Skip to content
1887
Volume 66, Issue 3
  • ISSN: 2056-5135

Abstract

Transition metal carbides are attracting growing attention as robust and affordable alternative heterogeneous catalysts to platinum group metals (pgms), for a host of contemporary and established hydrogenation, dehydrogenation and isomerisation reactions. In particular, the metastable α-MoC phase has been shown to exhibit interesting catalytic properties for low-temperature processes reliant on O–H and C–H bond activation. While demonstrating exciting catalytic properties, a significant challenge exists in the application of metastable carbides, namely the challenging procedure for their preparation. In this review we will briefly discuss the properties and catalytic applications of α-MoC, followed by a more detailed discussion on available synthesis methods and important parameters that influence carbide properties. Techniques are contrasted, with properties of phase, surface area, morphology and Mo:C being considered. Further, we briefly relate these observations to experimental and theoretical studies of α-MoC in catalytic applications. Synthetic strategies discussed are: the original temperature programmed ammonolysis followed by carburisation, alternative oxycarbide or hydrogen bronze precursor phases, heat treatment of molybdate-amide compounds and other low-temperature synthetic routes. The importance of carbon removal and catalyst passivation in relation to surface and bulk properties are also discussed. Novel techniques that bypass the apparent bottleneck of ammonolysis are reported, however a clear understanding of intermediate phases is required to be able to fully apply these techniques. Pragmatically, the scaled application of these techniques requires the pre-pyrolysis wet chemistry to be simple and scalable. Further, there is a clear opportunity to correlate observed morphologies or phases and catalytic properties with findings from computational theoretical studies. Detailed characterisation throughout the synthetic process is essential and will undoubtedly provide fundamental insights that can be used for the controllable and scalable synthesis of metastable α-MoC.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16383716226126
2021-12-01
2024-11-05
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/3/Kondrat_16a_Imp.html?itemId=/content/journals/10.1595/205651322X16383716226126&mimeType=html&fmt=ahah

References

  1. Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science, 2003, 301, (5635), 935 LINK https://doi.org/10.1126/science.1085721 [Google Scholar]
  2. B. Zugic, S. Zhang, D. C. Bell, F. Tao, M. Flytzani-Stephanopoulos, J. Am. Chem. Soc., 2014, 136, (8), 3238 LINK https://doi.org/10.1021/ja4123889 [Google Scholar]
  3. O. T. Holton, J. W. Stevenson, Platinum Metals Rev., 2013, 57, (4), 259 LINK https://www.technology.matthey.com/article/57/4/259-271/ [Google Scholar]
  4. N. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T.-K. Sham, L.-M. Liu, G. A. Botton, X. Sun, Nat. Commun., 2016, 7, 13638 LINK https://doi.org/10.1038/ncomms13638 [Google Scholar]
  5. Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, J. Phys. Chem. Lett., 2012, 3, (3), 399 LINK https://doi.org/10.1021/jz2016507 [Google Scholar]
  6. S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J.-P. Grote, A. Savan, B. R. Shrestha, S. Merzlikin, B. Breitbach, A. Ludwig, K. J. J. Mayrhofer, Catal. Today, 2016, 262, 170 LINK https://doi.org/10.1016/j.cattod.2015.08.014 [Google Scholar]
  7. C. Michel, P. Gallezot, ACS Catal., 2015, 5, (7), 4130 LINK https://doi.org/10.1021/acscatal.5b00707 [Google Scholar]
  8. I. Coronado, M. Stekrova, M. Reinikainen, P. Simell, L. Lefferts, J. Lehtonen, Int. J. Hydrogen Energy, 2016, 41, (26), 11003 LINK https://doi.org/10.1016/j.ijhydene.2016.05.032 [Google Scholar]
  9. A. Larimi, F. Khorasheh, Int. J. Hydrogen Energy, 2019, 44, (16), 8243 LINK https://doi.org/10.1016/j.ijhydene.2019.01.251 [Google Scholar]
  10. X. Zhang, G. Cui, H. Feng, L. Chen, H. Wang, B. Wang, X. Zhang, L. Zheng, S. Hong, M. Wei, Nat. Commun., 2019, 10, 5812 LINK https://doi.org/10.1038/s41467-019-13685-2 [Google Scholar]
  11. A. J. Reynoso, J. L. Ayastuy, U. Iriarte-Velasco, M. Á. Gutiérrez-Ortiz, Catalysts, 2020, 10, (8), 830 LINK https://doi.org/10.3390/catal10080830 [Google Scholar]
  12. M. Besson, P. Gallezot, C. Pinel, Chem. Rev., 2014, 114, (3), 1827 LINK https://doi.org/10.1021/cr4002269 [Google Scholar]
  13. P. Nuss, M. J. Eckelman, PLoS ONE, 2014, 9, (7), e101298 LINK https://doi.org/10.1371/journal.pone.0101298 [Google Scholar]
  14. M. Zhou, S. Bao, A. J. Bard, J. Am. Chem. Soc., 2019, 141, (18), 7327 LINK https://doi.org/10.1021/jacs.8b13366 [Google Scholar]
  15. T. T. Yang, T. L. Tan, W. A. Saidi, Chem. Mater., 2020, 32, (3), 1315 LINK https://doi.org/10.1021/acs.chemmater.9b05244 [Google Scholar]
  16. P. Serna, B. C. Gates, Acc. Chem. Res., 2014, 47, (8), 2612 LINK https://doi.org/10.1021/ar500170k [Google Scholar]
  17. O. T. Hofmann, H. Glowatzki, C. Bürker, G. M. Rangger, B. Bröker, J. Niederhausen, T. Hosokai, I. Salzmann, R.-P. Blum, R. Rieger, A. Vollmer, P. Rajput, A. Gerlach, K. Müllen, F. Schreiber, E. Zojer, N. Koch, S. Duhm, J. Phys. Chem. C, 2017, 121, (44), 24657 LINK https://doi.org/10.1021/acs.jpcc.7b08451 [Google Scholar]
  18. S. Mitchell, J. Pérez-Ramírez, Nat. Commun., 2020, 11, 4302 LINK https://doi.org/10.1038/s41467-020-18182-5 [Google Scholar]
  19. G. Malta, S. A. Kondrat, S. J. Freakley, C. J. Davies, L. Lu, S. Dawson, A. Thetford, E. K. Gibson, D. J. Morgan, W. Jones, P. P. Wells, P. Johnston, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, Science, 2017, 355, (6332), 1399 LINK https://doi.org/10.1126/science.aal3439 [Google Scholar]
  20. J. M. Thomas, Phys. Chem. Chem. Phys., 2014, 16, (17), 7647 LINK https://doi.org/10.1039/c4cp00513a [Google Scholar]
  21. S. A. Kondrat, J. A. van Bokhoven, Top. Catal., 2019, 62, (17–20), 1218 LINK https://doi.org/10.1007/s11244-018-1057-4 [Google Scholar]
  22. J. Hirayama, I. Orlowski, S. Iqbal, M. Douthwaite, S. Ishikawa, P. J. Miedziak, J. K. Bartley, J. Edwards, Q. He, R. L. Jenkins, T. Murayama, C. Reece, W. Ueda, D. J. Willock, G. J. Hutchings, J. Phys. Chem. C, 2019, 123, (13), 7879 LINK https://doi.org/10.1021/acs.jpcc.8b07108 [Google Scholar]
  23. A. M. Hengne, C. V. Rode, Green Chem., 2012, 14, (4), 1064 LINK https://doi.org/10.1039/c2gc16558a [Google Scholar]
  24. A. Arandia, I. Coronado, A. Remiro, A. G. Gayubo, M. Reinikainen, Int. J. Hydrogen Energy, 2019, 44, (26), 13157 LINK https://doi.org/10.1016/j.ijhydene.2019.04.007 [Google Scholar]
  25. T. Wang, G. Mpourmpakis, W. W. Lonergan, D. G. Vlachos, J. G. Chen, Phys. Chem. Chem. Phys., 2013, 15, (29), 12156 LINK https://doi.org/10.1039/c3cp44688c [Google Scholar]
  26. G. Giannakakis, M. Flytzani-Stephanopoulos, E. C. H. Sykes, Acc. Chem. Res., 2019, 52, (1), 237 LINK https://doi.org/10.1021/acs.accounts.8b00490 [Google Scholar]
  27. A. Tanksale, C. H. Zhou, J. N. Beltramini, G. Q. Lu, J. Incl. Phenom. Macrocycl. Chem., 2009, 65, (1–2), 83 LINK https://doi.org/10.1007/s10847-009-9618-6 [Google Scholar]
  28. L. Nguyen, S. Zhang, L. Tan, Y. Tang, J. Liu, F. F. Tao, ACS Sustain. Chem. Eng., 2019, 7, (23), 18793 LINK https://doi.org/10.1021/acssuschemeng.9b03247 [Google Scholar]
  29. L. E. Toth, “Transition Metal Carbides and Nitrides: Refractory Materials: A Series of Monographs”, Vol. 7, Academic Press, New York, USA, 1971, 296 pp LINK https://www.elsevier.com/books/transition-metal-carbides-and-nitrides/toth/978-0-12-695950-5 [Google Scholar]
  30. R. B. Levy, M. Boudart, Science, 1973, 181, (4099), 547 LINK https://doi.org/10.1126/science.181.4099.547 [Google Scholar]
  31. W. Xu, P. J. Ramirez, D. Stacchiola, J. A. Rodriguez, Catal. Lett., from Catal. Letters, 2014, 144, (8), 1418 LINK https://doi.org/10.1007/s10562-014-1278-5 [Google Scholar]
  32. Y. Chen, S. Choi, L. T. Thompson, J. Catal., 2016, 343, 147 LINK https://doi.org/10.1016/j.jcat.2016.01.016 [Google Scholar]
  33. S. Posada-Pérez, F. Viñes, P. J. Ramirez, A. B. Vidal, J. A. Rodriguez, F. Illas, Phys. Chem. Chem. Phys., 2014, 16, (28), 14912 LINK https://doi.org/10.1039/c4cp01943a [Google Scholar]
  34. F. G. Baddour, E. J. Roberts, A. T. To, L. Wang, S. E. Habas, D. A. Ruddy, N. M. Bedford, J. Wright, C. P. Nash, J. A. Schaidle, R. L. Brutchey, N. Malmstadt, J. Am. Chem. Soc., 2020, 142, (2), 1010 LINK https://doi.org/10.1021/jacs.9b11238 [Google Scholar]
  35. T. Xiao, A. P. E. York, V. C. Williams, H. Al-Megren, A. Hanif, X. Zhou, M. L. H. Green, Chem. Mater., 2000, 12, (12), 3896 LINK https://doi.org/10.1021/cm001157t [Google Scholar]
  36. T. G. Kelly, J. G. Chen, Green Chem., 2014, 16, (2), 777 LINK https://doi.org/10.1039/c3gc41259h [Google Scholar]
  37. J. Li, C. Tang, T. Liang, C. Tang, X. Lv, K. Tang, C. M. Li, Electroanalysis, 2020, 32, (6), 1243 LINK https://doi.org/10.1002/elan.202000008 [Google Scholar]
  38. B. Frank, T. P. Cotter, M. E. Schuster, R. Schlögl, A. Trunschke, Chem. Eur. J., 2013, 19, (50), 16938 LINK https://doi.org/10.1002/chem.201302420 [Google Scholar]
  39. G. S. Ranhotra, A. T. Bell, J. A. Reimer, J. Catal., 1987, 108, (1), 40 LINK https://doi.org/10.1016/0021-9517(87)90153-9 [Google Scholar]
  40. J. Zhu, E. A. Uslamin, N. Kosinov, E. J. M. Hensen, Catal. Sci. Technol., 2020, 10, (11), 3635 LINK https://doi.org/10.1039/d0cy00484g [Google Scholar]
  41. L. Souza Macedo, R. R. Oliveira, T. van Haasterecht, V. Teixeira da Silva, H. Bitter, Appl. Catal. B: Environ., 2019, 241, 81 LINK https://doi.org/10.1016/j.apcatb.2018.09.020 [Google Scholar]
  42. Z. Yao, C. Shi, Catal. Lett., 2009, 130, (1–2), 239 LINK https://doi.org/10.1007/s10562-009-9875-4 [Google Scholar]
  43. J. Han, J. Duan, P. Chen, H. Lou, X. Zheng, H. Hong, Green Chem., 2011, 13, (9), 2561 LINK https://doi.org/10.1039/c1gc15421d [Google Scholar]
  44. C. Bouchy, C. Pham-Huu, B. Heinrich, C. Chaumont, M. J. Ledoux, J. Catal., 2000, 190, (1), 92 LINK https://doi.org/10.1006/jcat.1999.2741 [Google Scholar]
  45. S. Posada-Pérez, R. A. Gutiérrez, Z. Zuo, P. J. Ramírez, F. Viñes, P. Liu, F. Illas, J. A. Rodriguez, Catal. Sci. Technol., 2017, 7, (22), 5332 LINK https://doi.org/10.1039/c7cy00639j [Google Scholar]
  46. S. Yao, X. Zhang, W. Zhou, R. Gao, W. Xu, Y. Ye, L. Lin, X. Wen, P. Liu, B. Chen, E. Crumlin, J. Guo, Z. Zuo, W. Li, J. Xie, L. Lu, C. J. Kiely, L. Gu, C. Shi, J. A. Rodriguez, D. Ma, Science, 2017, 357, (6349), 389 LINK https://doi.org/10.1126/science.aah4321 [Google Scholar]
  47. B. M. Wyvratt, J. R. Gaudet, L. T. Thompson, J. Catal., 2015, 330, 280 LINK https://doi.org/10.1016/j.jcat.2015.07.023 [Google Scholar]
  48. M. Nagai, A. M. Zahidul, K. Matsuda, Appl. Catal. A: Gen., 2006, 313, (2), 137 LINK https://doi.org/10.1016/j.apcata.2006.07.006 [Google Scholar]
  49. M. Führer, T. van Haasterecht, J. H. Bitter, Catal. Sci. Technol., 2020, 10, (18), 6089 LINK https://doi.org/10.1039/d0cy01420f [Google Scholar]
  50. B. B. He, J. H. Van Gerpen, J. C. Thompson, Appl. Eng. Agric., 2009, 25, (2), 223 LINK https://doi.org/10.13031/2013.26319 [Google Scholar]
  51. J. A. Schaidle, A. C. Lausche, L. T. Thompson, J. Catal., 2010, 272, (2), 235 LINK https://doi.org/10.1016/j.jcat.2010.04.004 [Google Scholar]
  52. J. M. Robinson, S. R. Barrett, K. Nhoy, R. K. Pandey, J. Phillips, O. M. Ramirez, R. I. Rodriguez, Energy Fuels, 2009, 23, (4), 2235 LINK https://doi.org/10.1021/ef800920y [Google Scholar]
  53. A.-M. Alexander, J. S. J. Hargreaves, Chem. Soc. Rev., 2010, 39, (11), 4388 LINK https://doi.org/10.1039/b916787k [Google Scholar]
  54. J. Pang, J. Sun, M. Zheng, H. Li, Y. Wang, T. Zhang, Appl. Catal. B: Environ., 2019, 254, 510 LINK https://doi.org/10.1016/j.apcatb.2019.05.034 [Google Scholar]
  55. P. A. Alaba, A. Abbas, J. Huang, W. M. A. W. Daud, Renew. Sustain. Energy Rev., 2018, 91, 287 LINK https://doi.org/10.1016/j.rser.2018.03.106 [Google Scholar]
  56. L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y.-W. Li, C. Shi, X.-D. Wen, D. Ma, Nature, 2017, 544, (7648), 80 LINK https://doi.org/10.1038/nature21672 [Google Scholar]
  57. Y. Deng, Y. Ge, M. Xu, Q. Yu, D. Xiao, S. Yao, D. Ma, Acc. Chem. Res., 2019, 52, (12), 3372 LINK https://doi.org/10.1021/acs.accounts.9b00182 [Google Scholar]
  58. L. Lin, S. Yao, R. Gao, X. Liang, Q. Yu, Y. Deng, J. Liu, M. Peng, Z. Jiang, S. Li, Y.-W. Li, X.-D. Wen, W. Zhou, D. Ma, Nat. Nanotechnol., 2019, 14, (4), 354 LINK https://doi.org/10.1038/s41565-019-0366-5 [Google Scholar]
  59. Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, H. J. Fan, Adv. Sci., 2016, 3, (5), 1500286 LINK https://doi.org/10.1002/advs.201500286 [Google Scholar]
  60. J. G. Chen, Chem. Rev., 1996, 96, (4), 1477 LINK https://doi.org/10.1021/cr950232u [Google Scholar]
  61. J. R. Kitchin, J. K. Nørskov, M. A. Barteau, J. G. Chen, Catal. Today, 2005, 105, (1), 66 LINK https://doi.org/10.1016/j.cattod.2005.04.008 [Google Scholar]
  62. A. J. Medford, A. Vojvodic, F. Studt, F. Abild-Pedersen, J. K. Nørskov, J. Catal., 2012, 290, 108 LINK https://doi.org/10.1016/j.jcat.2012.03.007 [Google Scholar]
  63. Y. Ma, G. Guan, X. Hao, J. Cao, A. Abudula, Renew. Sustain. Energy Rev., 2017, 75, 1101 LINK https://doi.org/10.1016/j.rser.2016.11.092 [Google Scholar]
  64. G. Hägg, Z. Phys. Chem, 1931, 12, (B), 33 [Google Scholar]
  65. L. Brewer, Science, 1968, 161, (3837), 115 LINK https://doi.org/10.1126/science.161.3837.115 [Google Scholar]
  66. S. T. Oyama, Catal. Today, 1992, 15, (2), 179 LINK https://doi.org/10.1016/0920-5861(92)80175-m [Google Scholar]
  67. L. I. Johansson, Surf. Sci. Rep., 1995, 21, (5–6), 177 LINK https://doi.org/10.1016/0167-5729(94)00005-0 [Google Scholar]
  68. S. Nagakura, S. Oketani, Trans. Iron Steel Inst. Japan, 1968, 8, (5), 265 LINK https://doi.org/10.2355/isijinternational1966.8.265 [Google Scholar]
  69. T. Y. Velikanova, V. Z. Kublii, B. V Khaenko, Sov. Powder Metall. Met. Ceram., 1988, 27, (11), 891 LINK https://doi.org/10.1007/bf00796975 [Google Scholar]
  70. J. S. Lee, L. Volpe, F. H. Ribeiro, M. Boudart, J. Catal., 1988, 112, (1), 44 LINK https://doi.org/10.1016/0021-9517(88)90119-4 [Google Scholar]
  71. H. W. Hugosson, O. Eriksson, L. Nordström, U. Jansson, L. Fast, A. Delin, J. M. Wills, B. Johansson, J. Appl. Phys., 1999, 86, (7), 3758 LINK https://doi.org/10.1063/1.371284 [Google Scholar]
  72. A. Zaoui, S. Kacimi, M. Zaoui, B. Bouhafs, Comput. Mater. Sci., 2009, 44, (4), 1071 LINK https://doi.org/10.1016/j.commatsci.2008.07.029 [Google Scholar]
  73. ‘The Molybdenum–Molybdenum Carbide System’, in “The Refractory Carbides”, ed. E. K. Storms, Refractory Materials Book Series, Ch. 8, Vol. 2, Academic Press Inc, New York, USA, 1967, pp. 122142 LINK https://doi.org/10.1016/b978-1-4832-3070-2.50013-6 [Google Scholar]
  74. C. I. Sathish, Y. Shirako, Y. Tsujimoto, H. L. Feng, Y. Sun, M. Akaogi, K. Yamaura, Solid State Commun., 2014, 177, 33 LINK https://doi.org/10.1016/j.ssc.2013.09.024 [Google Scholar]
  75. C. I. Sathish, Y. Guo, X. Wang, Y. Tsujimoto, J. Li, S. Zhang, Y. Matsushita, Y. Shi, H. Tian, H. Yang, J. Li, K. Yamaura, J. Solid State Chem., 2012, 196, 579 LINK https://doi.org/10.1016/j.jssc.2012.07.037 [Google Scholar]
  76. J. Dubois, T. Epicier, C. Esnouf, G. Fantozzi, P. Convert, Acta Metall., 1988, 36, (8), 1891 LINK https://doi.org/10.1016/0001-6160(88)90292-1 [Google Scholar]
  77. A. N. Christensen, Acta Chem. Scand. A, 1977, 31, 509 LINK https://doi.org/10.3891/acta.chem.scand.31a-0509 [Google Scholar]
  78. Powder Diffr., 1986, 1, (1), 66 LINK https://doi.org/10.1017/s0885715600011325 [Google Scholar]
  79. A. Shrestha, X. Gao, J. C. Hicks, C. Paolucci, Chem. Mater., 2021, 33, (12), 4606 LINK https://doi.org/10.1021/acs.chemmater.1c01120 [Google Scholar]
  80. E. Parthé, V. Sadogopan, Acta Cryst., 1963, 16, (3), 202 LINK https://doi.org/10.1107/s0365110x63000487 [Google Scholar]
  81. K. Page, J. Li, R. Savinelli, H. N. Szumila, J. Zhang, J. K. Stalick, T. Proffen, S. L. Scott, R. Seshadri, Solid State Sci., 2008, 10, (11), 1499 LINK https://doi.org/10.1016/j.solidstatesciences.2008.03.018 [Google Scholar]
  82. J. Haines, J. M. Léger, C. Chateau, J. E. Lowther, J. Phys.: Condens. Matter, 2001, 13, (11), 2447 LINK https://doi.org/10.1088/0953-8984/13/11/303 [Google Scholar]
  83. T. P. St. Clair, S. T. Oyama, D. F. Cox, S. Otani, Y. Ishizawa, R.-L. Lo, K. Fukui, Y. Iwasawa, Surf. Sci., 1999, 426, (2), 187 LINK https://doi.org/10.1016/s0039-6028(99)00289-7 [Google Scholar]
  84. E. V. Clougherty, K. H. Lothrop, J. A. Kafalas, Nature, 1961, 191, (4794), 1194 LINK https://doi.org/10.1038/1911194a0 [Google Scholar]
  85. C. Wan, Y. N. Regmi, B. M. Leonard, Angew. Chem. Int. Ed., 2014, 53, (25), 6407 LINK https://doi.org/10.1002/anie.201402998 [Google Scholar]
  86. C. Tang, H. Zhang, K. Xu, Q. Zhang, J. Liu, C. He, L. Fan, T. Asefa, J. Mater. Chem. A, 2019, 7, (30), 18030 LINK https://doi.org/10.1039/c9ta04374h [Google Scholar]
  87. T. T. Yang, W. A. Saidi, J. Phys. Chem. Lett., 2020, 11, (7), 2759 LINK https://doi.org/10.1021/acs.jpclett.0c00615 [Google Scholar]
  88. J. A. Rodriguez, P. J. Ramírez, R. A. Gutierrez, Catal. Today, 2017, 289, 47 LINK https://doi.org/10.1016/j.cattod.2016.09.020 [Google Scholar]
  89. S. Posada-Pérez, P. J. Ramírez, J. Evans, F. Viñes, P. Liu, F. Illas, J. A. Rodriguez, J. Am. Chem. Soc., 2016, 138, (26), 8269 LINK https://doi.org/10.1021/jacs.6b04529 [Google Scholar]
  90. A. Fernández Guillermet, J. Häglund, G. Grimvall, Phys. Rev. B, 1992, 45, (20), 11557 LINK https://doi.org/10.1103/physrevb.45.11557 [Google Scholar]
  91. H. W. Hugosson, L. Nordström, U. Jansson, B. Johansson, O. Eriksson, Phys. Rev. B, 1999, 60, (22), 15123 LINK https://doi.org/10.1103/physrevb.60.15123 [Google Scholar]
  92. T. Epicier, J. Dubois, C. Esnouf, G. Fantozzi, P. Convert, Acta Metall., 1988, 36, (8), 1903 LINK https://doi.org/10.1016/0001-6160(88)90293-3 [Google Scholar]
  93. K. Kuo, G. Hägg, Nature, 1952, 170, (4319), 245 LINK https://doi.org/10.1038/170245a0 [Google Scholar]
  94. E. Rudy, F. Benesovsky, K. Sedlatschek, Monat. Chem., 1961, 92, (4), 841 LINK https://doi.org/10.1007/bf01187680 [Google Scholar]
  95. H. Nowotny, E. Parthé, R. Kieffer, F. Benesovsky, Monat. Chem., 1954, 85, (1), 255 LINK https://doi.org/10.1007/bf00900444 [Google Scholar]
  96. J. Schuster, E. Rudy, H. Nowotny, Monat. Chemie, 1976, 107, (5), 1167 LINK https://doi.org/10.1007/bf00903803 [Google Scholar]
  97. J. R. dos Santos Politi, F. Viñes, J. A. Rodriguez, F. Illas, Phys. Chem. Chem. Phys., 2013, 15, (30), 12617 LINK https://doi.org/10.1039/c3cp51389k [Google Scholar]
  98. T. T. Yang, W. A. Saidi, Nanoscale, 2017, 9, (9), 3252 LINK https://doi.org/10.1039/c6nr09893b [Google Scholar]
  99. L. Cheng, X. Yu, J. Zhang, W. Li, C. Zhao, Z. Wang, L. Jin, Appl. Surf. Sci., 2019, 497, 143790 LINK https://doi.org/10.1016/j.apsusc.2019.143790 [Google Scholar]
  100. J. Gong, R. Sun, L. Cui, C. Cao, K. Shi, M. Zhang, R. Gao, H. Hao, Surf. Interfaces, 2021, 22, 100831 LINK https://doi.org/10.1016/j.surfin.2020.100831 [Google Scholar]
  101. H. W. Hugosson, O. Eriksson, U. Jansson, B. Johansson, Phys. Rev. B, 2001, 63, (13), 134108 LINK https://doi.org/10.1103/physrevb.63.134108 [Google Scholar]
  102. M. G. Quesne, A. Roldan, N. H. de Leeuw, C. R. A. Catlow, Phys. Chem. Chem. Phys., 2018, 20, (10), 6905 LINK https://doi.org/10.1039/c7cp06336a [Google Scholar]
  103. J. S. J. Hargreaves, A. R. McFarlane, S. Laassiri, ‘Metal Carbide Catalysts’, in “Alternative Catalytic Materials: Carbides, Nitrides, Phosphides and Amorphous Boron Allyos”, eds. J. S. J. Hargreaves, Royal Society of Chemistry, London, UK, 2018, pp. 7183 LINK https://doi.org/10.1039/9781788013222-00071 [Google Scholar]
  104. F. Cai, J. J. Ibrahim, Y. Fu, W. Kong, J. Zhang, Y. Sun, Appl. Catal. B: Environ., 2020, 264, 118500 LINK https://doi.org/10.1016/j.apcatb.2019.118500 [Google Scholar]
  105. Y. Ma, G. Guan, C. Shi, A. Zhu, X. Hao, Z. Wang, K. Kusakabe, A. Abudula, Int. J. Hydrogen Energy, 2014, 39, (1), 258 LINK https://doi.org/10.1016/j.ijhydene.2013.09.150 [Google Scholar]
  106. J. Dong, Q. Fu, Z. Jiang, B. Mei, X. Bao, J. Am. Chem. Soc., 2018, 140, (42), 13808 LINK https://doi.org/10.1021/jacs.8b08246 [Google Scholar]
  107. Y. Zhou, W. Wang, C. Zhang, D. Huang, C. Lai, M. Cheng, L. Qin, Y. Yang, C. Zhou, B. Li, H. Luo, D. He, Adv. Colloid Interface Sci., 2020, 279, 102144 LINK https://doi.org/10.1016/j.cis.2020.102144 [Google Scholar]
  108. J.-Q. Chi, M. Yang, Y.-M. Chai, Z. Yang, L. Wang, B. Dong, J. Energy Chem., 2020, 48, 398 LINK https://doi.org/10.1016/j.jechem.2020.02.013 [Google Scholar]
  109. R. Kojima, K. Aika, Appl. Catal. A: Gen., 2001, 219, (1–2), 141 LINK https://doi.org/10.1016/s0926-860x(01)00676-7 [Google Scholar]
  110. R. Ma, W. Hao, X. Ma, Y. Tian, Y. Li, Angew. Chem. Int. Ed., 2014, 53, (28), 7310 LINK https://doi.org/10.1002/anie.201402752 [Google Scholar]
  111. Y. Deng, R. Gao, L. Lin, T. Liu, X.-D. Wen, S. Wang, D. Ma, J. Am. Chem. Soc., 2018, 140, (43), 14481 LINK https://doi.org/10.1021/jacs.8b09310 [Google Scholar]
  112. M. A. Hamdan, A. Lilic, M. Vecino-Mantilla, C. Nikitine, L. Vilcocq, M. Jahjah, C. Pinel, N. Perret, Ind. Eng. Chem. Res., 2020, 59, (29), 12964 LINK https://doi.org/10.1021/acs.iecr.0c01934 [Google Scholar]
  113. K. Wu, C. Yang, Y. Zhu, J. Wang, X. Wang, C. Liu, Y. Liu, H. Lu, B. Liang, Y. Li, Ind. Eng. Chem. Res., 2019, 58, (44), 20270 LINK https://doi.org/10.1021/acs.iecr.9b04910 [Google Scholar]
  114. L. Lin, Q. Yu, M. Peng, A. Li, S. Yao, S. Tian, X. Liu, A. Li, Z. Jiang, R. Gao, X. Han, Y. Li, X. Wen, W. Zhou, D. Ma, J. Am. Chem. Soc., 2020, 143, (1), 309 LINK https://doi.org/10.1021/jacs.0c10776 [Google Scholar]
  115. F. Cai, J. J. Ibrahim, Y. Fu, W. Kong, S. Li, J. Zhang, Y. Sun, Ind. Eng. Chem. Res., 2020, 59, (42), 18756 LINK https://doi.org/10.1021/acs.iecr.0c03311 [Google Scholar]
  116. S. , H. Silva, L. Brandão, J. M. Sousa, A. Mendes, Appl. Catal. B: Environ., 2010, 99, (1–2), 43 LINK https://doi.org/10.1016/j.apcatb.2010.06.015 [Google Scholar]
  117. K. D. Sabnis, Y. Cui, M. C. Akatay, M. Shekhar, W.-S. Lee, J. T. Miller, W. N. Delgass, F. H. Ribeiro, J. Catal., 2015, 331, 162 LINK https://doi.org/10.1016/j.jcat.2015.08.017 [Google Scholar]
  118. L. Sun, J. Xu, X. Liu, B. Qiao, L. Li, Y. Ren, Q. Wan, J. Lin, S. Lin, X. Wang, H. Guo, T. Zhang, ACS Catal., 2021, 11, (10), 5942 LINK https://doi.org/10.1021/acscatal.1c00231 [Google Scholar]
  119. J. A. Rodriguez, F. Illas, Phys. Chem. Chem. Phys., 2012, 14, (2), 427 LINK https://doi.org/10.1039/c1cp22738f [Google Scholar]
  120. V. Palma, C. Ruocco, M. Cortese, S. Renda, E. Meloni, G. Festa, M. Martino, Metals, 2020, 10, (7), 866 LINK https://doi.org/10.3390/met10070866 [Google Scholar]
  121. J. Gao, Y. Wu, C. Jia, Z. Zhong, F. Gao, Y. Yang, B. Liu, Catal. Commun., 2016, 84, 147 LINK https://doi.org/10.1016/j.catcom.2016.06.026 [Google Scholar]
  122. S. Posada-Pérez, P. J. Ramírez, R. A. Gutiérrez, D. J. Stacchiola, F. Viñes, P. Liu, F. Illas, J. A. Rodriguez, Catal. Sci. Technol., 2016, 6, (18), 6766 LINK https://doi.org/10.1039/c5cy02143j [Google Scholar]
  123. C. Li, X. Yuan, K. Fujimoto, Appl. Catal. A: Gen., 2014, 469, 306 LINK https://doi.org/10.1016/j.apcata.2013.10.010 [Google Scholar]
  124. X. Liu, C. Kunkel, P. Ramírez de la Piscina, N. Homs, F. Viñes, F. Illas, ACS Catal., 2017, 7, (7), 4323 LINK https://doi.org/10.1021/acscatal.7b00735 [Google Scholar]
  125. A. A. García Blanco, O. J. Furlong, D. J. Stacchiola, K. Sapag, M. S. Nazzarro, Top. Catal., 2019, 62, (12–16), 1026 LINK https://doi.org/10.1007/s11244-019-01195-w [Google Scholar]
  126. M. Abou Hamdan, A. Nassereddine, R. Checa, M. Jahjah, C. Pinel, L. Piccolo, N. Perret, Front. Chem., 2020, 8, 452 LINK https://doi.org/10.3389/fchem.2020.00452 [Google Scholar]
  127. H. Prats, J. J. Piñero, F. Viñes, S. T. Bromley, R. Sayós, F. Illas, Chem. Commun., 2019, 55, (85), 12797 LINK https://doi.org/10.1039/c9cc06084g [Google Scholar]
  128. T. Zhang, X. Yang, Q. Ge, Catal. Today, 2020, 339, 54 LINK https://doi.org/10.1016/j.cattod.2019.03.020 [Google Scholar]
  129. D. S. Baek, G. Y. Jung, B. Seo, J. C. Kim, H.-W. Lee, T. J. Shin, H. Y. Jeong, S. K. Kwak, S. H. Joo, Adv. Funct. Mater., 2019, 29, (28), 1901217 LINK https://doi.org/10.1002/adfm.201901217 [Google Scholar]
  130. X. Zhang, M. Zhang, Y. Deng, M. Xu, L. Artiglia, W. Wen, R. Gao, B. Chen, S. Yao, X. Zhang, M. Peng, J. Yan, A. Li, Z. Jiang, X. Gao, S. Cao, C. Yang, A. J. Kropf, J. Shi, J. Xie, M. Bi, J. A. van Bokhoven, Y.-W. Li, X. Wen, M. Flytzani-Stephanopoulos, C. Shi, W. Zhou, D. Ma, Nature, 2021, 589, (7842), 396 LINK https://doi.org/10.1038/s41586-020-03130-6 [Google Scholar]
  131. J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc., 2005, 152, (3), J23 LINK https://doi.org/10.1149/1.1856988 [Google Scholar]
  132. T. T. Yang, R. B. Patil, J. R. McKone, W. A. Saidi, Catal. Sci. Technol., 2021, 11, (20), 6832 LINK https://doi.org/10.1039/d1cy01170g [Google Scholar]
  133. J. Guo, J. Wang, Z. Wu, W. Lei, J. Zhu, K. Xia, D. Wang, J. Mater. Chem. A, 2017, 5, (10), 4879 LINK https://doi.org/10.1039/c6ta10758c [Google Scholar]
  134. W.-F. Chen, J. T. Muckerman, E. Fujita, Chem. Commun., 2013, 49, (79), 8896 LINK https://doi.org/10.1039/c3cc44076a [Google Scholar]
  135. J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Adv. Mater., 2017, 29, (14), 1605838 LINK https://doi.org/10.1002/adma.201605838 [Google Scholar]
  136. X. Zhang, J. Wang, T. Guo, T. Liu, Z. Wu, L. Cavallo, Z. Cao, D. Wang, Appl. Catal. B: Environ., 2019, 247, 78 LINK https://doi.org/10.1016/j.apcatb.2019.01.086 [Google Scholar]
  137. H. Vrubel, X. Hu, Angew. Chem. Int. Ed., 2012, 51, (51), 12703 LINK https://doi.org/10.1002/anie.201207111 [Google Scholar]
  138. Y.-Y. Chen, Y. Zhang, W.-J. Jiang, X. Zhang, Z. Dai, L.-J. Wan, J.-S. Hu, ACS Nano, 2016, 10, (9), 8851 LINK https://doi.org/10.1021/acsnano.6b04725 [Google Scholar]
  139. H. J. Song, M.-C. Sung, H. Yoon, B. Ju, D.-W. Kim, Adv. Sci., 2019, 6, (8), 1802135 LINK https://doi.org/10.1002/advs.201802135 [Google Scholar]
  140. H. Zhang, H. Jin, Y. Yang, F. Sun, Y. Liu, X. Du, S. Zhang, F. Song, J. Wang, Y. Wang, Z. Jiang, J. Energy Chem., 2019, 35, 66 LINK https://doi.org/10.1016/j.jechem.2018.10.010 [Google Scholar]
  141. L. Lin, Z. Sun, M. Yuan, H. Yang, H. Li, C. Nan, H. Jiang, S. Ge, G. Sun, ACS Sustain. Chem. Eng., 2019, 7, (10), 9637 LINK https://doi.org/10.1021/acssuschemeng.9b01196 [Google Scholar]
  142. Y. Liu, G. Yu, G.-D. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, Angew. Chem. Int. Ed., 2015, 54, (37), 10752 LINK https://doi.org/10.1002/anie.201504376 [Google Scholar]
  143. T. Liu, X. Zhang, T. Guo, Z. Wu, D. Wang, Electrochim. Acta, 2020, 334, 135624 LINK https://doi.org/10.1016/j.electacta.2020.135624 [Google Scholar]
  144. J. S. J. Hargreaves, Coord. Chem. Rev., 2013, 257, (13–14), 2015 LINK https://doi.org/10.1016/j.ccr.2012.10.005 [Google Scholar]
  145. A. V. Vasilevich, O. N. Baklanova, A. V. Lavrenov, Solid Fuel Chem., 2020, 54, (6), 354 LINK https://doi.org/10.3103/s0361521920060130 [Google Scholar]
  146. J. Lee, S. T. Oyama, M. Boudart, J. Catal., 1987, 106, (1), 125 LINK https://doi.org/10.1016/0021-9517(87)90218-1 [Google Scholar]
  147. L. Volpe, M. Boudart, J. Solid State Chem., 1985, 59, (3), 332 LINK https://doi.org/10.1016/0022-4596(85)90301-9 [Google Scholar]
  148. L. Volpe, M. Boudart, J. Solid State Chem., 1985, 59, (3), 348 LINK https://doi.org/10.1016/0022-4596(85)90302-0 [Google Scholar]
  149. K. T. Jung, W. B. Kim, C. H. Rhee, J. S. Lee, Chem. Mater., 2004, 16, (2), 307 LINK https://doi.org/10.1021/cm030395w [Google Scholar]
  150. S. Li, W. B. Kim, J. S. Lee, Chem. Mater., 1998, 10, (7), 1853 LINK https://doi.org/10.1021/cm9800229 [Google Scholar]
  151. Z. Yao, P. Liang, A. R. McFarlane, S. Laassiri, ‘Preparation Methods for Nitride and Carbide Catalysts’, in “Alternative Catalytic Materials: Carbides, Nitrides, Phosphides and Amorphous Boron Allyos”, eds. J. S. J. Hargreaves, Royal Society of Chemistry, London, UK, 2018, pp. 2745 LINK https://doi.org/10.1039/9781788013222-00027 [Google Scholar]
  152. C. Bouchy, C. Pham-huu, M. J. Ledoux, J. Mol. Catal. A: Chem., 2000, 162, (1–2), 317 LINK https://doi.org/10.1016/s1381-1169(00)00300-9 [Google Scholar]
  153. L. Chen, A. C. Cooper, G. P. Pez, H. Cheng, J. Phys. Chem. C, 2008, 112, (6), 1755 LINK https://doi.org/10.1021/jp7119137 [Google Scholar]
  154. X. Sun, J. Yu, X. Tong, M. Yang, J. Zhang, J. Sun, J. Energy Chem., 2021, 62, 191 LINK https://doi.org/10.1016/j.jechem.2021.03.022 [Google Scholar]
  155. C. Bouchy, S. B. Derouane-Abd Hamid, E. G. Derouane, Chem. Commun., 2000, (2), 125 LINK https://doi.org/10.1039/a907534h [Google Scholar]
  156. C. Bouchy, C. Pham-Huu, B. Heinrich, E. G. Derouane, S. B. Derouane-Abd Hamid, M. J. Ledoux, Appl. Catal. A: Gen., 2001, 215, (1–2), 175 LINK https://doi.org/10.1016/s0926-860x(01)00532-4 [Google Scholar]
  157. C. Bouchy, I. Schmidt, J. R. Anderson, C. J. H. Jacobsen, E. G. Derouane, S. B. Derouane-Abd Hamid, J. Mol. Catal. A: Chem., 2000, 163, (1–2), 283 LINK https://doi.org/10.1016/s1381-1169(00)00392-7 [Google Scholar]
  158. T. Xiao, A. P. E. York, K. S. Coleman, J. B. Claridge, J. Sloan, J. Charnock, M. L. H. Green, J. Mater. Chem., 2001, 11, (12), 3094 LINK https://doi.org/10.1039/b104011c [Google Scholar]
  159. J. B. Claridge, A. P. E. York, A. J. Brungs, M. L. H. Green, Chem. Mater., 2000, 12, (1), 132 LINK https://doi.org/10.1021/cm9911060 [Google Scholar]
  160. T. Xiao, H. Wang, J. Da, K. S. Coleman, M. L. H. Green, J. Catal., 2002, 211, (1), 183 LINK https://doi.org/10.1006/jcat.2002.3718 [Google Scholar]
  161. T.-C. Xiao, A. P. E. York, H. Al-Megren, C. V. Williams, H.-T. Wang, M. L. H. Green, J. Catal., 2001, 202, (1), 100 LINK https://doi.org/10.1006/jcat.2001.3247 [Google Scholar]
  162. A. Hanif, T. Xiao, A. P. E. York, J. Sloan, M. L. H. Green, Chem. Mater., 2002, 14, (3), 1009 LINK https://doi.org/10.1021/cm011096e [Google Scholar]
  163. X.-H. Wang, H.-L. Hao, M.-H. Zhang, W. Li, K.-Y. Tao, J. Solid State Chem., 2006, 179, (2), 538 LINK https://doi.org/10.1016/j.jssc.2005.11.009 [Google Scholar]
  164. H. J. Guzmán, W. Xu, D. Stacchiola, G. Vitale, C. E. Scott, J. A. Rodríguez, P. Pereira-Almao, Can. J. Chem., 2013, 91, (7), 573 LINK https://doi.org/10.1139/cjc-2012-0516 [Google Scholar]
  165. A. P. E. York, C. Pham-Huu, P. Del Gallo, E. A. Blekkan, M. J. Ledoux, Ind. Eng. Chem. Res., 1996, 35, (3), 672 LINK https://doi.org/10.1021/ie950409a [Google Scholar]
  166. D. H. Carrales-Alvarado, A. B. Dongil, J. M. Fernández-Morales, M. Fernández-García, A. Guerrero-Ruiz, I. Rodríguez-Ramos, Catal. Sci. Technol., 2020, 10, (20), 6790 LINK https://doi.org/10.1039/d0cy01088j [Google Scholar]
  167. B. Frank, K. Friedel, F. Girgsdies, X. Huang, R. Schlögl, A. Trunschke, ChemCatChem, 2013, 5, (8), 2296 LINK https://doi.org/10.1002/cctc.201300010 [Google Scholar]
  168. B. Frank, Z.-L. Xie, K. Friedel Ortega, M. Scherzer, R. Schlögl, A. Trunschke, Catal. Sci. Technol., 2016, 6, (10), 3468 LINK https://doi.org/10.1039/c5cy01480h [Google Scholar]
  169. M. Bayati, X. Liu, P. Abellan, D. Pocock, M. Dixon, K. Scott, ACS Appl. Energy Mater., 2020, 3, (1), 843 LINK https://doi.org/10.1021/acsaem.9b01979 [Google Scholar]
  170. C. Wan, N. A. Knight, B. M. Leonard, Chem. Commun., 2013, 49, (88), 10409 LINK https://doi.org/10.1039/c3cc46551a [Google Scholar]
  171. Z. Chen, T. Guo, Z. Wu, D. Wang, Nanotechnology, 2020, 31, (10), 105707 LINK https://doi.org/10.1088/1361-6528/ab5a25 [Google Scholar]
  172. F. G. Baddour, C. P. Nash, J. A. Schaidle, D. A. Ruddy, Angew. Chem. Int. Ed., 2016, 55, (31), 9026 LINK https://doi.org/10.1002/anie.201602878 [Google Scholar]
  173. Y. Zhao, K. Kamiya, K. Hashimoto, S. Nakanishi, J. Am. Chem. Soc., 2015, 137, (1), 110 LINK https://doi.org/10.1021/ja5114529 [Google Scholar]
  174. D. S. Baek, K. A. Lee, J. Park, J. H. Kim, J. Lee, J. S. Lim, S. Y. Lee, T. J. Shin, H. Y. Jeong, J. S. Son, S. J. Kang, J. Y. Kim, S. H. Joo, Angew. Chem. Int. Ed., 2021, 60, (3), 1441 LINK https://doi.org/10.1002/anie.202012936 [Google Scholar]
  175. A. Roy, A. Serov, K. Artyushkova, E. L. Brosha, P. Atanassov, T. L. Ward, J. Solid State Chem., 2015, 228, 232 LINK https://doi.org/10.1016/j.jssc.2015.05.007 [Google Scholar]
  176. Y. Zhang, Y.-C. Hsieh, V. Volkov, D. Su, W. An, R. Si, Y. Zhu, P. Liu, J. X. Wang, R. R. Adzic, ACS Catal., 2014, 4, (3), 738 LINK https://doi.org/10.1021/cs401091u [Google Scholar]
  177. C. Gao, T. Meng, P. Yang, W. Guo, M. Cao, Chem. Asian J., 2019, 14, (11), 1977 LINK https://doi.org/10.1002/asia.201900312 [Google Scholar]
  178. X. Pan, S. Lu, D. Zhang, Y. Zhang, F. Duan, H. Zhu, H. Gu, S. Wang, M. Du, J. Mater. Chem. A, 2020, 8, (9), 4911 LINK https://doi.org/10.1039/c9ta12613a [Google Scholar]
  179. J. J. Lander, L. H. Germer, Trans. AIME, 1948, 175, 648 [Google Scholar]
  180. I. F. Ferguson, J. B. Ainscough, D. Morse, A. W. Miller, Nature, 1964, 202, (4939), 1327 LINK https://doi.org/10.1038/2021327b0 [Google Scholar]
  181. A. Mehdad, R. E. Jentoft, F. C. Jentoft, J. Catal., 2017, 347, 89 LINK https://doi.org/10.1016/j.jcat.2017.01.002 [Google Scholar]
  182. W. Wu, Z. Wu, C. Liang, X. Chen, P. Ying, C. Li, J. Phys. Chem. B, 2003, 107, (29), 7088 LINK https://doi.org/10.1021/jp027582m [Google Scholar]
  183. H.-M. Wang, X.-H. Wang, M.-H. Zhang, X.-Y. Du, W. Li, K.-Y. Tao, Chem. Mater., 2007, 19, (7), 1801 LINK https://doi.org/10.1021/cm0615471 [Google Scholar]
  184. W. Wu, Z. Wu, C. Liang, P. Ying, Z. Feng, C. Li, Phys. Chem. Chem. Phys., 2004, 6, (24), 5603 LINK https://doi.org/10.1039/b411849a [Google Scholar]
  185. V. Kolb, “Synthesis of a Molybdenum Carbide Catalyst for the Application in the Reductive Carbonyl Coupling of Trans-Cinnamaldehyde to the All-Trans Polyene Diphenylhexatriene”, PhD Thesis, Technical Faculty, Friedrich Alexander Erlangen-Nuremburg University, Germany, 17th May, 2018, 181 pp LINK https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-101450 [Google Scholar]
  186. B. G. Demczyk, J.-G. Choi, L. T. Thompson, Appl. Surf. Sci., 1994, 78, (1), 63 LINK https://doi.org/10.1016/0169-4332(94)90032-9 [Google Scholar]
  187. N. M. Schweitzer, J. A. Schaidle, O. K. Ezekoye, X. Pan, S. Linic, L. T. Thompson, J. Am. Chem. Soc., 2011, 133, (8), 2378 LINK https://doi.org/10.1021/ja110705a [Google Scholar]
  188. W. Setthapun, S. K. Bej, L. T. Thompson, Top. Catal., 2008, 49, (1–2), 73 LINK https://doi.org/10.1007/s11244-008-9070-7 [Google Scholar]
  189. K. Leary, J. N. Michaels, A. M. Stacy, J. Catal., 1986, 101, (2), 301 LINK https://doi.org/10.1016/0021-9517(86)90257-5 [Google Scholar]
  190. D. C. LaMont, A. J. Gilligan, A. R. S. Darujati, A. S. Chellappa, W. J. Thomson, Appl. Catal. A: Gen., 2003, 255, (2), 239 LINK https://doi.org/10.1016/s0926-860x(03)00567-2 [Google Scholar]
  191. G. Ranhotra, G. W. Haddix, A. T. Bell, J. A. Reimer, J. Catal., 1987, 108, (1), 24 LINK https://doi.org/10.1016/0021-9517(87)90152-7 [Google Scholar]
  192. A. Darujati, D. C. LaMont, W. J. Thomson, Appl. Catal. A: Gen., 2003, 253, (2), 397 LINK https://doi.org/10.1016/s0926-860x(03)00531-3 [Google Scholar]
  193. H. Gao, Z. Yao, Y. Shi, R. Jia, F. Liang, Y. Sun, W. Mao, H. Wang, Inorg. Chem. Front., 2018, 5, (1), 90 LINK https://doi.org/10.1039/c7qi00532f [Google Scholar]
  194. K. Murugappan, E. M. Anderson, D. Teschner, T. E. Jones, K. Skorupska, Y. Román-Leshkov, Nat. Catal., 2018, 1, (12), 960 LINK https://doi.org/10.1038/s41929-018-0171-9 [Google Scholar]
  195. J. S. Lee, S. Locatelli, S. T. Oyama, M. Boudart, J. Catal., 1990, 125, (1), 157 LINK https://doi.org/10.1016/0021-9517(90)90086-y [Google Scholar]
  196. S. Li, J. Sung Lee, T. Hyeon, K. S. Suslick, Appl. Catal. A: Gen., 1999, 184, (1), 1 LINK https://doi.org/10.1016/s0926-860x(99)00044-7 [Google Scholar]
/content/journals/10.1595/205651322X16383716226126
Loading
/content/journals/10.1595/205651322X16383716226126
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test