Skip to content
1887
Volume 66, Issue 3
  • ISSN: 2056-5135

Abstract

Liquid organic hydrogen carriers (LOHCs) provide attractive opportunities for hydrogen storage and transportation. In this study, a detailed examination of the most prominent LOHCs is performed, with a focus on their properties and scope for successful process implementation, as well as catalytic materials used for the hydrogenation and dehydrogenation steps. Different properties of each potential LOHC offer significant flexibility within the technology, allowing bespoke hydrogen storage and transportation solutions to be provided. Among different LOHC systems, dibenzyltoluene/perhydro-dibenzyltoluene has been identified as one of the most promising candidates for future deployment in commercial LOHC-based hydrogen storage and transport settings, based on its physical and toxicological properties, process conditions requirements, availability and its moderate cost. Platinum group metal (pgm)-based catalysts have been proven to catalyse both the hydrogenation and dehydrogenation steps for various LOHC systems, though base metal catalysts might have a potential for the technology.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16415722152530
2022-01-10
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/3/Lukashuk_16a_Imp-pt3.html?itemId=/content/journals/10.1595/205651322X16415722152530&mimeType=html&fmt=ahah

References

  1. M. Niermann, A. Beckendorff, M. Kaltschmitt, K. Bonhoff, Int. J. Hydrogen Energy, 2019, 44, (13), 6631 LINK https://doi.org/10.1016/j.ijhydene.2019.01.199 [Google Scholar]
  2. M. Niermann, S. Drünert, M. Kaltschmitt, K. Bonhoff, Energy Environ. Sci., 2019, 12, (1), 290 LINK https://doi.org/10.1039/c8ee02700e [Google Scholar]
  3. M. Niermann, S. Timmerberg, S. Drünert, M. Kaltschmitt, Renew. Sustain. Energy Rev., 2021, 135, 110171 LINK https://doi.org/10.1016/j.rser.2020.110171 [Google Scholar]
  4. D. Teichmann, W. Arlt, P. Wasserscheid, Int. J. Hydrogen Energy, 2012, 37, (23), 18118 LINK https://doi.org/10.1016/j.ijhydene.2012.08.066 [Google Scholar]
  5. D. Teichmann, W. Arlt, P. Wasserscheid, R. Freymann, Energy Environ. Sci., 2011, 4, (8), 2767 LINK https://doi.org/10.1039/c1ee01454d [Google Scholar]
  6. P. T. Aakko-Saksa, C. Cook, J. Kiviaho, T. Repo, J. Power Sources, 2018, 396, 803 LINK https://doi.org/10.1016/j.jpowsour.2018.04.011 [Google Scholar]
  7. K. Knosala, L. Kotzur, F. T. C. Röben, P. Stenzel, L. Blum, M. Robinius, D. Stolten, Int. J. Hydrogen Energy, 2021, 46, (42), 21748 LINK https://doi.org/10.1016/j.ijhydene.2021.04.036 [Google Scholar]
  8. M. Hurskainen, “Liquid Organic Hydrogen Carriers (LOHC): Concept Evaluation and Techno-Economics”, Research Report No. VTT-R-00057-19, VTT Technical Research Centre of Finland Ltd, Espoo, Finland, 2nd December, 2019, 62 pp LINK https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech [Google Scholar]
  9. M. Hurskainen, J. Ihonen, Int. J. Hydrogen Energy, 2020, 45, (56), 32098 LINK https://doi.org/10.1016/j.ijhydene.2020.08.186 [Google Scholar]
  10. P. Preuster, C. Papp, P. Wasserscheid, Acc. Chem. Res., 2016, 50, (1), 74 LINK https://doi.org/10.1021/acs.accounts.6b00474 [Google Scholar]
  11. R. K. Ahluwalia, T. Q. Hua, J.-K. Peng, M. Kromer, S. Lasher, K. McKenney, K. Law, J. Sinha, “Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications”, Office of Energy Efficiency and Renewable Energy, Washington, DC, USA, 21st June, 2011 LINK https://doi.org/10.2172/1219358 [Google Scholar]
  12. D. Teichmann, K. Stark, K. Müller, G. Zöttl, P. Wasserscheid, W. Arlt, Energy Environ. Sci., 2012, 5, (10), 9044 LINK https://doi.org/10.1039/c2ee22070a [Google Scholar]
  13. J. von Wild, T. Friedrich, A. Cooper, B. Toseland, G. Muraro, W. Tegrotenhuis, Y. Wang, P. Humble, A. Karim, ‘Liquid Organic Hydrogen Carriers (LOHC): An Auspicious Alternative to Conventional Hydrogen Storage Technologies’, 18th World Hydrogen Energy Conference 2010, 16th–21st May, 2010, Essen, Germany, “WHEC 2010 Proceedings: Parallel Sessions Book 4: Storage Systems: Policy Perspectives, Initiatives and Cooperations”, eds. D. Stolten, T. Grube, 78-4, Forschungszentrum Jülich GmbH, Jülich, Germany, 2010, pp 189198 LINK http://hdl.handle.net/2128/4094 [Google Scholar]
  14. M. Raab, S. Maier, R.-U. Dietrich, Int. J. Hydrogen Energy, 2021, 46, (21), 11956 LINK https://doi.org/10.1016/j.ijhydene.2020.12.213 [Google Scholar]
  15. E. Southall, L. Lukashuk, Johnson Matthey Technol. Rev., 2021, 66, 3, 246 LINK https://www.technology.matthey.com/article/66/3/246-258/ [Google Scholar]
  16. E. Southall, L. Lukashuk, Johnson Matthey Technol. Rev., 2021, 66, 3, 259 LINK https://www.technology.matthey.com/article/66/3/259-270/ [Google Scholar]
  17. N. Itoh, W. C. Xu, S. Hara, K. Sakaki, Catal. Today, 2000, 56, (1–3), 307 LINK https://doi.org/10.1016/s0920-5861(99)00288-6 [Google Scholar]
  18. N. Kariya, A. Fukuoka, M. Ichikawa, Appl. Catal. A: Gen., 2002, 233, (1–2), 91 LINK https://doi.org/10.1016/s0926-860x(02)00139-4 [Google Scholar]
  19. M. Taube, D. W. T. Rippin, D. L. Cresswell, W. Knecht, Int. J. Hydrogen Energy, 1983, 8, (3), 213 LINK https://doi.org/10.1016/0360-3199(83)90067-8 [Google Scholar]
  20. N. Giordano, G. Cacciola, A. Parmaliana, Platinum Metals Rev., 1986, 30, (4), 174 LINK https://www.technology.matthey.com/article/30/4/174-182/ [Google Scholar]
  21. K. Müller, K. Stark, B. Müller, W. Arlt, Energy Fuels, 2012, 26, (6), 3691 LINK https://doi.org/10.1021/ef300516m [Google Scholar]
  22. K. Müller, J. Völkl, W. Arlt, Energy Technol., 2013, 1, (1), 20 LINK https://doi.org/10.1002/ente.201200045 [Google Scholar]
  23. M. Markiewicz, Y.-Q. Zhang, M. T. Empl, M. Lykaki, J. Thöming, P. Steinberg, S. Stolte, Energy Environ. Sci., 2019, 12, (1), 366 LINK https://doi.org/10.1039/c8ee01696h [Google Scholar]
  24. M. Naseem, M. Usman, S. Lee, Int. J. Hydrogen Energy, 2021, 46, (5), 4100 LINK https://doi.org/10.1016/j.ijhydene.2020.10.188 [Google Scholar]
  25. N. Mohajeri, A. T-Raissi, MRS Proc., 2005, 884, (1), 14 LINK https://doi.org/10.1557/proc-884-gg1.4 [Google Scholar]
  26. F. Uhrig, J. Kadar, K. Müller, Energy Sci. Eng., 2020, 8, (6), 2044 LINK https://doi.org/10.1002/ese3.646 [Google Scholar]
  27. A. Wunsch, M. Mohr, P. Pfeifer, Membranes, 2018, 8, (4), 112 LINK https://doi.org/10.3390/membranes8040112 [Google Scholar]
  28. E. Rivard, M. Trudeau, K. Zaghib, Materials, 2019, 12, (12), 1973 LINK https://doi.org/10.3390/ma12121973 [Google Scholar]
  29. L. Shi, S. Qi, J. Qu, T. Che, C. Yi, B. Yang, Int. J. Hydrogen Energy, 2019, 44, (11), 5345 LINK https://doi.org/10.1016/j.ijhydene.2018.09.083 [Google Scholar]
  30. H. Jorschick, P. Preuster, S. Dürr, A. Seidel, K. Müller, A. Bösmann, P. Wasserscheid, Energy Environ. Sci., 2017, 10, (7), 1652 LINK https://doi.org/10.1039/c7ee00476a [Google Scholar]
  31. H. Jorschick, S. Dürr, P. Preuster, A. Bösmann, P. Wasserscheid, Energy Technol., 2018, 7, (1), 146 LINK https://doi.org/10.1002/ente.201800499 [Google Scholar]
  32. ‘Review of Hydrogen Transport Cost and Its Perspective (Liquid Organic Hydrogen Carrier)’, in “Demand and Supply Potential of Hydrogen Energy in East Asia – Phase 2”, eds. S. Kimura, I. Kutani, O. Ikeda, R. Chihiro, Economic Research Institute for ASEAN and East Asia (ERIA), Jakarta, Indonesia, December, 2020, pp. 5259 LINK https://www.eria.org/uploads/media/Research-Project-Report/RPR_2020_16/10_Chapter-3-Review-Hydrogen-Transport-Cost_(Liquid-Organic-Hydrogen-Carrier).pdf [Google Scholar]
  33. “WP8 Business Development and Sustainability – Concept Studies, Economic Analysis, Life Cycle Assessment: D8.3: A Preliminary Feasibility Study”, Project Ref. HySTOC-779694, VTT Technical Research Centre of Finland, Espoo, Finland, 26th August, 2019, 24 pp [Google Scholar]
  34. P. M. Modisha, C. N. M. Ouma, R. Garidzirai, P. Wasserscheid, D. Bessarabov, Energy Fuels, 2019, 33, (4), 2778 LINK https://doi.org/10.1021/acs.energyfuels.9b00296 [Google Scholar]
  35. D. Shi, R. Wojcieszak, S. Paul, E. Marceau, Catalysts, 2019, 9, (5), 451 LINK https://doi.org/10.3390/catal9050451 [Google Scholar]
  36. A. G. Sergeev, J. D. Webb, J. F. Hartwig, J. Am. Chem. Soc., 2012, 134, (50), 20226 LINK https://doi.org/10.1021/ja3085912 [Google Scholar]
  37. Y. K. Gulyaeva, M. V. Alekseeva (Bykova), D. Y. Ermakov, O. A. Bulavchenko, O. O. Zaikina, V. A. Yakovlev, Catalysts, 2020, 10, (10), 1198 LINK https://doi.org/10.3390/catal10101198 [Google Scholar]
  38. A. H. Al-ShaikhAli, A. Jedidi, L. Cavallo, K. Takanabe, Chem. Commun., 2015, 51, (65), 12931 LINK https://doi.org/10.1039/c5cc04016g [Google Scholar]
  39. A. H. Al-ShaikhAli, A. Jedidi, D. H. Anjum, L. Cavallo, K. Takanabe, ACS Catal., 2017, 7, (3), 1592 LINK https://doi.org/10.1021/acscatal.6b03299 [Google Scholar]
  40. S. De, J. Zhang, R. Luque, N. Yan, Energy Environ. Sci., 2016, 9, (11), 3314 LINK https://doi.org/10.1039/c6ee02002j [Google Scholar]
  41. J. Oh, H. B. Bathula, J. H. Park, Y.-W. Suh, Commun. Chem., 2019, 2, (1), 68 LINK https://doi.org/10.1038/s42004-019-0167-7 [Google Scholar]
  42. M. Amende, A. Kaftan, P. Bachmann, R. Brehmer, P. Preuster, M. Koch, P. Wasserscheid, J. Libuda, Appl. Surf. Sci., 2016, 360, (Part B), 671 LINK https://doi.org/10.1016/j.apsusc.2015.11.045 [Google Scholar]
  43. J. Oh, T. W. Kim, K. Jeong, J. H. Park, Y.-W. Suh, ChemCatChem, 2018, 10, (17), 3892 LINK https://doi.org/10.1002/cctc.201800537 [Google Scholar]
  44. A. Leinweber, K. Müller, Energy Technol., 2017, 6, (3), 513 LINK https://doi.org/10.1002/ente.201700376 [Google Scholar]
  45. P. H. Emmett, N. Skau, J. Am. Chem. Soc., 1943, 65, (6), 1029 LINK https://doi.org/10.1021/ja01246a010 [Google Scholar]
  46. S. B. Halligudi, H. C. Bajaj, K. N. Bhatt, M. Krishnaratnam, React. Kinet. Catal. Lett., 1992, 48, (2), 547 LINK https://doi.org/10.1007/bf02162706 [Google Scholar]
  47. M. H. Peyrovi, M. R. Toosi, React. Kinet. Catal. Lett., 2008, 94, (1), 115 LINK https://doi.org/10.1007/s11144-008-5277-7 [Google Scholar]
  48. Nat. Catal., 2019, 2, (9), 735 LINK https://doi.org/10.1038/s41929-019-0359-7 [Google Scholar]
  49. ‘Base Metals in Catalysis: From Zero to Hero’, in “Green and Sustainable Medicinal Chemistry: Methods, Tools and Strategies for the 21st Century Pharmaceutical Industry”, eds. L. Summerton, H. F. Sneddon, L. C. Jones, J. H. Clark, The Royal Society of Chemistry, Cambridge, UK, 2016, pp 192202 LINK https://doi.org/10.1039/9781782625940-00192 [Google Scholar]
  50. R. B. Biniwale, N. Kariya, M. Ichikawa, Catal. Letters, 2005, 105, (1–2), 83 LINK https://doi.org/10.1007/s10562-005-8009-x [Google Scholar]
  51. J. V Pande, A. Shukla, R. B. Biniwale, Int. J. Hydrogen Energy, 2012, 37, (8), 6756 LINK https://doi.org/10.1016/j.ijhydene.2012.01.069 [Google Scholar]
  52. M. Lijewski, J. M. Hogg, M. Swadźba-Kwaśny, P. Wasserscheid, M. Haumann, RSC Adv., 2017, 7, (44), 27558 LINK https://doi.org/10.1039/c7ra03295a [Google Scholar]
  53. K. Thomas, C. Binet, T. Chevreau, D. Cornet, J.-P. Gilson, J. Catal., 2002, 212, (1), 63 LINK https://doi.org/10.1006/jcat.2002.3780 [Google Scholar]
  54. S. M. Shuwa, B. Y. Jibril, R. S. Al-Hajri, Niger. J. Technol., 2018, 36, (4), 1114 LINK https://doi.org/10.4314/njt.v36i4.17 [Google Scholar]
  55. J. Choi, S. Zhang, J. M. Hill, Catal. Sci. Technol., 2012, 2, (1), 179 LINK https://doi.org/10.1039/c1cy00301a [Google Scholar]
  56. G. M. S. ElShafei, T. Zaki, G. Eshaq, M. Riad, Adsorpt. Sci. Technol., 2006, 24, (10), 833 LINK https://doi.org/10.1260/026361707781422031 [Google Scholar]
  57. S. Yolcular, Ö. Olgun, Catal. Today, 2008, 138, (3–4), 198 LINK https://doi.org/10.1016/j.cattod.2008.07.020 [Google Scholar]
  58. M. D. I. Hatim, M. A. U. Fazara, A. M. Syarhabil, F. Riduwan, Proc. Eng., 2013, 53, 71 LINK https://doi.org/10.1016/j.proeng.2013.02.012 [Google Scholar]
  59. L. Zhang, G. Xu, Y. An, C. Chen, Q. Wang, Int. J. Hydrogen Energy, 2006, 31, (15), 2250 LINK https://doi.org/10.1016/j.ijhydene.2006.02.001 [Google Scholar]
  60. A. A. Shukla, P. V. Gosavi, J. V. Pande, V. P. Kumar, K. V. R. Chary, R. B. Biniwale, Int. J. Hydrogen Energy, 2010, 35, (9), 4020 LINK https://doi.org/10.1016/j.ijhydene.2010.02.014 [Google Scholar]
  61. A. Wunsch, T. Berg, P. Pfeifer, Materials, 2020, 13, (2), 277 LINK https://doi.org/10.3390/ma13020277 [Google Scholar]
  62. A. Gora, D. A. P. Tanaka, F. Mizukami, T. M. Suzuki, Chem. Lett., 2006, 35, (12), 1372 LINK https://doi.org/10.1246/cl.2006.1372 [Google Scholar]
  63. K.-C. Park, D.-J. Yim, S.-K. Ihm, Catal. Today, 2002, 74, (3–4), 281 LINK https://doi.org/10.1016/s0920-5861(02)00024-x [Google Scholar]
  64. S. Hodoshima, S. Takaiwa, A. Shono, K. Satoh, Y. Saito, Appl. Catal. A: Gen., 2005, 283, (1–2), 235 LINK https://doi.org/10.1016/j.apcata.2005.01.010 [Google Scholar]
  65. G. Lee, Y. Jeong, B.-G. Kim, J. S. Han, H. Jeong, H. B. Na, J. C. Jung, Catal. Commun., 2015, 67, 40 LINK https://doi.org/10.1016/j.catcom.2015.04.002 [Google Scholar]
  66. Y. Suttisawat, H. Sakai, M. Abe, P. Rangsunvigit, S. Horikoshi, Int. J. Hydrogen Energy, 2012, 37, (4), 3242 LINK https://doi.org/10.1016/j.ijhydene.2011.10.111 [Google Scholar]
  67. M. Yang, Y. Dong, S. Fei, H. Ke, H. Cheng, Int. J. Hydrogen Energy, 2014, 39, (33), 18976 LINK https://doi.org/10.1016/j.ijhydene.2014.09.123 [Google Scholar]
  68. N. Brückner, K. Obesser, A. Bösmann, D. Teichmann, W. Arlt, J. Dungs, P. Wasserscheid, ChemSusChem, 2013, 7, (1), 229 LINK https://doi.org/10.1002/cssc.201300426 [Google Scholar]
  69. D. Forberg, T. Schwob, M. Zaheer, M. Friedrich, N. Miyajima, R. Kempe, Nat. Commun., 2016, 7, (1), 13201 LINK https://doi.org/10.1038/ncomms13201 [Google Scholar]
  70. Y. Wu, H. Yu, Y. Guo, X. Jiang, Y. Qi, B. Sun, H. Li, J. Zheng, X. Li, Chem. Sci., 2019, 10, (45), 10459 LINK https://doi.org/10.1039/c9sc04365a [Google Scholar]
  71. L. Li, M. Yang, Y. Dong, P. Mei, H. Cheng, Int. J. Hydrogen Energy, 2016, 41, (36), 16129 LINK https://doi.org/10.1016/j.ijhydene.2016.04.240 [Google Scholar]
  72. S. Dürr, M. Müller, H. Jorschick, M. Helmin, A. Bösmann, R. Palkovits, P. Wasserscheid, ChemSusChem, 2016, 10, (1), 42 LINK https://doi.org/10.1002/cssc.201600435 [Google Scholar]
  73. H. Jorschick, A. Bösmann, P. Preuster, P. Wasserscheid, ChemCatChem, 2018, 10, (19), 4329 LINK https://doi.org/10.1002/cctc.201800960 [Google Scholar]
  74. P. Modisha, D. Bessarabov, Sustain. Energy Fuels, 2020, 4, (9), 4662 LINK https://doi.org/10.1039/d0se00625d [Google Scholar]
  75. R. Aslam, M. H. Khan, M. Ishaq, K. Müller, J. Chem. Eng. Data, 2018, 63, (12), 4580 LINK https://doi.org/10.1021/acs.jced.8b00652 [Google Scholar]
  76. R. Aslam, M. Minceva, K. Müller, W. Arlt, Sep. Purif. Technol., 2016, 163, 140 LINK https://doi.org/10.1016/j.seppur.2016.01.051 [Google Scholar]
  77. K. Müller, K. Stark, V. N. Emel’yanenko, M. A. Varfolomeev, D. H. Zaitsau, E. Shoifet, C. Schick, S. P. Verevkin, W. Arlt, Ind. Eng. Chem. Res., 2015, 54, (32), 7967 LINK https://doi.org/10.1021/acs.iecr.5b01840 [Google Scholar]
/content/journals/10.1595/205651322X16415722152530
Loading
/content/journals/10.1595/205651322X16415722152530
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test