Skip to content
1887
Volume 66, Issue 4
  • ISSN: 2056-5135

Abstract

We review recent research into oxides of platinum group metals (pgms), in particular those of ruthenium and iridium, for use as electrocatalysts for the oxygen evolution reaction (OER). These are used in membrane electrode assemblies (MEAs) in devices such as electrolysers, for water splitting to generate hydrogen as fuel, and in fuel cells where they provide a buffer against carbon corrosion. In these situations, proton exchange membrane (PEM) layers are used, and highly acid-resilient electrocatalyst materials are required. The range of structure types investigated includes perovskites, pyrochlores and hexagonal perovskite-like phases, where the pgm is partnered by base metals in complex chemical compositions. The role of chemical synthesis in the discovery of new oxide compositions is emphasised, particularly to yield powders for processing into MEAs. Part I introduces the electrocatalytic splitting of water to oxygen and hydrogen and provides a survey of ruthenium and iridium oxide structures for oxygen evolution reaction catalysis.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16529612227119
2022-05-19
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/4/Walton_16a_Imp_pt1.html?itemId=/content/journals/10.1595/205651322X16529612227119&mimeType=html&fmt=ahah

References

  1. J. Song, C. Wei, Z.-F. Huang, C. Liu, L. Zeng, X. Wang, Z. J. Xu, Chem. Soc. Rev., 2020, 49, (7), 2196 LINK https://doi.org/10.1039/c9cs00607a [Google Scholar]
  2. Z. Lei, T. Wang, B. Zhao, W. Cai, Y. Liu, S. Jiao, Q. Li, R. Cao, M. Liu, Adv. Energy Mater., 2020, 10, (23), 2000478 LINK https://doi.org/10.1002/aenm.202000478 [Google Scholar]
  3. Y. Zhang, X. Zhu, G. Zhang, P. Shi, A.-L. Wang, J. Mater. Chem. A, 2021, 9, (10), 5890 LINK https://doi.org/10.1039/d0ta11982b [Google Scholar]
  4. Z. Pu, T. Liu, G. Zhang, H. Ranganathan, Z. Chen, S. Sun, ChemSusChem, 2021, 14, (21), 4636 LINK https://doi.org/10.1002/cssc.202101461 [Google Scholar]
  5. M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrogen Energy, 2013, 38, (12), 4901 LINK https://doi.org/10.1016/j.ijhydene.2013.01.151 [Google Scholar]
  6. M. B. Karimi, F. Mohammadi, K. Hooshyari, Int. J. Hydrogen Energy, 2019, 44, (54), 28919 LINK https://doi.org/10.1016/j.ijhydene.2019.09.096 [Google Scholar]
  7. T. Reier, H. N. Nong, D. Teschner, R. Schlögl, P. Strasser, Adv. Energy Mater., 2016, 7, (1), 1601275 LINK https://doi.org/10.1002/aenm.201601275 [Google Scholar]
  8. W. Gu, P. T. Yu, R. N. Carter, R. Makharia, H. A. Gasteiger, C.-Y. Wang, ‘Modeling of Membrane-Electrode-Assembly Degradation in Proton-Exchange-Membrane Fuel Cells – Local H2 Starvation and Start–Stop Induced Carbon-Support Corrosion’, in “Modeling and Diagnostics of Polymer Electrolyte Fuel Cells”, eds. U. Pasaogullari, Springer Science and Business Media LLC, New York, NY, 2009, pp 4587 LINK https://doi.org/10.1007/978-0-387-98068-3_2 [Google Scholar]
  9. R. T. Atanasoski, L. L. Atanasoska, D. A. Cullen, ‘Efficient Oxygen Evolution Reaction Catalysts for Cell Reversal and Start/Stop Tolerance’, in “Electrocatalysis in Fuel Cells: A Non- and Low-Platinum Approach”, ed. M. Shao, 9, Springer Verlag, London, UK, 2013, pp 637664 LINK https://doi.org/10.1007/978-1-4471-4911-8 [Google Scholar]
  10. T. C. Crowtz, D. A. Stevens, R. J. Sanderson, J. E. Harlow, G. D. Vernstrom, L. L. Atanasoska, G. M. Haugen, R. T. Atanasoski, J. R. Dahn, J. Electrochem. Soc., 2014, 161, (10), F961 LINK https://doi.org/10.1149/2.0201410jes [Google Scholar]
  11. J. Park, M. Park, G. Nam, M. G. Kim, J. Cho, Nano Lett., 2017, 17, (6), 3974 LINK https://doi.org/10.1021/acs.nanolett.7b01812 [Google Scholar]
  12. N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H. M. Chen, Chem. Soc. Rev., 2017, 46, (2), 337 LINK https://doi.org/10.1039/c6cs00328a [Google Scholar]
  13. X.-K. Gu, J. C. A. Camayang, S. Samira, E. Nikolla, J. Catal., 2020, 388, 130 LINK https://doi.org/10.1016/j.jcat.2020.05.008 [Google Scholar]
  14. S. Back, K. Tran, Z. W. Ulissi, ACS Appl. Mater. Interfaces, 2020, 12, (34), 38256 LINK https://doi.org/10.1021/acsami.0c11821 [Google Scholar]
  15. L. Wang, V. A. Saveleva, S. Zafeiratos, E. R. Savinova, P. Lettenmeier, P. Gazdzicki, A. S. Gago, K. A. Friedrich, Nano Energy, 2017, 34, 385 LINK https://doi.org/10.1016/j.nanoen.2017.02.045 [Google Scholar]
  16. R. Kötz, S. Stucki, Electrochim. Acta, 1986, 31, (10), 1311 LINK https://doi.org/10.1016/0013-4686(86)80153-0 [Google Scholar]
  17. L.-E. Owe, M. Tsypkin, K. S. Wallwork, R. G. Haverkamp, S. Sunde, Electrochim. Acta, 2012, 70, 158 LINK https://doi.org/10.1016/j.electacta.2012.03.041 [Google Scholar]
  18. O. Kasian, S. Geiger, P. Stock, G. Polymeros, B. Breitbach, A. Savan, A. Ludwig, S. Cherevko, K. J. J. Mayrhofer, J. Electrochem. Soc., 2016, 163, (11), F3099 LINK https://doi.org/10.1149/2.0131611jes [Google Scholar]
  19. S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J.-P. Grote, A. Savan, B. R. Shrestha, S. Merzlikin, B. Breitbach, A. Ludwig, K. J. J. Mayrhofer, Catal. Today, 2016, 262, 170 LINK https://doi.org/10.1016/j.cattod.2015.08.014 [Google Scholar]
  20. A. H. Reksten, H. Thuv, F. Seland, S. Sunde, J. Electroanal. Chem., 2018, 819, 547 LINK https://doi.org/10.1016/j.jelechem.2018.04.018 [Google Scholar]
  21. D. F. Abbott, D. Lebedev, K. Waltar, M. Povia, M. Nachtegaal, E. Fabbri, C. Copéret, T. J. Schmidt, Chem. Mater., 2016, 28, (18), 6591 LINK https://doi.org/10.1021/acs.chemmater.6b02625 [Google Scholar]
  22. G. C. da Silva, N. Perini, E. A. Ticianelli, Appl. Catal. B: Environ., 2017, 218, 287 LINK https://doi.org/10.1016/j.apcatb.2017.06.044 [Google Scholar]
  23. Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, J. Phys. Chem. Lett., 2012, 3, (3), 399 LINK https://doi.org/10.1021/jz2016507 [Google Scholar]
  24. J. Ahmed, Y. Mao, Electrochim. Acta, 2016, 212, 686 LINK https://doi.org/10.1016/j.electacta.2016.06.122 [Google Scholar]
  25. P. Steegstra, M. Busch, I. Panas, E. Ahlberg, J. Phys. Chem. C, 2013, 117, (40), 20975 LINK https://doi.org/10.1021/jp407030r [Google Scholar]
  26. S. Cherevko, S. Geiger, O. Kasian, A. Mingers, K. J. J. Mayrhofer, J. Electroanal. Chem., 2016, 774, 102 LINK https://doi.org/10.1016/j.jelechem.2016.05.015 [Google Scholar]
  27. E. Willinger, C. Massué, R. Schlögl, M. G. Willinger, J. Am. Chem. Soc., 2017, 139, (34), 12093 LINK https://doi.org/10.1021/jacs.7b07079 [Google Scholar]
  28. P. E. Pearce, C. Yang, A. Iadecola, J. Rodriguez-Carvajal, G. Rousse, R. Dedryvère, A. M. Abakumov, D. Giaume, M. Deschamps, J.-M. Tarascon, A. Grimaud, Chem. Mater., 2019, 31, (15), 5845 LINK https://doi.org/10.1021/acs.chemmater.9b01976 [Google Scholar]
  29. J. Gao, C.-Q. Xu, S.-F. Hung, W. Liu, W. Cai, Z. Zeng, C. Jia, H. M. Chen, H. Xiao, J. Li, Y. Huang, B. Liu, J. Am. Chem. Soc., 2019, 141, (7), 3014 LINK https://doi.org/10.1021/jacs.8b11456 [Google Scholar]
  30. A. De Battisti, A. Barbieri, A. Giatti, G. Battaglin, S. Daolio, A. B. Boscoletto, J. Mater. Chem., 1991, 1, (2), 191 LINK https://doi.org/10.1039/jm9910100191 [Google Scholar]
  31. E. Oakton, D. Lebedev, M. Povia, D. F. Abbott, E. Fabbri, A. Fedorov, M. Nachtegaal, C. Copéret, T. J. Schmidt, ACS Catal., 2017, 7, (4), 2346 LINK https://doi.org/10.1021/acscatal.6b03246 [Google Scholar]
  32. S. Ferro, D. Rosestolato, C. A. Martínez-Huitle, A. De Battisti, Electrochim. Acta, 2014, 146, 257 LINK https://doi.org/10.1016/j.electacta.2014.08.110 [Google Scholar]
  33. G. Li, H. Yu, D. Yang, J. Chi, X. Wang, S. Sun, Z. Shao, B. Yi, J. Power Sources, 2016, 325, 15 LINK https://doi.org/10.1016/j.jpowsour.2016.06.004 [Google Scholar]
  34. M. E. C. Pascuzzi, J. P. Hofmann, E. J. M. Hensen, Electrochim. Acta, 2021, 366, 137448 LINK https://doi.org/10.1016/j.electacta.2020.137448 [Google Scholar]
  35. H. Sun, W. Jung, J. Mater. Chem. A, 2021, 9, (28), 15506 LINK https://doi.org/10.1039/d1ta03452a [Google Scholar]
  36. K. Macounová, M. Makarova, J. Jirkovský, J. Franc, P. Krtil, Electrochim. Acta, 2008, 53, (21), 6126 LINK https://doi.org/10.1016/j.electacta.2007.11.014 [Google Scholar]
  37. M. V. Makarova, J. Jirkovský, M. Klementová, I. Jirka, K. Macounová, P. Krtil, Electrochim. Acta, 2008, 53, (5), 2656 LINK https://doi.org/10.1016/j.electacta.2007.01.084 [Google Scholar]
  38. V. Petrykin, Z. Bastl, J. Franc, K. Macounova, M. Makarova, S. Mukerjee, N. Ramaswamy, I. Spirovova, P. Krtil, J. Phys. Chem. C, 2009, 113, (52), 21657 LINK https://doi.org/10.1021/jp904935e [Google Scholar]
  39. V. Petrykin, K. Macounová, M. Okube, S. Mukerjee, P. Krtil, Catal. Today, 2013, 202, 63 LINK https://doi.org/10.1016/j.cattod.2012.03.075 [Google Scholar]
  40. L. K. McLeod, G. H. Spikes, R. J. Kashtiban, M. Walker, A. V. Chadwick, J. D. B. Sharman, R. I. Walton, Dalt. Trans., 2020, 49, (8), 2661 LINK https://doi.org/10.1039/c9dt04156g [Google Scholar]
  41. D. L. Burnett, E. Petrucco, K. M. Rigg, C. M. Zalitis, J. G. Lok, R. J. Kashtiban, M. R. Lees, J. D. B. Sharman, R. I. Walton, Chem. Mater., 2020, 32, (14), 6150 LINK https://doi.org/10.1021/acs.chemmater.0c01884 [Google Scholar]
  42. Y.-Y. Feng, S. Si, G. Deng, Z.-X. Xu, Z. Pu, H.-S. Hu, C.-B. Wang, J. Alloys Compd., 2022, 892, 162113 LINK https://doi.org/10.1016/j.jallcom.2021.162113 [Google Scholar]
  43. Y. Lin, Z. Tian, L. Zhang, J. Ma, Z. Jiang, B. J. Deibert, R. Ge, L. Chen, Nat. Commun., 2019, 10, 162 LINK https://doi.org/10.1038/s41467-018-08144-3 [Google Scholar]
  44. N. B. Halck, V. Petrykin, P. Krtil, J. Rossmeisl, Phys. Chem. Chem. Phys., 2014, 16, (27), 13682 LINK https://doi.org/10.1039/c4cp00571f [Google Scholar]
  45. Y. Wen, P. Chen, L. Wang, S. Li, Z. Wang, J. Abed, X. Mao, Y. Min, C. T. Dinh, P. De Luna, R. Huang, L. Zhang, L. Wang, L. Wang, R. J. Nielsen, H. Li, T. Zhuang, C. Ke, O. Voznyy, Y. Hu, Y. Li, W. A. Goddard, B. Zhang, H. Peng, E. H. Sargent, J. Am. Chem. Soc., 2021, 143, (17), 6482 LINK https://doi.org/10.1021/jacs.1c00384 [Google Scholar]
  46. T. Audichon, S. Morisset, T. W. Napporn, K. B. Kokoh, C. Comminges, C. Morais, ChemElectroChem, 2015, 2, (8), 1128 LINK https://doi.org/10.1002/celc.201500072 [Google Scholar]
  47. D. Escalera-López, S. Czioska, J. Geppert, A. Boubnov, P. Röse, E. Saraçi, U. Krewer, J.-D. Grunwaldt, S. Cherevko, ACS Catal., 2021, 11, (15), 9300 LINK https://doi.org/10.1021/acscatal.1c01682 [Google Scholar]
  48. N. Danilovic, R. Subbaraman, K. C. Chang, S. H. Chang, Y. Kang, J. Snyder, A. P. Paulikas, D. Strmcnik, Y. T. Kim, D. Myers, V. R. Stamenkovic, N. M. Markovic, Angew. Chem. Int. Ed., 2014, 53, (51), 14016 LINK https://doi.org/10.1002/anie.201406455 [Google Scholar]
  49. J. Shan, C. Guo, Y. Zhu, S. Chen, L. Song, M. Jaroniec, Y. Zheng, S.-Z. Qiao, Chem, 2019, 5, (2), 445 LINK https://doi.org/10.1016/j.chempr.2018.11.010 [Google Scholar]
  50. H. Xu, S. Ci, Y. Ding, G. Wang, Z. Wen, J. Mater. Chem. A, 2019, 7, (14), 8006 LINK https://doi.org/10.1039/c9ta00833k [Google Scholar]
  51. M. Huynh, D. K. Bediako, D. G. Nocera, J. Am. Chem. Soc., 2014, 136, (16), 6002 LINK https://doi.org/10.1021/ja413147e [Google Scholar]
  52. M. Huynh, C. Shi, S. J. L. Billinge, D. G. Nocera, J. Am. Chem. Soc., 2015, 137, (47), 14887 LINK https://doi.org/10.1021/jacs.5b06382 [Google Scholar]
  53. J. B. Goodenough, R. Manoharan, M. Paranthaman, J. Am. Chem. Soc., 1990, 112, (6), 2076 LINK https://doi.org/10.1021/ja00162a006 [Google Scholar]
  54. M. V. ten Kortenaar, J. F. Vente, D. J. W. Ijdo, S. Müller, R. Kötz, J. Power Sources, 1995, 56, (1), 51 LINK https://doi.org/10.1016/0378-7753(95)80008-5 [Google Scholar]
  55. M. Fan, X. Liang, H. Chen, X. Zou, Dalt. Trans., 2020, 49, (44), 15568 LINK https://doi.org/10.1039/d0dt02676j [Google Scholar]
  56. R. Zhang, P. E. Pearce, Y. Duan, N. Dubouis, T. Marchandier, A. Grimaud, Chem. Mater., 2019, 31, (20), 8248 LINK https://doi.org/10.1021/acs.chemmater.9b02318 [Google Scholar]
  57. Z. Chen, X. Duan, W. Wei, S. Wang, B.-J. Ni, Nano Energy, 2020, 78, 105270 LINK https://doi.org/10.1016/j.nanoen.2020.105270 [Google Scholar]
  58. L. An, C. Wei, M. Lu, H. Liu, Y. Chen, G. G. Scherer, A. C. Fisher, P. Xi, Z. J. Xu, C.-H. Yan, Adv. Mater., 2021, 33, (20), 2006328 LINK https://doi.org/10.1002/adma.202006328 [Google Scholar]
  59. L. Li, P. Wang, Q. Shao, X. Huang, Adv. Mater., 2021, 33, (50), 2004243 LINK https://doi.org/10.1002/adma.202004243 [Google Scholar]
  60. Y. Liu, X. Liang, H. Chen, R. Gao, L. Shi, L. Yang, X. Zou, Chinese J. Catal., 2021, 42, (7), 1054 LINK https://doi.org/10.1016/s1872-2067(20)63722-6 [Google Scholar]
  61. H. Müller-Buschbaum, Z. Anorg. Allg. Chem., 2005, 631, (6–7), 1005 LINK https://doi.org/10.1002/zaac.200400468 [Google Scholar]
  62. H. Müller-Buschbaum, Z. Anorg. Allg. Chem., 2006, 632, (10–11), 1625 LINK https://doi.org/10.1002/zaac.200500449 [Google Scholar]
  63. F. Denis Romero, S. J. Burr, J. E. McGrady, D. Gianolio, G. Cibin, M. A. Hayward, J. Am. Chem. Soc., 2013, 135, (5), 1838 LINK https://doi.org/10.1021/ja309798e [Google Scholar]
  64. Y. Gong, M. Zhou, M. Kaupp, S. Riedel, Angew. Chem. Int. Ed., 2009, 48, (42), 7879 LINK https://doi.org/10.1002/anie.200902733 [Google Scholar]
  65. G. Wang, M. Zhou, J. T. Goettel, G. J. Schrobilgen, J. Su, J. Li, T. Schlöder, S. Riedel, Nature, 2014, 514, (7523), 475 LINK https://doi.org/10.1038/nature13795 [Google Scholar]
  66. J. A. Kurzman, L. M. Misch, R. Seshadri, Dalton Trans., 2013, 42, (41), 14653 LINK https://doi.org/10.1039/c3dt51818c [Google Scholar]
  67. M. A. Subramanian, G. Aravamudan, G. V. Subba Rao, Prog. Solid State Chem., 1983, 15, (2), 55 LINK https://doi.org/10.1016/0079-6786(83)90001-8 [Google Scholar]
  68. M. Kim, J. Park, M. Kang, J. Y. Kim, S. W. Lee, ACS Cent. Sci., 2020, 6, (6), 880 LINK https://doi.org/10.1021/acscentsci.0c00479 [Google Scholar]
  69. K. Sardar, S. C. Ball, J. D. B. Sharman, D. Thompsett, J. M. Fisher, R. A. P. Smith, P. K. Biswas, M. R. Lees, R. J. Kashtiban, J. Sloan, R. I. Walton, Chem. Mater., 2012, 24, (21), 4192 LINK https://doi.org/10.1021/cm302468b [Google Scholar]
  70. K. Sardar, E. Petrucco, C. I. Hiley, J. D. B. Sharman, P. P. Wells, A. E. Russell, R. J. Kashtiban, J. Sloan, R. I. Walton, Angew. Chem. Int. Ed., 2014, 53, (41), 10960 LINK https://doi.org/10.1002/anie.201406668 [Google Scholar]
  71. D. L. Burnett, E. Petrucco, R. J. Kashtiban, S. F. Parker, J. D. B. Sharman, R. I. Walton, J. Mater. Chem. A, 2021, 9, (44), 25114 LINK https://doi.org/10.1039/d1ta05457k [Google Scholar]
  72. D. L. Burnett, E. Petrucco, A. E. Russell, R. J. Kashtiban, J. D. B. Sharman, R. I. Walton, Phys. Chem. Chem. Phys., 2020, 22, (34), 18770 LINK https://doi.org/10.1039/d0cp01378a [Google Scholar]
  73. W. Sun, J.-Y. Liu, X.-Q. Gong, W.-Q. Zaman, L.-M. Cao, J. Yang, Sci. Rep., 2016, 6, 38429 LINK https://doi.org/10.1038/srep38429 [Google Scholar]
  74. D. Lebedev, M. Povia, K. Waltar, P. M. Abdala, I. E. Castelli, E. Fabbri, M. V. Blanco, A. Fedorov, C. Copéret, N. Marzari, T. J. Schmidt, Chem. Mater., 2017, 29, (12), 5182 LINK https://doi.org/10.1021/acs.chemmater.7b00766 [Google Scholar]
  75. C. Shang, C. Cao, D. Yu, Y. Yan, Y. Lin, H. Li, T. Zheng, X. Yan, W. Yu, S. Zhou, J. Zeng, Adv. Mater., 2019, 31, (6), 1805104 LINK https://doi.org/10.1002/adma.201805104 [Google Scholar]
  76. D. F. Abbott, R. K. Pittkowski, K. Macounová, R. Nebel, E. Marelli, E. Fabbri, I. E. Castelli, P. Krtil, T. J. Schmidt, ACS Appl. Mater. Interfaces, 2019, 11, (41), 37748 LINK https://doi.org/10.1021/acsami.9b13220 [Google Scholar]
  77. J. Parrondo, M. George, C. Capuano, K. E. Ayers, V. Ramani, J. Mater. Chem. A, 2015, 3, (20), 10819 LINK https://doi.org/10.1039/c5ta01771h [Google Scholar]
  78. Q. Feng, Q. Wang, Z. Zhang, Y. Xiong, H. Li, Y. Yao, X.-Z. Yuan, M. C. Williams, M. Gu, H. Chen, H. Li, H. Wang, Appl. Catal. B: Environ., 2019, 244, 494 LINK https://doi.org/10.1016/j.apcatb.2018.11.071 [Google Scholar]
  79. M. A. Hubert, A. M. Patel, A. Gallo, Y. Liu, E. Valle, M. Ben-Naim, J. Sanchez, D. Sokaras, R. Sinclair, J. K. Nørskov, L. A. King, M. Bajdich, T. F. Jaramillo, ACS Catal., 2020, 10, (20), 12182 LINK https://doi.org/10.1021/acscatal.0c02252 [Google Scholar]
  80. H. Liu, Z. Wang, M. Li, X. Zhao, X. Duan, S. Wang, G. Tan, Y. Kuang, X. Sun, Sci. China Mater., 2021, 64, (7), 1653 LINK https://doi.org/10.1007/s40843-020-1571-y [Google Scholar]
  81. D. A. Kuznetsov, M. A. Naeem, P. V. Kumar, P. M. Abdala, A. Fedorov, C. R. Müller, J. Am. Chem. Soc., 2020, 142, (17), 7883 LINK https://doi.org/10.1021/jacs.0c01135 [Google Scholar]
  82. Q. Feng, J. Zou, Y. Wang, Z. Zhao, M. C. Williams, H. Li, H. Wang, ACS Appl. Mater. Interfaces, 2020, 12, (4), 4520 LINK https://doi.org/10.1021/acsami.9b19352 [Google Scholar]
  83. N. Zhang, C. Wang, J. Chen, C. Hu, J. Ma, X. Deng, B. Qiu, L. Cai, Y. Xiong, Y. Chai, ACS Nano, 2021, 15, (5), 8537 LINK https://doi.org/10.1021/acsnano.1c00266 [Google Scholar]
  84. T.-R. Han, J.-J. Wu, Z.-X. Qu, X. Tang, Chin. J. Inorg. Chem., 2021, 37, (2), 285 LINK https://caod.oriprobe.com/articles/60834248/Pyrochlore_Structure_Y2_xMgxRu2O7_%CE%B4_x_0_05_0_1_0_1.htm [Google Scholar]
  85. C. I. Hiley, M. R. Lees, J. M. Fisher, D. Thompsett, S. Agrestini, R. I. Smith, R. I. Walton, Angew. Chem. Int. Ed., 2014, 53, (17), 4423 LINK https://doi.org/10.1002/anie.201310110 [Google Scholar]
  86. R. K. Pittkowski, D. F. Abbott, R. Nebel, S. Divanis, E. Fabbri, I. E. Castelli, T. J. Schmidt, J. Rossmeisl, P. Krtil, Electrochim. Acta, 2021, 366, 137327 LINK https://doi.org/10.1016/j.electacta.2020.137327 [Google Scholar]
  87. A. S. Bhalla, R. Guo, R. Roy, Mater. Res. Innov., 2000, 4, (1), 3 LINK https://doi.org/10.1007/s100190000062 [Google Scholar]
  88. L. C. Seitz, C. F. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, H. Y. Hwang, J. K. Norskov, T. F. Jaramillo, Science, 2016, 353, (6303), 1011 LINK https://doi.org/10.1126/science.aaf5050 [Google Scholar]
  89. C. W. Song, H. Suh, J. Bak, H. Bin Bae, S.-Y. Chung, Chem, 2019, 5, (12), 3243 LINK https://doi.org/10.1016/j.chempr.2019.10.011 [Google Scholar]
  90. J. Edgington, N. Schweitzer, S. Alayoglu, L. C. Seitz, J. Am. Chem. Soc., 2021, 143, (26), 9961 LINK https://doi.org/10.1021/jacs.1c04332 [Google Scholar]
  91. X. Liang, L. Shi, Y. Liu, H. Chen, R. Si, W. Yan, Q. Zhang, G.-D. Li, L. Yang, X. Zou, Angew. Chem. Int. Ed., 2019, 58, (23), 7631 LINK https://doi.org/10.1002/anie.201900796 [Google Scholar]
  92. H. Chen, L. Shi, X. Liang, L. Wang, T. Asefa, X. Zou, Angew. Chem. Int. Ed., 2020, 59, (44), 19654 LINK https://doi.org/10.1002/anie.202006756 [Google Scholar]
  93. M. Abreu-Sepulveda, P. Trinh, S. Malkhandi, S. R. Narayanan, J. Jorné, D. J. Quesnel, J. A. Postonr, A. Manivannan, Electrochim. Acta, 2015, 180, 401 LINK https://doi.org/10.1016/j.electacta.2015.08.067 [Google Scholar]
  94. M. Retuerto, L. Pascual, F. Calle-Vallejo, P. Ferrer, D. Gianolio, A. G. Pereira, Á. García, J. Torrero, M. T. Fernández-Díaz, P. Bencok, M. A. Peña, J. L. G. Fierro, S. Rojas, Nat. Commun., 2019, 10, 2041 LINK https://doi.org/10.1038/s41467-019-09791-w [Google Scholar]
  95. O. Diaz-Morales, S. Raaijman, R. Kortlever, P. J. Kooyman, T. Wezendonk, J. Gascon, W. T. Fu, M. T. M. Koper, Nat. Commun., 2016, 7, 12363 LINK https://doi.org/10.1038/ncomms12363 [Google Scholar]
  96. S. Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A. M. Mingers, W. T. Fu, O. Diaz-Morales, Z. Li, T. Oellers, L. Fruchter, A. Ludwig, K. J. J. Mayrhofer, M. T. M. Koper, S. Cherevko, Nat. Catal., 2018, 1, (7), 508 LINK https://doi.org/10.1038/s41929-018-0085-6 [Google Scholar]
  97. R. Zhang, N. Dubouis, M. Ben Osman, W. Yin, M. T. Sougrati, D. A. D. Corte, D. Giaume, A. Grimaud, Angew. Chem. Int. Ed., 2019, 58, (14), 4571 LINK https://doi.org/10.1002/anie.201814075 [Google Scholar]
  98. A. Grimaud, A. Demortière, M. Saubanère, W. Dachraoui, M. Duchamp, M.-L. Doublet, J.-M. Tarascon, Nat. Energy, 2016, 2, (1), 16189 LINK https://doi.org/10.1038/nenergy.2016.189 [Google Scholar]
  99. J. G. Vos, Z. Liu, F. D. Speck, N. Perini, W. Fu, S. Cherevko, M. T. M. Koper, ACS Catal., 2019, 9, (9), 8561 LINK https://doi.org/10.1021/acscatal.9b01159 [Google Scholar]
  100. M. Retuerto, L. Pascual, O. Piqué, P. Kayser, M. A. Salam, M. Mokhtar, J. A. Alonso, M. Peña, F. Calle-Vallejo, S. Rojas, J. Mater. Chem. A, 2021, 9, (5), 2980 LINK https://doi.org/10.1039/d0ta10316k [Google Scholar]
  101. X. Ye, S. Song, L. Li, Y.-C. Chang, S. Qin, Z. Liu, Y.-C. Huang, J. Zhou, L. Zhang, C.-L. Dong, C.-W. Pao, H.-J. Lin, C.-T. Chen, Z. Hu, J.-Q. Wang, Y. Long, Chem. Mater., 2021, 33, (23), 9295 LINK https://doi.org/10.1021/acs.chemmater.1c03015 [Google Scholar]
  102. X. Miao, L. Zhang, L. Wu, Z. Hu, L. Shi, S. Zhou, Nat. Commun., 2019, 10, 3809 LINK https://doi.org/10.1038/s41467-019-11789-3 [Google Scholar]
  103. X. Xu, Y. Pan, Y. Zhong, R. Ran, Z. Shao, Mater. Horiz., 2020, 7, (10), 2519 LINK https://doi.org/10.1039/d0mh00477d [Google Scholar]
  104. A. L. Strickler, D. Higgins, T. F. Jaramillo, ACS Appl. Energy Mater., 2019, 2, (8), 5490 LINK https://doi.org/10.1021/acsaem.9b00658 [Google Scholar]
  105. Y. Wu, W. Sun, Z. Zhou, W. Q. Zaman, M. Tariq, L. Cao, J. Yang, ACS Omega, 2018, 3, (3), 2902 LINK https://doi.org/10.1021/acsomega.8b00015 [Google Scholar]
  106. R. Zhang, P. E. Pearce, V. Pimenta, J. Cabana, H. Li, D. A. D. Corte, A. M. Abakumov, G. Rousse, D. Giaume, M. Deschamps, A. Grimaud, Chem. Mater., 2020, 32, (8), 3499 LINK https://doi.org/10.1021/acs.chemmater.0c00432 [Google Scholar]
  107. C. Zhu, H. Tian, B. Huang, G. Cai, C. Yuan, Y. Zhang, Y. Li, G. Li, H. Xu, M.-R. Li, Chem. Eng. J., 2021, 423, 130185 LINK https://doi.org/10.1016/j.cej.2021.130185 [Google Scholar]
  108. I. Qasim, B. J. Kennedy, M. Avdeev, J. Mater. Chem. A, 2013, 1, (9), 3127 LINK https://doi.org/10.1039/c3ta00540b [Google Scholar]
  109. L. Yang, G. Yu, X. Ai, W. Yan, H. Duan, W. Chen, X. Li, T. Wang, C. Zhang, X. Huang, J.-S. Chen, X. Zou, Nat. Commun., 2018, 9, 5236 LINK https://doi.org/10.1038/s41467-018-07678-w [Google Scholar]
  110. Y. Lu, W. Wang, F. Xie, Mater. Res. Express, 2019, 6, (11), 115544 LINK https://doi.org/10.1088/2053-1591/ab4f1c [Google Scholar]
  111. J. Yu, X. Wu, D. Guan, Z. Hu, S.-C. Weng, H. Sun, Y. Song, R. Ran, W. Zhou, M. Ni, Z. Shao, Chem. Mater., 2020, 32, (11), 4509 LINK https://doi.org/10.1021/acs.chemmater.0c00149 [Google Scholar]
  112. L. Zhang, H. Jang, Z. Li, H. Liu, M. G. Kim, X. Liu, J. Cho, Chem. Eng. J., 2021, 419, 129604 LINK https://doi.org/10.1016/j.cej.2021.129604 [Google Scholar]
  113. N. Li, L. Cai, C. Wang, Y. Lin, J. Huang, H. Sheng, H. Pan, W. Zhang, Q. Ji, H. Duan, W. Hu, W. Zhang, F. Hu, H. Tan, Z. Sun, B. Song, S. Jin, W. Yan, J. Am. Chem. Soc., 2021, 143, (43), 18001 LINK https://doi.org/10.1021/jacs.1c04087 [Google Scholar]
  114. Q. Zhang, X. Liang, H. Chen, W. Yan, L. Shi, Y. Liu, J. Li, X. Zou, Chem. Mater., 2020, 32, (9), 3904 LINK https://doi.org/10.1021/acs.chemmater.0c00081 [Google Scholar]
  115. R. Gao, Q. Zhang, H. Chen, X. Chu, G.-D. Li, X. Zou, J. Energy Chem., 2020, 47, 291 LINK https://doi.org/10.1016/j.jechem.2020.02.002 [Google Scholar]
  116. W. Sun, Y. Song, X.-Q. Gong, L. Cao, J. Yang, ACS Appl. Mater. Interfaces, 2016, 8, (1), 820 LINK https://doi.org/10.1021/acsami.5b10159 [Google Scholar]
  117. W. Sun, L.-M. Cao, J. Yang, Electrochim. Acta, 2018, 260, 483 LINK https://doi.org/10.1016/j.electacta.2017.12.116 [Google Scholar]
  118. C. Yang, G. Rousse, K. L. Svane, P. E. Pearce, A. M. Abakumov, M. Deschamps, G. Cibin, A. V. Chadwick, D. A. D. Corte, H. Anton Hansen, T. Vegge, J.-M. Tarascon, A. Grimaud, Nat. Commun., 2020, 11, 1378 LINK https://doi.org/10.1038/s41467-020-15231-x [Google Scholar]
  119. W. Q. Zaman, W. Sun, M. Tariq, Z. Zhou, U. Farooq, Z. Abbas, L. Cao, J. Yang, Appl. Catal. B: Environ., 2019, 244, 295 LINK https://doi.org/10.1016/j.apcatb.2018.10.041 [Google Scholar]
  120. J. Gao, X. Huang, W. Cai, Q. Wang, C. Jia, B. Liu, ACS Appl. Mater. Interfaces, 2020, 12, (23), 25991 LINK https://doi.org/10.1021/acsami.0c05906 [Google Scholar]
  121. H. Li, H. Liu, Q. Qin, X. Liu, Inorg. Chem. Front., 2022, 9, (4), 702 LINK https://doi.org/10.1039/d1qi01361k [Google Scholar]
  122. D. R. Modeshia, R. I. Walton, Chem. Soc. Rev., 2010, 39, (11), 4303 LINK https://doi.org/10.1039/b904702f [Google Scholar]
  123. R. J. Darton, S. S. Turner, J. Sloan, M. R. Lees, R. I. Walton, Cryst. Growth Des., 2010, 10, (8), 3819 LINK https://doi.org/10.1021/cg100728s [Google Scholar]
  124. K. Sardar, J. Fisher, D. Thompsett, M. R. Lees, G. J. Clarkson, J. Sloan, R. J. Kashtiban, R. I. Walton, Chem. Sci., 2011, 2, (8), 1573 LINK https://doi.org/10.1039/c1sc00192b [Google Scholar]
  125. C.-L. Ma, Z.-Q. Wang, W. Sun, L.-M. Cao, X.-Q. Gong, J. Yang, ACS Appl. Mater. Interfaces, 2021, 13, (25), 29654 LINK https://doi.org/10.1021/acsami.1c06599 [Google Scholar]
  126. J. A. Clayton, R. I. Walton, Johnson Matthey Technol. Rev., 2022, 66, (4), 406-417 LINK https://technology.matthey.com/article/66/4/406-417/ [Google Scholar]
/content/journals/10.1595/205651322X16529612227119
Loading
/content/journals/10.1595/205651322X16529612227119
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test