Skip to content
Volume 66, Issue 4
  • ISSN: 2056-5135


We review recent research into oxides of platinum group metals (pgms), in particular those of ruthenium and iridium, for use as electrocatalysts for the oxygen evolution reaction (OER). These are used in membrane electrode assemblies (MEAs) in devices such as electrolysers, for water splitting to generate hydrogen as fuel, and in fuel cells where they provide a buffer against carbon corrosion. In these situations, proton exchange membrane (PEM) layers are used, and highly acid-resilient electrocatalyst materials are required. The range of structure types investigated includes perovskites, pyrochlores and hexagonal perovskite-like phases, where the pgm is partnered by base metals in complex chemical compositions. The role of chemical synthesis in the discovery of new oxide compositions is emphasised, particularly to yield powders for processing into MEAs. Part I introduces the electrocatalytic splitting of water to oxygen and hydrogen and provides a survey of ruthenium and iridium oxide structures for oxygen evolution reaction catalysis.


Article metrics loading...

Loading full text...

Full text loading...



  1. Song J., Wei C., Huang Z.-F., Liu C., Zeng L., Wang X., and Xu Z. J. Chem. Soc. Rev., 2020, 49, (7), 2196 LINK [Google Scholar]
  2. Lei Z., Wang T., Zhao B., Cai W., Liu Y., Jiao S., Li Q., Cao R., and Liu M. Adv. Energy Mater., 2020, 10, (23), 2000478 LINK [Google Scholar]
  3. Zhang Y., Zhu X., Zhang G., Shi P., and Wang A.-L. J. Mater. Chem. A, 2021, 9, (10), 5890 LINK [Google Scholar]
  4. Pu Z., Liu T., Zhang G., Ranganathan H., Chen Z., and Sun S. ChemSusChem, 2021, 14, (21), 4636 LINK [Google Scholar]
  5. Carmo M., Fritz D. L., Mergel J., and Stolten D. Int. J. Hydrogen Energy, 2013, 38, (12), 4901 LINK [Google Scholar]
  6. Karimi M. B., Mohammadi F., and Hooshyari K. Int. J. Hydrogen Energy, 2019, 44, (54), 28919 LINK [Google Scholar]
  7. Reier T., Nong H. N., Teschner D., Schlögl R., and Strasser P. Adv. Energy Mater., 2016, 7, (1), 1601275 LINK [Google Scholar]
  8. Gu W., Yu P. T., Carter R. N., Makharia R., Gasteiger H. A., and Wang C.-Y. ‘Modeling of Membrane-Electrode-Assembly Degradation in Proton-Exchange-Membrane Fuel Cells – Local H2 Starvation and Start–Stop Induced Carbon-Support Corrosion’, in “Modeling and Diagnostics of Polymer Electrolyte Fuel Cells”, eds. Pasaogullari U., Springer Science and Business Media LLC, New York, NY, 2009, pp 4587 LINK [Google Scholar]
  9. Atanasoski R. T., Atanasoska L. L., Cullen D. A., ‘Efficient Oxygen Evolution Reaction Catalysts for Cell Reversal and Start/Stop Tolerance’, in “Electrocatalysis in Fuel Cells: A Non- and Low-Platinum Approach”, ed. and Shao M. 9, Springer Verlag, London, UK, 2013, pp 637664 LINK [Google Scholar]
  10. Crowtz T. C., Stevens D. A., Sanderson R. J., Harlow J. E., Vernstrom G. D., Atanasoska L. L., Haugen G. M., Atanasoski R. T., and Dahn J. R. J. Electrochem. Soc., 2014, 161, (10), F961 LINK [Google Scholar]
  11. Park J., Park M., Nam G., Kim M. G., and Cho J. Nano Lett., 2017, 17, (6), 3974 LINK [Google Scholar]
  12. Suen N.-T., Hung S.-F., Quan Q., Zhang N., Xu Y.-J., and Chen H. M. Chem. Soc. Rev., 2017, 46, (2), 337 LINK [Google Scholar]
  13. Gu X.-K., Camayang J. C. A., Samira S., and Nikolla E. J. Catal., 2020, 388, 130 LINK [Google Scholar]
  14. Back S., Tran K., and Ulissi Z. W. ACS Appl. Mater. Interfaces, 2020, 12, (34), 38256 LINK [Google Scholar]
  15. Wang L., Saveleva V. A., Zafeiratos S., Savinova E. R., Lettenmeier P., Gazdzicki P., Gago A. S., and Friedrich K. A. Nano Energy, 2017, 34, 385 LINK [Google Scholar]
  16. Kötz R., and Stucki S. Electrochim. Acta, 1986, 31, (10), 1311 LINK [Google Scholar]
  17. Owe L.-E., Tsypkin M., Wallwork K. S., Haverkamp R. G., and Sunde S. Electrochim. Acta, 2012, 70, 158 LINK [Google Scholar]
  18. Kasian O., Geiger S., Stock P., Polymeros G., Breitbach B., Savan A., Ludwig A., Cherevko S., and Mayrhofer K. J. J. J. Electrochem. Soc., 2016, 163, (11), F3099 LINK [Google Scholar]
  19. Cherevko S., Geiger S., Kasian O., Kulyk N., Grote J.-P., Savan A., Shrestha B. R., Merzlikin S., Breitbach B., Ludwig A., and Mayrhofer K. J. J. Catal. Today, 2016, 262, 170 LINK [Google Scholar]
  20. Reksten A. H., Thuv H., Seland F., and Sunde S. J. Electroanal. Chem., 2018, 819, 547 LINK [Google Scholar]
  21. Abbott D. F., Lebedev D., Waltar K., Povia M., Nachtegaal M., Fabbri E., Copéret C., and Schmidt T. J. Chem. Mater., 2016, 28, (18), 6591 LINK [Google Scholar]
  22. da Silva G. C., Perini N., and Ticianelli E. A. Appl. Catal. B: Environ., 2017, 218, 287 LINK [Google Scholar]
  23. Lee Y., Suntivich J., May K. J., Perry E. E., and Shao-Horn Y. J. Phys. Chem. Lett., 2012, 3, (3), 399 LINK [Google Scholar]
  24. Ahmed J., and Mao Y. Electrochim. Acta, 2016, 212, 686 LINK [Google Scholar]
  25. Steegstra P., Busch M., Panas I., and Ahlberg E. J. Phys. Chem. C, 2013, 117, (40), 20975 LINK [Google Scholar]
  26. Cherevko S., Geiger S., Kasian O., Mingers A., and Mayrhofer K. J. J. J. Electroanal. Chem., 2016, 774, 102 LINK [Google Scholar]
  27. Willinger E., Massué C., Schlögl R., and Willinger M. G. J. Am. Chem. Soc., 2017, 139, (34), 12093 LINK [Google Scholar]
  28. Pearce P. E., Yang C., Iadecola A., Rodriguez-Carvajal J., Rousse G., Dedryvère R., Abakumov A. M., Giaume D., Deschamps M., Tarascon J.-M., and Grimaud A. Chem. Mater., 2019, 31, (15), 5845 LINK [Google Scholar]
  29. Gao J., Xu C.-Q., Hung S.-F., Liu W., Cai W., Zeng Z., Jia C., Chen H. M., Xiao H., Li J., Huang Y., and Liu B. J. Am. Chem. Soc., 2019, 141, (7), 3014 LINK [Google Scholar]
  30. De Battisti A., Barbieri A., Giatti A., Battaglin G., Daolio S., and Boscoletto A. B. J. Mater. Chem., 1991, 1, (2), 191 LINK [Google Scholar]
  31. Oakton E., Lebedev D., Povia M., Abbott D. F., Fabbri E., Fedorov A., Nachtegaal M., Copéret C., and Schmidt T. J. ACS Catal., 2017, 7, (4), 2346 LINK [Google Scholar]
  32. Ferro S., Rosestolato D., Martínez-Huitle C. A., and De Battisti A. Electrochim. Acta, 2014, 146, 257 LINK [Google Scholar]
  33. Li G., Yu H., Yang D., Chi J., Wang X., Sun S., Shao Z., and Yi B. J. Power Sources, 2016, 325, 15 LINK [Google Scholar]
  34. Pascuzzi M. E. C., Hofmann J. P., and Hensen E. J. M. Electrochim. Acta, 2021, 366, 137448 LINK [Google Scholar]
  35. Sun H., and Jung W. J. Mater. Chem. A, 2021, 9, (28), 15506 LINK [Google Scholar]
  36. Macounová K., Makarova M., Jirkovský J., Franc J., and Krtil P. Electrochim. Acta, 2008, 53, (21), 6126 LINK [Google Scholar]
  37. Makarova M. V., Jirkovský J., Klementová M., Jirka I., Macounová K., and Krtil P. Electrochim. Acta, 2008, 53, (5), 2656 LINK [Google Scholar]
  38. Petrykin V., Bastl Z., Franc J., Macounova K., Makarova M., Mukerjee S., Ramaswamy N., Spirovova I., and Krtil P. J. Phys. Chem. C, 2009, 113, (52), 21657 LINK [Google Scholar]
  39. Petrykin V., Macounová K., Okube M., Mukerjee S., and Krtil P. Catal. Today, 2013, 202, 63 LINK [Google Scholar]
  40. McLeod L. K., Spikes G. H., Kashtiban R. J., Walker M., Chadwick A. V., Sharman J. D. B., and Walton R. I. Dalt. Trans., 2020, 49, (8), 2661 LINK [Google Scholar]
  41. Burnett D. L., Petrucco E., Rigg K. M., Zalitis C. M., Lok J. G., Kashtiban R. J., Lees M. R., Sharman J. D. B., and Walton R. I. Chem. Mater., 2020, 32, (14), 6150 LINK [Google Scholar]
  42. Feng Y.-Y., Si S., Deng G., Xu Z.-X., Pu Z., Hu H.-S., and Wang C.-B. J. Alloys Compd., 2022, 892, 162113 LINK [Google Scholar]
  43. Lin Y., Tian Z., Zhang L., Ma J., Jiang Z., Deibert B. J., Ge R., and Chen L. Nat. Commun., 2019, 10, 162 LINK [Google Scholar]
  44. Halck N. B., Petrykin V., Krtil P., and Rossmeisl J. Phys. Chem. Chem. Phys., 2014, 16, (27), 13682 LINK [Google Scholar]
  45. Wen Y., Chen P., Wang L., Li S., Wang Z., Abed J., Mao X., Min Y., Dinh C. T., De Luna P., Huang R., Zhang L., Wang L., Wang L., Nielsen R. J., Li H., Zhuang T., Ke C., Voznyy O., Hu Y., Li Y., Goddard W. A., Zhang B., Peng H., and Sargent E. H. J. Am. Chem. Soc., 2021, 143, (17), 6482 LINK [Google Scholar]
  46. Audichon T., Morisset S., Napporn T. W., Kokoh K. B., Comminges C., and Morais C. ChemElectroChem, 2015, 2, (8), 1128 LINK [Google Scholar]
  47. Escalera-López D., Czioska S., Geppert J., Boubnov A., Röse P., Saraçi E., Krewer U., Grunwaldt J.-D., and Cherevko S. ACS Catal., 2021, 11, (15), 9300 LINK [Google Scholar]
  48. Danilovic N., Subbaraman R., Chang K. C., Chang S. H., Kang Y., Snyder J., Paulikas A. P., Strmcnik D., Kim Y. T., Myers D., Stamenkovic V. R., and Markovic N. M. Angew. Chem. Int. Ed., 2014, 53, (51), 14016 LINK [Google Scholar]
  49. Shan J., Guo C., Zhu Y., Chen S., Song L., Jaroniec M., Zheng Y., and Qiao S.-Z. Chem, 2019, 5, (2), 445 LINK [Google Scholar]
  50. Xu H., Ci S., Ding Y., Wang G., and Wen Z. J. Mater. Chem. A, 2019, 7, (14), 8006 LINK [Google Scholar]
  51. Huynh M., Bediako D. K., and Nocera D. G. J. Am. Chem. Soc., 2014, 136, (16), 6002 LINK [Google Scholar]
  52. Huynh M., Shi C., Billinge S. J. L., and Nocera D. G. J. Am. Chem. Soc., 2015, 137, (47), 14887 LINK [Google Scholar]
  53. Goodenough J. B., Manoharan R., and Paranthaman M. J. Am. Chem. Soc., 1990, 112, (6), 2076 LINK [Google Scholar]
  54. ten Kortenaar M. V., Vente J. F., Ijdo D. J. W., Müller S., and Kötz R. J. Power Sources, 1995, 56, (1), 51 LINK [Google Scholar]
  55. Fan M., Liang X., Chen H., and Zou X. Dalt. Trans., 2020, 49, (44), 15568 LINK [Google Scholar]
  56. Zhang R., Pearce P. E., Duan Y., Dubouis N., Marchandier T., and Grimaud A. Chem. Mater., 2019, 31, (20), 8248 LINK [Google Scholar]
  57. Chen Z., Duan X., Wei W., Wang S., and Ni B.-J. Nano Energy, 2020, 78, 105270 LINK [Google Scholar]
  58. An L., Wei C., Lu M., Liu H., Chen Y., Scherer G. G., Fisher A. C., Xi P., Xu Z. J., and Yan C.-H. Adv. Mater., 2021, 33, (20), 2006328 LINK [Google Scholar]
  59. Li L., Wang P., Shao Q., and Huang X. Adv. Mater., 2021, 33, (50), 2004243 LINK [Google Scholar]
  60. Liu Y., Liang X., Chen H., Gao R., Shi L., Yang L., and Zou X. Chinese J. Catal., 2021, 42, (7), 1054 LINK [Google Scholar]
  61. Müller-Buschbaum H. Z. Anorg. Allg. Chem., 2005, 631, (6–7), 1005 LINK [Google Scholar]
  62. Müller-Buschbaum H. Z. Anorg. Allg. Chem., 2006, 632, (10–11), 1625 LINK [Google Scholar]
  63. Denis Romero F., Burr S. J., McGrady J. E., Gianolio D., Cibin G., and Hayward M. A. J. Am. Chem. Soc., 2013, 135, (5), 1838 LINK [Google Scholar]
  64. Gong Y., Zhou M., Kaupp M., and Riedel S. Angew. Chem. Int. Ed., 2009, 48, (42), 7879 LINK [Google Scholar]
  65. Wang G., Zhou M., Goettel J. T., Schrobilgen G. J., Su J., Li J., Schlöder T., and Riedel S. Nature, 2014, 514, (7523), 475 LINK [Google Scholar]
  66. Kurzman J. A., Misch L. M., and Seshadri R. Dalton Trans., 2013, 42, (41), 14653 LINK [Google Scholar]
  67. Subramanian M. A., Aravamudan G., and Subba Rao G. V. Prog. Solid State Chem., 1983, 15, (2), 55 LINK [Google Scholar]
  68. Kim M., Park J., Kang M., Kim J. Y., and Lee S. W. ACS Cent. Sci., 2020, 6, (6), 880 LINK [Google Scholar]
  69. Sardar K., Ball S. C., Sharman J. D. B., Thompsett D., Fisher J. M., Smith R. A. P., Biswas P. K., Lees M. R., Kashtiban R. J., Sloan J., and Walton R. I. Chem. Mater., 2012, 24, (21), 4192 LINK [Google Scholar]
  70. Sardar K., Petrucco E., Hiley C. I., Sharman J. D. B., Wells P. P., Russell A. E., Kashtiban R. J., Sloan J., and Walton R. I. Angew. Chem. Int. Ed., 2014, 53, (41), 10960 LINK [Google Scholar]
  71. Burnett D. L., Petrucco E., Kashtiban R. J., Parker S. F., Sharman J. D. B., and Walton R. I. J. Mater. Chem. A, 2021, 9, (44), 25114 LINK [Google Scholar]
  72. Burnett D. L., Petrucco E., Russell A. E., Kashtiban R. J., Sharman J. D. B., and Walton R. I. Phys. Chem. Chem. Phys., 2020, 22, (34), 18770 LINK [Google Scholar]
  73. Sun W., Liu J.-Y., Gong X.-Q., Zaman W.-Q., Cao L.-M., and Yang J. Sci. Rep., 2016, 6, 38429 LINK [Google Scholar]
  74. Lebedev D., Povia M., Waltar K., Abdala P. M., Castelli I. E., Fabbri E., Blanco M. V., Fedorov A., Copéret C., Marzari N., and Schmidt T. J. Chem. Mater., 2017, 29, (12), 5182 LINK [Google Scholar]
  75. Shang C., Cao C., Yu D., Yan Y., Lin Y., Li H., Zheng T., Yan X., Yu W., Zhou S., and Zeng J. Adv. Mater., 2019, 31, (6), 1805104 LINK [Google Scholar]
  76. Abbott D. F., Pittkowski R. K., Macounová K., Nebel R., Marelli E., Fabbri E., Castelli I. E., Krtil P., and Schmidt T. J. ACS Appl. Mater. Interfaces, 2019, 11, (41), 37748 LINK [Google Scholar]
  77. Parrondo J., George M., Capuano C., Ayers K. E., and Ramani V. J. Mater. Chem. A, 2015, 3, (20), 10819 LINK [Google Scholar]
  78. Feng Q., Wang Q., Zhang Z., Xiong Y., Li H., Yao Y., Yuan X.-Z., Williams M. C., Gu M., Chen H., Li H., and Wang H. Appl. Catal. B: Environ., 2019, 244, 494 LINK [Google Scholar]
  79. Hubert M. A., Patel A. M., Gallo A., Liu Y., Valle E., Ben-Naim M., Sanchez J., Sokaras D., Sinclair R., Nørskov J. K., King L. A., Bajdich M., and Jaramillo T. F. ACS Catal., 2020, 10, (20), 12182 LINK [Google Scholar]
  80. Liu H., Wang Z., Li M., Zhao X., Duan X., Wang S., Tan G., Kuang Y., and Sun X. Sci. China Mater., 2021, 64, (7), 1653 LINK [Google Scholar]
  81. Kuznetsov D. A., Naeem M. A., Kumar P. V., Abdala P. M., Fedorov A., and Müller C. R. J. Am. Chem. Soc., 2020, 142, (17), 7883 LINK [Google Scholar]
  82. Feng Q., Zou J., Wang Y., Zhao Z., Williams M. C., Li H., and Wang H. ACS Appl. Mater. Interfaces, 2020, 12, (4), 4520 LINK [Google Scholar]
  83. Zhang N., Wang C., Chen J., Hu C., Ma J., Deng X., Qiu B., Cai L., Xiong Y., and Chai Y. ACS Nano, 2021, 15, (5), 8537 LINK [Google Scholar]
  84. Han T.-R., Wu J.-J., Qu Z.-X., and Tang X. Chin. J. Inorg. Chem., 2021, 37, (2), 285 LINK [Google Scholar]
  85. Hiley C. I., Lees M. R., Fisher J. M., Thompsett D., Agrestini S., Smith R. I., and Walton R. I. Angew. Chem. Int. Ed., 2014, 53, (17), 4423 LINK [Google Scholar]
  86. Pittkowski R. K., Abbott D. F., Nebel R., Divanis S., Fabbri E., Castelli I. E., Schmidt T. J., Rossmeisl J., and Krtil P. Electrochim. Acta, 2021, 366, 137327 LINK [Google Scholar]
  87. Bhalla A. S., Guo R., and Roy R. Mater. Res. Innov., 2000, 4, (1), 3 LINK [Google Scholar]
  88. Seitz L. C., Dickens C. F., Nishio K., Hikita Y., Montoya J., Doyle A., Kirk C., Vojvodic A., Hwang H. Y., Norskov J. K., and Jaramillo T. F. Science, 2016, 353, (6303), 1011 LINK [Google Scholar]
  89. Song C. W., Suh H., Bak J., Bin Bae H., and Chung S.-Y. Chem, 2019, 5, (12), 3243 LINK [Google Scholar]
  90. Edgington J., Schweitzer N., Alayoglu S., and Seitz L. C. J. Am. Chem. Soc., 2021, 143, (26), 9961 LINK [Google Scholar]
  91. Liang X., Shi L., Liu Y., Chen H., Si R., Yan W., Zhang Q., Li G.-D., Yang L., and Zou X. Angew. Chem. Int. Ed., 2019, 58, (23), 7631 LINK [Google Scholar]
  92. Chen H., Shi L., Liang X., Wang L., Asefa T., and Zou X. Angew. Chem. Int. Ed., 2020, 59, (44), 19654 LINK [Google Scholar]
  93. Abreu-Sepulveda M., Trinh P., Malkhandi S., Narayanan S. R., Jorné J., Quesnel D. J., Postonr J. A., and Manivannan A. Electrochim. Acta, 2015, 180, 401 LINK [Google Scholar]
  94. Retuerto M., Pascual L., Calle-Vallejo F., Ferrer P., Gianolio D., Pereira A. G., García Á., Torrero J., Fernández-Díaz M. T., Bencok P., Peña M. A., Fierro J. L. G., and Rojas S. Nat. Commun., 2019, 10, 2041 LINK [Google Scholar]
  95. Diaz-Morales O., Raaijman S., Kortlever R., Kooyman P. J., Wezendonk T., Gascon J., Fu W. T., and Koper M. T. M. Nat. Commun., 2016, 7, 12363 LINK [Google Scholar]
  96. Geiger S., Kasian O., Ledendecker M., Pizzutilo E., Mingers A. M., Fu W. T., Diaz-Morales O., Li Z., Oellers T., Fruchter L., Ludwig A., Mayrhofer K. J. J., Koper M. T. M., and Cherevko S. Nat. Catal., 2018, 1, (7), 508 LINK [Google Scholar]
  97. Zhang R., Dubouis N., Ben Osman M., Yin W., Sougrati M. T., Corte D. A. D., Giaume D., and Grimaud A. Angew. Chem. Int. Ed., 2019, 58, (14), 4571 LINK [Google Scholar]
  98. Grimaud A., Demortière A., Saubanère M., Dachraoui W., Duchamp M., Doublet M.-L., and Tarascon J.-M. Nat. Energy, 2016, 2, (1), 16189 LINK [Google Scholar]
  99. Vos J. G., Liu Z., Speck F. D., Perini N., Fu W., Cherevko S., and Koper M. T. M. ACS Catal., 2019, 9, (9), 8561 LINK [Google Scholar]
  100. Retuerto M., Pascual L., Piqué O., Kayser P., Salam M. A., Mokhtar M., Alonso J. A., Peña M., Calle-Vallejo F., and Rojas S. J. Mater. Chem. A, 2021, 9, (5), 2980 LINK [Google Scholar]
  101. Ye X., Song S., Li L., Chang Y.-C., Qin S., Liu Z., Huang Y.-C., Zhou J., Zhang L., Dong C.-L., Pao C.-W., Lin H.-J., Chen C.-T., Hu Z., Wang J.-Q., and Long Y. Chem. Mater., 2021, 33, (23), 9295 LINK [Google Scholar]
  102. Miao X., Zhang L., Wu L., Hu Z., Shi L., and Zhou S. Nat. Commun., 2019, 10, 3809 LINK [Google Scholar]
  103. Xu X., Pan Y., Zhong Y., Ran R., and Shao Z. Mater. Horiz., 2020, 7, (10), 2519 LINK [Google Scholar]
  104. Strickler A. L., Higgins D., and Jaramillo T. F. ACS Appl. Energy Mater., 2019, 2, (8), 5490 LINK [Google Scholar]
  105. Wu Y., Sun W., Zhou Z., Zaman W. Q., Tariq M., Cao L., and Yang J. ACS Omega, 2018, 3, (3), 2902 LINK [Google Scholar]
  106. Zhang R., Pearce P. E., Pimenta V., Cabana J., Li H., Corte D. A. D., Abakumov A. M., Rousse G., Giaume D., Deschamps M., and Grimaud A. Chem. Mater., 2020, 32, (8), 3499 LINK [Google Scholar]
  107. Zhu C., Tian H., Huang B., Cai G., Yuan C., Zhang Y., Li Y., Li G., Xu H., and Li M.-R. Chem. Eng. J., 2021, 423, 130185 LINK [Google Scholar]
  108. Qasim I., Kennedy B. J., and Avdeev M. J. Mater. Chem. A, 2013, 1, (9), 3127 LINK [Google Scholar]
  109. Yang L., Yu G., Ai X., Yan W., Duan H., Chen W., Li X., Wang T., Zhang C., Huang X., Chen J.-S., and Zou X. Nat. Commun., 2018, 9, 5236 LINK [Google Scholar]
  110. Lu Y., Wang W., and Xie F. Mater. Res. Express, 2019, 6, (11), 115544 LINK [Google Scholar]
  111. Yu J., Wu X., Guan D., Hu Z., Weng S.-C., Sun H., Song Y., Ran R., Zhou W., Ni M., and Shao Z. Chem. Mater., 2020, 32, (11), 4509 LINK [Google Scholar]
  112. Zhang L., Jang H., Li Z., Liu H., Kim M. G., Liu X., and Cho J. Chem. Eng. J., 2021, 419, 129604 LINK [Google Scholar]
  113. Li N., Cai L., Wang C., Lin Y., Huang J., Sheng H., Pan H., Zhang W., Ji Q., Duan H., Hu W., Zhang W., Hu F., Tan H., Sun Z., Song B., Jin S., and Yan W. J. Am. Chem. Soc., 2021, 143, (43), 18001 LINK [Google Scholar]
  114. Zhang Q., Liang X., Chen H., Yan W., Shi L., Liu Y., Li J., and Zou X. Chem. Mater., 2020, 32, (9), 3904 LINK [Google Scholar]
  115. Gao R., Zhang Q., Chen H., Chu X., Li G.-D., and Zou X. J. Energy Chem., 2020, 47, 291 LINK [Google Scholar]
  116. Sun W., Song Y., Gong X.-Q., Cao L., and Yang J. ACS Appl. Mater. Interfaces, 2016, 8, (1), 820 LINK [Google Scholar]
  117. Sun W., Cao L.-M., and Yang J. Electrochim. Acta, 2018, 260, 483 LINK [Google Scholar]
  118. Yang C., Rousse G., Svane K. L., Pearce P. E., Abakumov A. M., Deschamps M., Cibin G., Chadwick A. V., Corte D. A. D., Anton Hansen H., Vegge T., Tarascon J.-M., and Grimaud A. Nat. Commun., 2020, 11, 1378 LINK [Google Scholar]
  119. Zaman W. Q., Sun W., Tariq M., Zhou Z., Farooq U., Abbas Z., Cao L., and Yang J. Appl. Catal. B: Environ., 2019, 244, 295 LINK [Google Scholar]
  120. Gao J., Huang X., Cai W., Wang Q., Jia C., and Liu B. ACS Appl. Mater. Interfaces, 2020, 12, (23), 25991 LINK [Google Scholar]
  121. Li H., Liu H., Qin Q., and Liu X. Inorg. Chem. Front., 2022, 9, (4), 702 LINK [Google Scholar]
  122. Modeshia D. R., and Walton R. I. Chem. Soc. Rev., 2010, 39, (11), 4303 LINK [Google Scholar]
  123. Darton R. J., Turner S. S., Sloan J., Lees M. R., and Walton R. I. Cryst. Growth Des., 2010, 10, (8), 3819 LINK [Google Scholar]
  124. Sardar K., Fisher J., Thompsett D., Lees M. R., Clarkson G. J., Sloan J., Kashtiban R. J., and Walton R. I. Chem. Sci., 2011, 2, (8), 1573 LINK [Google Scholar]
  125. Ma C.-L., Wang Z.-Q., Sun W., Cao L.-M., Gong X.-Q., and Yang J. ACS Appl. Mater. Interfaces, 2021, 13, (25), 29654 LINK [Google Scholar]
  126. Clayton J. A., and Walton R. I. Johnson Matthey Technol. Rev., 2022, 66, (4), 406-417 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error