Skip to content
1887
Volume 66, Issue 3
  • ISSN: 2056-5135

Abstract

Liquid organic hydrogen carriers (LOHCs) provide attractive opportunities for hydrogen storage and transportation. In this study, a detailed examination of the most prominent LOHCs is performed, with a focus on their properties and scope for successful process implementation, as well as catalytic materials used for the hydrogenation and dehydrogenation steps. Different properties of each potential LOHC offer significant flexibility within the technology, allowing bespoke hydrogen storage and transportation solutions to be provided. Among different LOHC systems, dibenzyltoluene/perhydro-dibenzyltoluene has been identified as one of the most promising candidates for future deployment in commercial LOHC-based hydrogen storage and transport settings, based on its physical and toxicological properties, process conditions requirements, availability and its moderate cost. Platinum group metal (pgm)-based catalysts have been proven to catalyse both the hydrogenation and dehydrogenation steps for various LOHC systems, though base metal catalysts might have a potential for the technology.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16415722152530
2022-01-10
2024-05-28
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/3/Lukashuk_16a_Imp-pt3.html?itemId=/content/journals/10.1595/205651322X16415722152530&mimeType=html&fmt=ahah

References

  1. Niermann M., Beckendorff A., Kaltschmitt M., and Bonhoff K. Int. J. Hydrogen Energy, 2019, 44, (13), 6631 LINK https://doi.org/10.1016/j.ijhydene.2019.01.199 [Google Scholar]
  2. Niermann M., Drünert S., Kaltschmitt M., and Bonhoff K. Energy Environ. Sci., 2019, 12, (1), 290 LINK https://doi.org/10.1039/c8ee02700e [Google Scholar]
  3. Niermann M., Timmerberg S., Drünert S., and Kaltschmitt M. Renew. Sustain. Energy Rev., 2021, 135, 110171 LINK https://doi.org/10.1016/j.rser.2020.110171 [Google Scholar]
  4. Teichmann D., Arlt W., and Wasserscheid P. Int. J. Hydrogen Energy, 2012, 37, (23), 18118 LINK https://doi.org/10.1016/j.ijhydene.2012.08.066 [Google Scholar]
  5. Teichmann D., Arlt W., Wasserscheid P., and Freymann R. Energy Environ. Sci., 2011, 4, (8), 2767 LINK https://doi.org/10.1039/c1ee01454d [Google Scholar]
  6. Aakko-Saksa P. T., Cook C., Kiviaho J., and Repo T. J. Power Sources, 2018, 396, 803 LINK https://doi.org/10.1016/j.jpowsour.2018.04.011 [Google Scholar]
  7. Knosala K., Kotzur L., Röben F. T. C., Stenzel P., Blum L., Robinius M., and Stolten D. Int. J. Hydrogen Energy, 2021, 46, (42), 21748 LINK https://doi.org/10.1016/j.ijhydene.2021.04.036 [Google Scholar]
  8. Hurskainen M. “Liquid Organic Hydrogen Carriers (LOHC): Concept Evaluation and Techno-Economics”, Research Report No. VTT-R-00057-19, VTT Technical Research Centre of Finland Ltd, Espoo, Finland, 2nd December, 2019, 62 pp LINK https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech [Google Scholar]
  9. Hurskainen M., and Ihonen J. Int. J. Hydrogen Energy, 2020, 45, (56), 32098 LINK https://doi.org/10.1016/j.ijhydene.2020.08.186 [Google Scholar]
  10. Preuster P., Papp C., and Wasserscheid P. Acc. Chem. Res., 2016, 50, (1), 74 LINK https://doi.org/10.1021/acs.accounts.6b00474 [Google Scholar]
  11. Ahluwalia R. K., Hua T. Q., Peng J.-K., Kromer M., Lasher S., McKenney K., Law K., and Sinha J. “Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications”, Office of Energy Efficiency and Renewable Energy, Washington, DC, USA, 21st June, 2011 LINK https://doi.org/10.2172/1219358 [Google Scholar]
  12. Teichmann D., Stark K., Müller K., Zöttl G., Wasserscheid P., and Arlt W. Energy Environ. Sci., 2012, 5, (10), 9044 LINK https://doi.org/10.1039/c2ee22070a [Google Scholar]
  13. von Wild J., Friedrich T., Cooper A., Toseland B., Muraro G., Tegrotenhuis W., Wang Y., Humble P., Karim A., ‘Liquid Organic Hydrogen Carriers (LOHC): An Auspicious Alternative to Conventional Hydrogen Storage Technologies’, 18th World Hydrogen Energy Conference 2010, 16th–21st May, 2010, Essen, Germany, “WHEC 2010 Proceedings: Parallel Sessions Book 4: Storage Systems: Policy Perspectives, Initiatives and Cooperations”, eds. Stolten D. , and Grube T. 78-4, Forschungszentrum Jülich GmbH, Jülich, Germany, 2010, pp 189198 LINK http://hdl.handle.net/2128/4094 [Google Scholar]
  14. Raab M., Maier S., and Dietrich R.-U. Int. J. Hydrogen Energy, 2021, 46, (21), 11956 LINK https://doi.org/10.1016/j.ijhydene.2020.12.213 [Google Scholar]
  15. Southall E., and Lukashuk L. Johnson Matthey Technol. Rev., 2021, 66, 3, 246 LINK https://www.technology.matthey.com/article/66/3/246-258/ [Google Scholar]
  16. Southall E., and Lukashuk L. Johnson Matthey Technol. Rev., 2021, 66, 3, 259 LINK https://www.technology.matthey.com/article/66/3/259-270/ [Google Scholar]
  17. Itoh N., Xu W. C., Hara S., and Sakaki K. Catal. Today, 2000, 56, (1–3), 307 LINK https://doi.org/10.1016/s0920-5861(99)00288-6 [Google Scholar]
  18. Kariya N., Fukuoka A., and Ichikawa M. Appl. Catal. A: Gen., 2002, 233, (1–2), 91 LINK https://doi.org/10.1016/s0926-860x(02)00139-4 [Google Scholar]
  19. Taube M., Rippin D. W. T., Cresswell D. L., and Knecht W. Int. J. Hydrogen Energy, 1983, 8, (3), 213 LINK https://doi.org/10.1016/0360-3199(83)90067-8 [Google Scholar]
  20. Giordano N., Cacciola G., and Parmaliana A. Platinum Metals Rev., 1986, 30, (4), 174 LINK https://www.technology.matthey.com/article/30/4/174-182/ [Google Scholar]
  21. Müller K., Stark K., Müller B., and Arlt W. Energy Fuels, 2012, 26, (6), 3691 LINK https://doi.org/10.1021/ef300516m [Google Scholar]
  22. Müller K., Völkl J., and Arlt W. Energy Technol., 2013, 1, (1), 20 LINK https://doi.org/10.1002/ente.201200045 [Google Scholar]
  23. Markiewicz M., Zhang Y.-Q., Empl M. T., Lykaki M., Thöming J., Steinberg P., and Stolte S. Energy Environ. Sci., 2019, 12, (1), 366 LINK https://doi.org/10.1039/c8ee01696h [Google Scholar]
  24. Naseem M., Usman M., and Lee S. Int. J. Hydrogen Energy, 2021, 46, (5), 4100 LINK https://doi.org/10.1016/j.ijhydene.2020.10.188 [Google Scholar]
  25. Mohajeri N., and T-Raissi A. MRS Proc., 2005, 884, (1), 14 LINK https://doi.org/10.1557/proc-884-gg1.4 [Google Scholar]
  26. Uhrig F., Kadar J., and Müller K. Energy Sci. Eng., 2020, 8, (6), 2044 LINK https://doi.org/10.1002/ese3.646 [Google Scholar]
  27. Wunsch A., Mohr M., and Pfeifer P. Membranes, 2018, 8, (4), 112 LINK https://doi.org/10.3390/membranes8040112 [Google Scholar]
  28. Rivard E., Trudeau M., and Zaghib K. Materials, 2019, 12, (12), 1973 LINK https://doi.org/10.3390/ma12121973 [Google Scholar]
  29. Shi L., Qi S., Qu J., Che T., Yi C., and Yang B. Int. J. Hydrogen Energy, 2019, 44, (11), 5345 LINK https://doi.org/10.1016/j.ijhydene.2018.09.083 [Google Scholar]
  30. Jorschick H., Preuster P., Dürr S., Seidel A., Müller K., Bösmann A., and Wasserscheid P. Energy Environ. Sci., 2017, 10, (7), 1652 LINK https://doi.org/10.1039/c7ee00476a [Google Scholar]
  31. Jorschick H., Dürr S., Preuster P., Bösmann A., and Wasserscheid P. Energy Technol., 2018, 7, (1), 146 LINK https://doi.org/10.1002/ente.201800499 [Google Scholar]
  32. ‘Review of Hydrogen Transport Cost and Its Perspective (Liquid Organic Hydrogen Carrier)’, in “Demand and Supply Potential of Hydrogen Energy in East Asia – Phase 2”, eds. Kimura S., Kutani I., Ikeda O., and Chihiro R. Economic Research Institute for ASEAN and East Asia (ERIA), Jakarta, Indonesia, December, 2020, pp. 5259 LINK https://www.eria.org/uploads/media/Research-Project-Report/RPR_2020_16/10_Chapter-3-Review-Hydrogen-Transport-Cost_(Liquid-Organic-Hydrogen-Carrier).pdf [Google Scholar]
  33. “WP8 Business Development and Sustainability – Concept Studies, Economic Analysis, Life Cycle Assessment: D8.3: A Preliminary Feasibility Study”, Project Ref. HySTOC-779694, VTT Technical Research Centre of Finland, Espoo, Finland, 26th August, 2019, 24 pp [Google Scholar]
  34. Modisha P. M., Ouma C. N. M., Garidzirai R., Wasserscheid P., and Bessarabov D. Energy Fuels, 2019, 33, (4), 2778 LINK https://doi.org/10.1021/acs.energyfuels.9b00296 [Google Scholar]
  35. Shi D., Wojcieszak R., Paul S., and Marceau E. Catalysts, 2019, 9, (5), 451 LINK https://doi.org/10.3390/catal9050451 [Google Scholar]
  36. Sergeev A. G., Webb J. D., and Hartwig J. F. J. Am. Chem. Soc., 2012, 134, (50), 20226 LINK https://doi.org/10.1021/ja3085912 [Google Scholar]
  37. Gulyaeva Y. K., Alekseeva (Bykova) M. V., Ermakov D. Y., Bulavchenko O. A., Zaikina O. O., and Yakovlev V. A. Catalysts, 2020, 10, (10), 1198 LINK https://doi.org/10.3390/catal10101198 [Google Scholar]
  38. Al-ShaikhAli A. H., Jedidi A., Cavallo L., and Takanabe K. Chem. Commun., 2015, 51, (65), 12931 LINK https://doi.org/10.1039/c5cc04016g [Google Scholar]
  39. Al-ShaikhAli A. H., Jedidi A., Anjum D. H., Cavallo L., and Takanabe K. ACS Catal., 2017, 7, (3), 1592 LINK https://doi.org/10.1021/acscatal.6b03299 [Google Scholar]
  40. De S., Zhang J., Luque R., and Yan N. Energy Environ. Sci., 2016, 9, (11), 3314 LINK https://doi.org/10.1039/c6ee02002j [Google Scholar]
  41. Oh J., Bathula H. B., Park J. H., and Suh Y.-W. Commun. Chem., 2019, 2, (1), 68 LINK https://doi.org/10.1038/s42004-019-0167-7 [Google Scholar]
  42. Amende M., Kaftan A., Bachmann P., Brehmer R., Preuster P., Koch M., Wasserscheid P., and Libuda J. Appl. Surf. Sci., 2016, 360, (Part B), 671 LINK https://doi.org/10.1016/j.apsusc.2015.11.045 [Google Scholar]
  43. Oh J., Kim T. W., Jeong K., Park J. H., and Suh Y.-W. ChemCatChem, 2018, 10, (17), 3892 LINK https://doi.org/10.1002/cctc.201800537 [Google Scholar]
  44. Leinweber A., and Müller K. Energy Technol., 2017, 6, (3), 513 LINK https://doi.org/10.1002/ente.201700376 [Google Scholar]
  45. Emmett P. H., and Skau N. J. Am. Chem. Soc., 1943, 65, (6), 1029 LINK https://doi.org/10.1021/ja01246a010 [Google Scholar]
  46. Halligudi S. B., Bajaj H. C., Bhatt K. N., and Krishnaratnam M. React. Kinet. Catal. Lett., 1992, 48, (2), 547 LINK https://doi.org/10.1007/bf02162706 [Google Scholar]
  47. Peyrovi M. H., and Toosi M. R. React. Kinet. Catal. Lett., 2008, 94, (1), 115 LINK https://doi.org/10.1007/s11144-008-5277-7 [Google Scholar]
  48. Nat. Catal., 2019, 2, (9), 735 LINK https://doi.org/10.1038/s41929-019-0359-7 [Google Scholar]
  49. ‘Base Metals in Catalysis: From Zero to Hero’, in “Green and Sustainable Medicinal Chemistry: Methods, Tools and Strategies for the 21st Century Pharmaceutical Industry”, eds. Summerton L., Sneddon H. F., Jones L. C., and Clark J. H. The Royal Society of Chemistry, Cambridge, UK, 2016, pp 192202 LINK https://doi.org/10.1039/9781782625940-00192 [Google Scholar]
  50. Biniwale R. B., Kariya N., and Ichikawa M. Catal. Letters, 2005, 105, (1–2), 83 LINK https://doi.org/10.1007/s10562-005-8009-x [Google Scholar]
  51. Pande J. V, Shukla A., and Biniwale R. B. Int. J. Hydrogen Energy, 2012, 37, (8), 6756 LINK https://doi.org/10.1016/j.ijhydene.2012.01.069 [Google Scholar]
  52. Lijewski M., Hogg J. M., Swadźba-Kwaśny M., Wasserscheid P., and Haumann M. RSC Adv., 2017, 7, (44), 27558 LINK https://doi.org/10.1039/c7ra03295a [Google Scholar]
  53. Thomas K., Binet C., Chevreau T., Cornet D., and Gilson J.-P. J. Catal., 2002, 212, (1), 63 LINK https://doi.org/10.1006/jcat.2002.3780 [Google Scholar]
  54. Shuwa S. M., Jibril B. Y., and Al-Hajri R. S. Niger. J. Technol., 2018, 36, (4), 1114 LINK https://doi.org/10.4314/njt.v36i4.17 [Google Scholar]
  55. Choi J., Zhang S., and Hill J. M. Catal. Sci. Technol., 2012, 2, (1), 179 LINK https://doi.org/10.1039/c1cy00301a [Google Scholar]
  56. ElShafei G. M. S., Zaki T., Eshaq G., and Riad M. Adsorpt. Sci. Technol., 2006, 24, (10), 833 LINK https://doi.org/10.1260/026361707781422031 [Google Scholar]
  57. Yolcular S., and Olgun Ö. Catal. Today, 2008, 138, (3–4), 198 LINK https://doi.org/10.1016/j.cattod.2008.07.020 [Google Scholar]
  58. Hatim M. D. I., Fazara M. A. U., Syarhabil A. M., and Riduwan F. Proc. Eng., 2013, 53, 71 LINK https://doi.org/10.1016/j.proeng.2013.02.012 [Google Scholar]
  59. Zhang L., Xu G., An Y., Chen C., and Wang Q. Int. J. Hydrogen Energy, 2006, 31, (15), 2250 LINK https://doi.org/10.1016/j.ijhydene.2006.02.001 [Google Scholar]
  60. Shukla A. A., Gosavi P. V., Pande J. V., Kumar V. P., Chary K. V. R., and Biniwale R. B. Int. J. Hydrogen Energy, 2010, 35, (9), 4020 LINK https://doi.org/10.1016/j.ijhydene.2010.02.014 [Google Scholar]
  61. Wunsch A., Berg T., and Pfeifer P. Materials, 2020, 13, (2), 277 LINK https://doi.org/10.3390/ma13020277 [Google Scholar]
  62. Gora A., Tanaka D. A. P., Mizukami F. , and Suzuki T. M. Chem. Lett., 2006, 35, (12), 1372 LINK https://doi.org/10.1246/cl.2006.1372 [Google Scholar]
  63. Park K.-C., Yim D.-J., and Ihm S.-K. Catal. Today, 2002, 74, (3–4), 281 LINK https://doi.org/10.1016/s0920-5861(02)00024-x [Google Scholar]
  64. Hodoshima S., Takaiwa S., Shono A., Satoh K., and Saito Y. Appl. Catal. A: Gen., 2005, 283, (1–2), 235 LINK https://doi.org/10.1016/j.apcata.2005.01.010 [Google Scholar]
  65. Lee G., Jeong Y., Kim B.-G., Han J. S., Jeong H., Na H. B., and Jung J. C. Catal. Commun., 2015, 67, 40 LINK https://doi.org/10.1016/j.catcom.2015.04.002 [Google Scholar]
  66. Suttisawat Y., Sakai H., Abe M., Rangsunvigit P., and Horikoshi S. Int. J. Hydrogen Energy, 2012, 37, (4), 3242 LINK https://doi.org/10.1016/j.ijhydene.2011.10.111 [Google Scholar]
  67. Yang M., Dong Y., Fei S., Ke H., and Cheng H. Int. J. Hydrogen Energy, 2014, 39, (33), 18976 LINK https://doi.org/10.1016/j.ijhydene.2014.09.123 [Google Scholar]
  68. Brückner N., Obesser K., Bösmann A., Teichmann D., Arlt W., Dungs J., and Wasserscheid P. ChemSusChem, 2013, 7, (1), 229 LINK https://doi.org/10.1002/cssc.201300426 [Google Scholar]
  69. Forberg D., Schwob T., Zaheer M., Friedrich M., Miyajima N., and Kempe R. Nat. Commun., 2016, 7, (1), 13201 LINK https://doi.org/10.1038/ncomms13201 [Google Scholar]
  70. Wu Y., Yu H., Guo Y., Jiang X., Qi Y., Sun B., Li H., Zheng J., and Li X. Chem. Sci., 2019, 10, (45), 10459 LINK https://doi.org/10.1039/c9sc04365a [Google Scholar]
  71. Li L., Yang M., Dong Y., Mei P., and Cheng H. Int. J. Hydrogen Energy, 2016, 41, (36), 16129 LINK https://doi.org/10.1016/j.ijhydene.2016.04.240 [Google Scholar]
  72. Dürr S., Müller M., Jorschick H., Helmin M., Bösmann A., Palkovits R., and Wasserscheid P. ChemSusChem, 2016, 10, (1), 42 LINK https://doi.org/10.1002/cssc.201600435 [Google Scholar]
  73. Jorschick H., Bösmann A., Preuster P., and Wasserscheid P. ChemCatChem, 2018, 10, (19), 4329 LINK https://doi.org/10.1002/cctc.201800960 [Google Scholar]
  74. Modisha P., and Bessarabov D. Sustain. Energy Fuels, 2020, 4, (9), 4662 LINK https://doi.org/10.1039/d0se00625d [Google Scholar]
  75. Aslam R., Khan M. H., Ishaq M., and Müller K. J. Chem. Eng. Data, 2018, 63, (12), 4580 LINK https://doi.org/10.1021/acs.jced.8b00652 [Google Scholar]
  76. Aslam R., Minceva M., Müller K., and Arlt W. Sep. Purif. Technol., 2016, 163, 140 LINK https://doi.org/10.1016/j.seppur.2016.01.051 [Google Scholar]
  77. Müller K., Stark K., Emel’yanenko V. N., Varfolomeev M. A., Zaitsau D. H., Shoifet E., Schick C., Verevkin S. P., and Arlt W. Ind. Eng. Chem. Res., 2015, 54, (32), 7967 LINK https://doi.org/10.1021/acs.iecr.5b01840 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651322X16415722152530
Loading
/content/journals/10.1595/205651322X16415722152530
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error