), 1167 LINK [Google Scholar]
  97. dos Santos Politi J. R., Viñes F., Rodriguez J. A., and Illas F. Phys. Chem. Chem. Phys., 2013, 15, (30), 12617 LINK [Google Scholar]
  98. Yang T. T., and Saidi W. A. Nanoscale, 2017, 9, (9), 3252 LINK [Google Scholar]
  99. Cheng L., Yu X., Zhang J., Li W., Zhao C., Wang Z., and Jin L. Appl. Surf. Sci., 2019, 497, 143790 LINK [Google Scholar]
  100. Gong J., Sun R., Cui L., Cao C., Shi K., Zhang M., Gao R., and Hao H. Surf. Interfaces, 2021, 22, 100831 LINK [Google Scholar]
  101. Hugosson H. W., Eriksson O., Jansson U., and Johansson B. Phys. Rev. B, 2001, 63, (13), 134108 LINK [Google Scholar]
  102. Quesne M. G., Roldan A., de Leeuw N. H., and Catlow C. R. A. Phys. Chem. Chem. Phys., 2018, 20, (10), 6905 LINK [Google Scholar]
  103. Hargreaves J. S. J., McFarlane A. R., and Laassiri S. ‘Metal Carbide Catalysts’, in “Alternative Catalytic Materials: Carbides, Nitrides, Phosphides and Amorphous Boron Allyos”, eds. Hargreaves J. S. J., Royal Society of Chemistry, London, UK, 2018, pp. 7183 LINK [Google Scholar]
  104. Cai F., Ibrahim J. J., Fu Y., Kong W., Zhang J., and Sun Y. Appl. Catal. B: Environ., 2020, 264, 118500 LINK [Google Scholar]
  105. Ma Y., Guan G., Shi C., Zhu A., Hao X., Wang Z., Kusakabe K., and Abudula A. Int. J. Hydrogen Energy, 2014, 39, (1), 258 LINK [Google Scholar]
  106. Dong J., Fu Q., Jiang Z., Mei B., and Bao X. J. Am. Chem. Soc., 2018, 140, (42), 13808 LINK [Google Scholar]
  107. Zhou Y., Wang W., Zhang C., Huang D., Lai C., Cheng M., Qin L., Yang Y., Zhou C., Li B., Luo H., and He D. Adv. Colloid Interface Sci., 2020, 279, 102144 LINK [Google Scholar]
  108. Chi J.-Q., Yang M., Chai Y.-M., Yang Z., Wang L., and Dong B. J. Energy Chem., 2020, 48, 398 LINK [Google Scholar]
  109. Kojima R., and Aika K. Appl. Catal. A: Gen., 2001, 219, (1–2), 141 LINK [Google Scholar]
  110. Ma R., Hao W., Ma X., Tian Y., and Li Y. Angew. Chem. Int. Ed., 2014, 53, (28), 7310 LINK [Google Scholar]
  111. Deng Y., Gao R., Lin L., Liu T., Wen X.-D., Wang S., and Ma D. J. Am. Chem. Soc., 2018, 140, (43), 14481 LINK [Google Scholar]
  112. Hamdan M. A., Lilic A., Vecino-Mantilla M., Nikitine C., Vilcocq L., Jahjah M., Pinel C., and Perret N. Ind. Eng. Chem. Res., 2020, 59, (29), 12964 LINK [Google Scholar]
  113. Wu K., Yang C., Zhu Y., Wang J., Wang X., Liu C., Liu Y., Lu H., Liang B., and Li Y. Ind. Eng. Chem. Res., 2019, 58, (44), 20270 LINK [Google Scholar]
  114. Lin L., Yu Q., Peng M., Li A., Yao S., Tian S., Liu X., Li A., Jiang Z., Gao R., Han X., Li Y., Wen X., Zhou W., and Ma D. J. Am. Chem. Soc., 2020, 143, (1), 309 LINK [Google Scholar]
  115. Cai F., Ibrahim J. J., Fu Y., Kong W., Li S., Zhang J., and Sun Y. Ind. Eng. Chem. Res., 2020, 59, (42), 18756 LINK [Google Scholar]
  116. S., Silva H., Brandão L., Sousa J. M., and Mendes A. Appl. Catal. B: Environ., 2010, 99, (1–2), 43 LINK [Google Scholar]
  117. Sabnis K. D., Cui Y., Akatay M. C., Shekhar M., Lee W.-S., Miller J. T., Delgass W. N., and Ribeiro F. H. J. Catal., 2015, 331, 162 LINK [Google Scholar]
  118. Sun L., Xu J., Liu X., Qiao B., Li L., Ren Y., Wan Q., Lin J., Lin S., Wang X., Guo H., and Zhang T. ACS Catal., 2021, 11, (10), 5942 LINK [Google Scholar]
  119. Rodriguez J. A., and Illas F. Phys. Chem. Chem. Phys., 2012, 14, (2), 427 LINK [Google Scholar]
  120. Palma V., Ruocco C., Cortese M., Renda S., Meloni E., Festa G., and Martino M. Metals, 2020, 10, (7), 866 LINK [Google Scholar]
  121. Gao J., Wu Y., Jia C., Zhong Z., Gao F., Yang Y., and Liu B. Catal. Commun., 2016, 84, 147 LINK [Google Scholar]
  122. Posada-Pérez S., Ramírez P. J., Gutiérrez R. A., Stacchiola D. J., Viñes F., Liu P., Illas F., and Rodriguez J. A. Catal. Sci. Technol., 2016, 6, (18), 6766 LINK [Google Scholar]
  123. Li C., Yuan X., and Fujimoto K. Appl. Catal. A: Gen., 2014, 469, 306 LINK [Google Scholar]
  124. Liu X., Kunkel C., Ramírez de la Piscina P., Homs N., Viñes F., and Illas F. ACS Catal., 2017, 7, (7), 4323 LINK [Google Scholar]
  125. García Blanco A. A., Furlong O. J., Stacchiola D. J., Sapag K., and Nazzarro M. S. Top. Catal., 2019, 62, (12–16), 1026 LINK [Google Scholar]
  126. Abou Hamdan M., Nassereddine A., Checa R., Jahjah M., Pinel C., Piccolo L., and Perret N. Front. Chem., 2020, 8, 452 LINK [Google Scholar]
  127. Prats H., Piñero J. J., Viñes F., Bromley S. T., Sayós R., and Illas F. Chem. Commun., 2019, 55, (85), 12797 LINK [Google Scholar]
  128. Zhang T., Yang X., and Ge Q. Catal. Today, 2020, 339, 54 LINK [Google Scholar]
  129. Baek D. S., Jung G. Y., Seo B., Kim J. C., Lee H.-W., Shin T. J., Jeong H. Y., Kwak S. K., and Joo S. H. Adv. Funct. Mater., 2019, 29, (28), 1901217 LINK [Google Scholar]
  130. Zhang X., Zhang M., Deng Y., Xu M., Artiglia L., Wen W., Gao R., Chen B., Yao S., Zhang X., Peng M., Yan J., Li A., Jiang Z., Gao X., Cao S., Yang C., Kropf A. J., Shi J., Xie J., Bi M., van Bokhoven J. A., Li Y.-W., Wen X., Flytzani-Stephanopoulos M., Shi C., Zhou W., and Ma D. Nature, 2021, 589, (7842), 396 LINK [Google Scholar]
  131. Nørskov J. K., Bligaard T., Logadottir A., Kitchin J. R., Chen J. G., Pandelov S., and Stimming U. J. Electrochem. Soc., 2005, 152, (3), J23 LINK [Google Scholar]
  132. Yang T. T., Patil R. B., McKone J. R., and Saidi W. A. Catal. Sci. Technol., 2021, 11, (20), 6832 LINK [Google Scholar]
  133. Guo J., Wang J., Wu Z., Lei W., Zhu J., Xia K., and Wang D. J. Mater. Chem. A, 2017, 5, (10), 4879 LINK [Google Scholar]
  134. Chen W.-F., Muckerman J. T., and Fujita E. Chem. Commun., 2013, 49, (79), 8896 LINK [Google Scholar]
  135. Wang J., Xu F., Jin H., Chen Y., and Wang Y. Adv. Mater., 2017, 29, (14), 1605838 LINK [Google Scholar]
  136. Zhang X., Wang J., Guo T., Liu T., Wu Z., Cavallo L., Cao Z., and Wang D. Appl. Catal. B: Environ., 2019, 247, 78 LINK [Google Scholar]
  137. Vrubel H., and Hu X. Angew. Chem. Int. Ed., 2012, 51, (51), 12703 LINK [Google Scholar]
  138. Chen Y.-Y., Zhang Y., Jiang W.-J., Zhang X., Dai Z., Wan L.-J., and Hu J.-S. ACS Nano, 2016, 10, (9), 8851 LINK [Google Scholar]
  139. Song H. J., Sung M.-C., Yoon H., Ju B., and Kim D.-W. Adv. Sci., 2019, 6, (8), 1802135 LINK [Google Scholar]
  140. Zhang H., Jin H., Yang Y., Sun F., Liu Y., Du X., Zhang S., Song F., Wang J., Wang Y., and Jiang Z. J. Energy Chem., 2019, 35, 66 LINK [Google Scholar]
  141. Lin L., Sun Z., Yuan M., Yang H., Li H., Nan C., Jiang H., Ge S., and Sun G. ACS Sustain. Chem. Eng., 2019, 7, (10), 9637 LINK [Google Scholar]
  142. Liu Y., Yu G., Li G.-D., Sun Y., Asefa T., Chen W., and Zou X. Angew. Chem. Int. Ed., 2015, 54, (37), 10752 LINK [Google Scholar]
  143. Liu T., Zhang X., Guo T., Wu Z., and Wang D. Electrochim. Acta, 2020, 334, 135624 LINK [Google Scholar]
  144. Hargreaves J. S. J. Coord. Chem. Rev., 2013, 257, (13–14), 2015 LINK [Google Scholar]
  145. Vasilevich A. V., Baklanova O. N., and Lavrenov A. V. Solid Fuel Chem., 2020, 54, (6), 354 LINK [Google Scholar]
  146. Lee J., Oyama S. T., and Boudart M. J. Catal., 1987, 106, (1), 125 LINK [Google Scholar]
  147. Volpe L., and Boudart M. J. Solid State Chem., 1985, 59, (3), 332 LINK [Google Scholar]
  148. Volpe L., and Boudart M. J. Solid State Chem., 1985, 59, (3), 348 LINK [Google Scholar]
  149. Jung K. T., Kim W. B., Rhee C. H., and Lee J. S. Chem. Mater., 2004, 16, (2), 307 LINK [Google Scholar]
  150. Li S., Kim W. B., and Lee J. S. Chem. Mater., 1998, 10, (7), 1853 LINK [Google Scholar]
  151. Yao Z., Liang P., McFarlane A. R., and Laassiri S. ‘Preparation Methods for Nitride and Carbide Catalysts’, in “Alternative Catalytic Materials: Carbides, Nitrides, Phosphides and Amorphous Boron Allyos”, eds. Hargreaves J. S. J., Royal Society of Chemistry, London, UK, 2018, pp. 2745 LINK [Google Scholar]
  152. Bouchy C., Pham-huu C., and Ledoux M. J. J. Mol. Catal. A: Chem., 2000, 162, (1–2), 317 LINK [Google Scholar]
  153. Chen L., Cooper A. C., Pez G. P., and Cheng H. J. Phys. Chem. C, 2008, 112, (6), 1755 LINK [Google Scholar]
  154. Sun X., Yu J., Tong X., Yang M., Zhang J., and Sun J. J. Energy Chem., 2021, 62, 191 LINK [Google Scholar]
  155. Bouchy C., Derouane-Abd Hamid S. B., and Derouane E. G. Chem. Commun., 2000, (2), 125 LINK [Google Scholar]
  156. Bouchy C., Pham-Huu C., Heinrich B., Derouane E. G., Derouane-Abd Hamid S. B., and Ledoux M. J. Appl. Catal. A: Gen., 2001, 215, (1–2), 175 LINK [Google Scholar]
  157. Bouchy C., Schmidt I., Anderson J. R., Jacobsen C. J. H., Derouane E. G., and Derouane-Abd Hamid S. B. J. Mol. Catal. A: Chem., 2000, 163, (1–2), 283 LINK [Google Scholar]
  158. Xiao T., York A. P. E., Coleman K. S., Claridge J. B., Sloan J., Charnock J., and Green M. L. H. J. Mater. Chem., 2001, 11, (12), 3094 LINK [Google Scholar]
  159. Claridge J. B., York A. P. E., Brungs A. J., and Green M. L. H. Chem. Mater., 2000, 12, (1), 132 LINK [Google Scholar]
  160. Xiao T., Wang H., Da J., Coleman K. S., and Green M. L. H. J. Catal., 2002, 211, (1), 183 LINK [Google Scholar]
  161. Xiao T.-C., York A. P. E., Al-Megren H., Williams C. V., Wang H.-T., and Green M. L. H. J. Catal., 2001, 202, (1), 100 LINK [Google Scholar]
  162. Hanif A., Xiao T., York A. P. E., Sloan J., and Green M. L. H. Chem. Mater., 2002, 14, (3), 1009 LINK [Google Scholar]
  163. Wang X.-H., Hao H.-L., Zhang M.-H., Li W., and Tao K.-Y. J. Solid State Chem., 2006, 179, (2), 538 LINK [Google Scholar]
  164. Guzmán H. J., Xu W., Stacchiola D., Vitale G., Scott C. E., Rodríguez J. A., and Pereira-Almao P. Can. J. Chem., 2013, 91, (7), 573 LINK [Google Scholar]
  165. York A. P. E., Pham-Huu C., Del Gallo P., Blekkan E. A., and Ledoux M. J. Ind. Eng. Chem. Res., 1996, 35, (3), 672 LINK [Google Scholar]
  166. Carrales-Alvarado D. H., Dongil A. B., Fernández-Morales J. M., Fernández-García M., Guerrero-Ruiz A., and Rodríguez-Ramos I. Catal. Sci. Technol., 2020, 10, (20), 6790 LINK [Google Scholar]
  167. Frank B., Friedel K., Girgsdies F., Huang X., Schlögl R., and Trunschke A. ChemCatChem, 2013, 5, (8), 2296 LINK [Google Scholar]
  168. Frank B., Xie Z.-L., Friedel Ortega K., Scherzer M., Schlögl R., and Trunschke A. Catal. Sci. Technol., 2016, 6, (10), 3468 LINK [Google Scholar]
  169. Bayati M., Liu X., Abellan P., Pocock D., Dixon M., and Scott K. ACS Appl. Energy Mater., 2020, 3, (1), 843 LINK [Google Scholar]
  170. Wan C., Knight N. A., and Leonard B. M. Chem. Commun., 2013, 49, (88), 10409 LINK [Google Scholar]
  171. Chen Z., Guo T., Wu Z., and Wang D. Nanotechnology, 2020, 31, (10), 105707 LINK [Google Scholar]
  172. Baddour F. G., Nash C. P., Schaidle J. A., and Ruddy D. A. Angew. Chem. Int. Ed., 2016, 55, (31), 9026 LINK [Google Scholar]
  173. Zhao Y., Kamiya K., Hashimoto K., and Nakanishi S. J. Am. Chem. Soc., 2015, 137, (1), 110 LINK [Google Scholar]
  174. Baek D. S., Lee K. A., Park J., Kim J. H., Lee J., Lim J. S., Lee S. Y., Shin T. J., Jeong H. Y., Son J. S., Kang S. J., Kim J. Y., and Joo S. H. Angew. Chem. Int. Ed., 2021, 60, (3), 1441 LINK [Google Scholar]
  175. Roy A., Serov A., Artyushkova K., Brosha E. L., Atanassov P., and Ward T. L. J. Solid State Chem., 2015, 228, 232 LINK [Google Scholar]
  176. Zhang Y., Hsieh Y.-C., Volkov V., Su D., An W., Si R., Zhu Y., Liu P., Wang J. X., and Adzic R. R. ACS Catal., 2014, 4, (3), 738 LINK [Google Scholar]
  177. Gao C., Meng T., Yang P., Guo W., and Cao M. Chem. Asian J., 2019, 14, (11), 1977 LINK [Google Scholar]
  178. Pan X., Lu S., Zhang D., Zhang Y., Duan F., Zhu H., Gu H., Wang S., and Du M. J. Mater. Chem. A, 2020, 8, (9), 4911 LINK [Google Scholar]
  179. Lander J. J., and Germer L. H. Trans. AIME, 1948, 175, 648 [Google Scholar]
  180. Ferguson I. F., Ainscough J. B., Morse D., and Miller A. W. Nature, 1964, 202, (4939), 1327 LINK [Google Scholar]
  181. Mehdad A., Jentoft R. E., and Jentoft F. C. J. Catal., 2017, 347, 89 LINK [Google Scholar]
  182. Wu W., Wu Z., Liang C., Chen X., Ying P., and Li C. J. Phys. Chem. B, 2003, 107, (29), 7088 LINK [Google Scholar]
  183. Wang H.-M., Wang X.-H., Zhang M.-H., Du X.-Y., Li W., and Tao K.-Y. Chem. Mater., 2007, 19, (7), 1801 LINK [Google Scholar]
  184. Wu W., Wu Z., Liang C., Ying P., Feng Z., and Li C. Phys. Chem. Chem. Phys., 2004, 6, (24), 5603 LINK [Google Scholar]
  185. Kolb V. “Synthesis of a Molybdenum Carbide Catalyst for the Application in the Reductive Carbonyl Coupling of Trans-Cinnamaldehyde to the All-Trans Polyene Diphenylhexatriene”, PhD Thesis, Technical Faculty, Friedrich Alexander Erlangen-Nuremburg University, Germany, 17th May, 2018, 181 pp LINK [Google Scholar]
  186. Demczyk B. G., Choi J.-G., and Thompson L. T. Appl. Surf. Sci., 1994, 78, (1), 63 LINK [Google Scholar]
  187. Schweitzer N. M., Schaidle J. A., Ezekoye O. K., Pan X., Linic S., and Thompson L. T. J. Am. Chem. Soc., 2011, 133, (8), 2378 LINK [Google Scholar]
  188. Setthapun W., Bej S. K., and Thompson L. T. Top. Catal., 2008, 49, (1–2), 73 LINK [Google Scholar]
  189. Leary K., Michaels J. N., and Stacy A. M. J. Catal., 1986, 101, (2), 301 LINK [Google Scholar]
  190. LaMont D. C., Gilligan A. J., Darujati A. R. S., Chellappa A. S., and Thomson W. J. Appl. Catal. A: Gen., 2003, 255, (2), 239 LINK [Google Scholar]
  191. Ranhotra G., Haddix G. W., Bell A. T., and Reimer J. A. J. Catal., 1987, 108, (1), 24 LINK [Google Scholar]
  192. Darujati A., LaMont D. C., and Thomson W. J. Appl. Catal. A: Gen., 2003, 253, (2), 397 LINK [Google Scholar]
  193. Gao H., Yao Z., Shi Y., Jia R., Liang F., Sun Y., Mao W., and Wang H. Inorg. Chem. Front., 2018, 5, (1), 90 LINK [Google Scholar]
  194. Murugappan K., Anderson E. M., Teschner D., Jones T. E., Skorupska K., and Román-Leshkov Y. Nat. Catal., 2018, 1, (12), 960 LINK [Google Scholar]
  195. Lee J. S., Locatelli S., Oyama S. T., and Boudart M. J. Catal., 1990, 125, (1), 157 LINK [Google Scholar]
  196. Li S., Sung Lee J., Hyeon T., and Suslick K. S. Appl. Catal. A: Gen., 1999, 184, (1), 1 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error