Skip to content
Volume 66, Issue 3
  • ISSN: 2056-5135


Liquid organic hydrogen carriers (LOHCs) provide attractive opportunities for hydrogen storage and transportation. In this study, a detailed examination of the most prominent LOHCs is performed, with a focus on their properties and scope for successful process implementation, as well as catalytic materials used for the hydrogenation and dehydrogenation steps. Different properties of each potential LOHC offer significant flexibility within the technology, allowing bespoke hydrogen storage and transportation solutions to be provided. Among different LOHC systems, dibenzyltoluene/perhydro-dibenzyltoluene has been identified as one of the most promising candidates for future deployment in commercial LOHC-based hydrogen storage and transport settings, based on its physical and toxicological properties, process conditions requirements, availability and its moderate cost. Platinum group metal (pgm)-based catalysts have been proven to catalyse both the hydrogenation and dehydrogenation steps for various LOHC systems, though base metal catalysts might have a potential for the technology.


Article metrics loading...

Loading full text...

Full text loading...



  1. Niermann M., Beckendorff A., Kaltschmitt M., and Bonhoff K. Int. J. Hydrogen Energy, 2019, 44, (13), 6631 LINK [Google Scholar]
  2. Niermann M., Drünert S., Kaltschmitt M., and Bonhoff K. Energy Environ. Sci., 2019, 12, (1), 290 LINK [Google Scholar]
  3. Niermann M., Timmerberg S., Drünert S., and Kaltschmitt M. Renew. Sustain. Energy Rev., 2021, 135, 110171 LINK [Google Scholar]
  4. Teichmann D., Arlt W., and Wasserscheid P. Int. J. Hydrogen Energy, 2012, 37, (23), 18118 LINK [Google Scholar]
  5. Teichmann D., Arlt W., Wasserscheid P., and Freymann R. Energy Environ. Sci., 2011, 4, (8), 2767 LINK [Google Scholar]
  6. Aakko-Saksa P. T., Cook C., Kiviaho J., and Repo T. J. Power Sources, 2018, 396, 803 LINK [Google Scholar]
  7. Knosala K., Kotzur L., Röben F. T. C., Stenzel P., Blum L., Robinius M., and Stolten D. Int. J. Hydrogen Energy, 2021, 46, (42), 21748 LINK [Google Scholar]
  8. Hurskainen M. “Liquid Organic Hydrogen Carriers (LOHC): Concept Evaluation and Techno-Economics”, Research Report No. VTT-R-00057-19, VTT Technical Research Centre of Finland Ltd, Espoo, Finland, 2nd December, 2019, 62 pp LINK [Google Scholar]
  9. Hurskainen M., and Ihonen J. Int. J. Hydrogen Energy, 2020, 45, (56), 32098 LINK [Google Scholar]
  10. Preuster P., Papp C., and Wasserscheid P. Acc. Chem. Res., 2016, 50, (1), 74 LINK [Google Scholar]
  11. Ahluwalia R. K., Hua T. Q., Peng J.-K., Kromer M., Lasher S., McKenney K., Law K., and Sinha J. “Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications”, Office of Energy Efficiency and Renewable Energy, Washington, DC, USA, 21st June, 2011 LINK [Google Scholar]
  12. Teichmann D., Stark K., Müller K., Zöttl G., Wasserscheid P., and Arlt W. Energy Environ. Sci., 2012, 5, (10), 9044 LINK [Google Scholar]
  13. von Wild J., Friedrich T., Cooper A., Toseland B., Muraro G., Tegrotenhuis W., Wang Y., Humble P., Karim A., ‘Liquid Organic Hydrogen Carriers (LOHC): An Auspicious Alternative to Conventional Hydrogen Storage Technologies’, 18th World Hydrogen Energy Conference 2010, 16th–21st May, 2010, Essen, Germany, “WHEC 2010 Proceedings: Parallel Sessions Book 4: Storage Systems: Policy Perspectives, Initiatives and Cooperations”, eds. Stolten D. , and Grube T. 78-4, Forschungszentrum Jülich GmbH, Jülich, Germany, 2010, pp 189198 LINK [Google Scholar]
  14. Raab M., Maier S., and Dietrich R.-U. Int. J. Hydrogen Energy, 2021, 46, (21), 11956 LINK [Google Scholar]
  15. Southall E., and Lukashuk L. Johnson Matthey Technol. Rev., 2021, 66, 3, 246 LINK [Google Scholar]
  16. Southall E., and Lukashuk L. Johnson Matthey Technol. Rev., 2021, 66, 3, 259 LINK [Google Scholar]
  17. Itoh N., Xu W. C., Hara S., and Sakaki K. Catal. Today, 2000, 56, (1–3), 307 LINK [Google Scholar]
  18. Kariya N., Fukuoka A., and Ichikawa M. Appl. Catal. A: Gen., 2002, 233, (1–2), 91 LINK [Google Scholar]
  19. Taube M., Rippin D. W. T., Cresswell D. L., and Knecht W. Int. J. Hydrogen Energy, 1983, 8, (3), 213 LINK [Google Scholar]
  20. Giordano N., Cacciola G., and Parmaliana A. Platinum Metals Rev., 1986, 30, (4), 174 LINK [Google Scholar]
  21. Müller K., Stark K., Müller B., and Arlt W. Energy Fuels, 2012, 26, (6), 3691 LINK [Google Scholar]
  22. Müller K., Völkl J., and Arlt W. Energy Technol., 2013, 1, (1), 20 LINK [Google Scholar]
  23. Markiewicz M., Zhang Y.-Q., Empl M. T., Lykaki M., Thöming J., Steinberg P., and Stolte S. Energy Environ. Sci., 2019, 12, (1), 366 LINK [Google Scholar]
  24. Naseem M., Usman M., and Lee S. Int. J. Hydrogen Energy, 2021, 46, (5), 4100 LINK [Google Scholar]
  25. Mohajeri N., and T-Raissi A. MRS Proc., 2005, 884, (1), 14 LINK [Google Scholar]
  26. Uhrig F., Kadar J., and Müller K. Energy Sci. Eng., 2020, 8, (6), 2044 LINK [Google Scholar]
  27. Wunsch A., Mohr M., and Pfeifer P. Membranes, 2018, 8, (4), 112 LINK [Google Scholar]
  28. Rivard E., Trudeau M., and Zaghib K. Materials, 2019, 12, (12), 1973 LINK [Google Scholar]
  29. Shi L., Qi S., Qu J., Che T., Yi C., and Yang B. Int. J. Hydrogen Energy, 2019, 44, (11), 5345 LINK [Google Scholar]
  30. Jorschick H., Preuster P., Dürr S., Seidel A., Müller K., Bösmann A., and Wasserscheid P. Energy Environ. Sci., 2017, 10, (7), 1652 LINK [Google Scholar]
  31. Jorschick H., Dürr S., Preuster P., Bösmann A., and Wasserscheid P. Energy Technol., 2018, 7, (1), 146 LINK [Google Scholar]
  32. ‘Review of Hydrogen Transport Cost and Its Perspective (Liquid Organic Hydrogen Carrier)’, in “Demand and Supply Potential of Hydrogen Energy in East Asia – Phase 2”, eds. Kimura S., Kutani I., Ikeda O., and Chihiro R. Economic Research Institute for ASEAN and East Asia (ERIA), Jakarta, Indonesia, December, 2020, pp. 5259 LINK [Google Scholar]
  33. “WP8 Business Development and Sustainability – Concept Studies, Economic Analysis, Life Cycle Assessment: D8.3: A Preliminary Feasibility Study”, Project Ref. HySTOC-779694, VTT Technical Research Centre of Finland, Espoo, Finland, 26th August, 2019, 24 pp [Google Scholar]
  34. Modisha P. M., Ouma C. N. M., Garidzirai R., Wasserscheid P., and Bessarabov D. Energy Fuels, 2019, 33, (4), 2778 LINK [Google Scholar]
  35. Shi D., Wojcieszak R., Paul S., and Marceau E. Catalysts, 2019, 9, (5), 451 LINK [Google Scholar]
  36. Sergeev A. G., Webb J. D., and Hartwig J. F. J. Am. Chem. Soc., 2012, 134, (50), 20226 LINK [Google Scholar]
  37. Gulyaeva Y. K., Alekseeva (Bykova) M. V., Ermakov D. Y., Bulavchenko O. A., Zaikina O. O., and Yakovlev V. A. Catalysts, 2020, 10, (10), 1198 LINK [Google Scholar]
  38. Al-ShaikhAli A. H., Jedidi A., Cavallo L., and Takanabe K. Chem. Commun., 2015, 51, (65), 12931 LINK [Google Scholar]
  39. Al-ShaikhAli A. H., Jedidi A., Anjum D. H., Cavallo L., and Takanabe K. ACS Catal., 2017, 7, (3), 1592 LINK [Google Scholar]
  40. De S., Zhang J., Luque R., and Yan N. Energy Environ. Sci., 2016, 9, (11), 3314 LINK [Google Scholar]
  41. Oh J., Bathula H. B., Park J. H., and Suh Y.-W. Commun. Chem., 2019, 2, (1), 68 LINK [Google Scholar]
  42. Amende M., Kaftan A., Bachmann P., Brehmer R., Preuster P., Koch M., Wasserscheid P., and Libuda J. Appl. Surf. Sci., 2016, 360, (Part B), 671 LINK [Google Scholar]
  43. Oh J., Kim T. W., Jeong K., Park J. H., and Suh Y.-W. ChemCatChem, 2018, 10, (17), 3892 LINK [Google Scholar]
  44. Leinweber A., and Müller K. Energy Technol., 2017, 6, (3), 513 LINK [Google Scholar]
  45. Emmett P. H., and Skau N. J. Am. Chem. Soc., 1943, 65, (6), 1029 LINK [Google Scholar]
  46. Halligudi S. B., Bajaj H. C., Bhatt K. N., and Krishnaratnam M. React. Kinet. Catal. Lett., 1992, 48, (2), 547 LINK [Google Scholar]
  47. Peyrovi M. H., and Toosi M. R. React. Kinet. Catal. Lett., 2008, 94, (1), 115 LINK [Google Scholar]
  48. Nat. Catal., 2019, 2, (9), 735 LINK [Google Scholar]
  49. ‘Base Metals in Catalysis: From Zero to Hero’, in “Green and Sustainable Medicinal Chemistry: Methods, Tools and Strategies for the 21st Century Pharmaceutical Industry”, eds. Summerton L., Sneddon H. F., Jones L. C., and Clark J. H. The Royal Society of Chemistry, Cambridge, UK, 2016, pp 192202 LINK [Google Scholar]
  50. Biniwale R. B., Kariya N., and Ichikawa M. Catal. Letters, 2005, 105, (1–2), 83 LINK [Google Scholar]
  51. Pande J. V, Shukla A., and Biniwale R. B. Int. J. Hydrogen Energy, 2012, 37, (8), 6756 LINK [Google Scholar]
  52. Lijewski M., Hogg J. M., Swadźba-Kwaśny M., Wasserscheid P., and Haumann M. RSC Adv., 2017, 7, (44), 27558 LINK [Google Scholar]
  53. Thomas K., Binet C., Chevreau T., Cornet D., and Gilson J.-P. J. Catal., 2002, 212, (1), 63 LINK [Google Scholar]
  54. Shuwa S. M., Jibril B. Y., and Al-Hajri R. S. Niger. J. Technol., 2018, 36, (4), 1114 LINK [Google Scholar]
  55. Choi J., Zhang S., and Hill J. M. Catal. Sci. Technol., 2012, 2, (1), 179 LINK [Google Scholar]
  56. ElShafei G. M. S., Zaki T., Eshaq G., and Riad M. Adsorpt. Sci. Technol., 2006, 24, (10), 833 LINK [Google Scholar]
  57. Yolcular S., and Olgun Ö. Catal. Today, 2008, 138, (3–4), 198 LINK [Google Scholar]
  58. Hatim M. D. I., Fazara M. A. U., Syarhabil A. M., and Riduwan F. Proc. Eng., 2013, 53, 71 LINK [Google Scholar]
  59. Zhang L., Xu G., An Y., Chen C., and Wang Q. Int. J. Hydrogen Energy, 2006, 31, (15), 2250 LINK [Google Scholar]
  60. Shukla A. A., Gosavi P. V., Pande J. V., Kumar V. P., Chary K. V. R., and Biniwale R. B. Int. J. Hydrogen Energy, 2010, 35, (9), 4020 LINK [Google Scholar]
  61. Wunsch A., Berg T., and Pfeifer P. Materials, 2020, 13, (2), 277 LINK [Google Scholar]
  62. Gora A., Tanaka D. A. P., Mizukami F. , and Suzuki T. M. Chem. Lett., 2006, 35, (12), 1372 LINK [Google Scholar]
  63. Park K.-C., Yim D.-J., and Ihm S.-K. Catal. Today, 2002, 74, (3–4), 281 LINK [Google Scholar]
  64. Hodoshima S., Takaiwa S., Shono A., Satoh K., and Saito Y. Appl. Catal. A: Gen., 2005, 283, (1–2), 235 LINK [Google Scholar]
  65. Lee G., Jeong Y., Kim B.-G., Han J. S., Jeong H., Na H. B., and Jung J. C. Catal. Commun., 2015, 67, 40 LINK [Google Scholar]
  66. Suttisawat Y., Sakai H., Abe M., Rangsunvigit P., and Horikoshi S. Int. J. Hydrogen Energy, 2012, 37, (4), 3242 LINK [Google Scholar]
  67. Yang M., Dong Y., Fei S., Ke H., and Cheng H. Int. J. Hydrogen Energy, 2014, 39, (33), 18976 LINK [Google Scholar]
  68. Brückner N., Obesser K., Bösmann A., Teichmann D., Arlt W., Dungs J., and Wasserscheid P. ChemSusChem, 2013, 7, (1), 229 LINK [Google Scholar]
  69. Forberg D., Schwob T., Zaheer M., Friedrich M., Miyajima N., and Kempe R. Nat. Commun., 2016, 7, (1), 13201 LINK [Google Scholar]
  70. Wu Y., Yu H., Guo Y., Jiang X., Qi Y., Sun B., Li H., Zheng J., and Li X. Chem. Sci., 2019, 10, (45), 10459 LINK [Google Scholar]
  71. Li L., Yang M., Dong Y., Mei P., and Cheng H. Int. J. Hydrogen Energy, 2016, 41, (36), 16129 LINK [Google Scholar]
  72. Dürr S., Müller M., Jorschick H., Helmin M., Bösmann A., Palkovits R., and Wasserscheid P. ChemSusChem, 2016, 10, (1), 42 LINK [Google Scholar]
  73. Jorschick H., Bösmann A., Preuster P., and Wasserscheid P. ChemCatChem, 2018, 10, (19), 4329 LINK [Google Scholar]
  74. Modisha P., and Bessarabov D. Sustain. Energy Fuels, 2020, 4, (9), 4662 LINK [Google Scholar]
  75. Aslam R., Khan M. H., Ishaq M., and Müller K. J. Chem. Eng. Data, 2018, 63, (12), 4580 LINK [Google Scholar]
  76. Aslam R., Minceva M., Müller K., and Arlt W. Sep. Purif. Technol., 2016, 163, 140 LINK [Google Scholar]
  77. Müller K., Stark K., Emel’yanenko V. N., Varfolomeev M. A., Zaitsau D. H., Shoifet E., Schick C., Verevkin S. P., and Arlt W. Ind. Eng. Chem. Res., 2015, 54, (32), 7967 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error