Skip to content
1887
Volume 66, Issue 4
  • ISSN: 2056-5135

Abstract

We continue our review of recent research into oxides of platinum group metals (pgms), in particular those of ruthenium and iridium, for use as electrocatalysts for the oxygen evolution reaction (OER). In Part I (1), the electrocatalytic splitting of water to oxygen and hydrogen was introduced as a key process in developing future devices for various energy-related applications. A survey of ruthenium and iridium oxide structures for oxygen evolution reaction catalysis was presented. Part II discusses mechanistic details and acid stability of pgm oxides and presents the conclusions and outlook. We highlight emerging work that shows how leaching of the base metals from the multinary compositions occurs during operation to yield active pgm-oxide phases, and how attempts to correlate stability with crystal structure have been made. Implications of these discoveries for the balance of activity and stability needed for effective electrocatalysis in real devices are discussed.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16605694237357
2022-05-19
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/4/Walton_16a_Imp_pt2.html?itemId=/content/journals/10.1595/205651322X16605694237357&mimeType=html&fmt=ahah

References

  1. J. A. Clayton, R. I. Walton, Johnson Matthey Technol. Rev., 2022, 66, (4), 393 LINK https://technology.matthey.com/article/66/4/393-405/ [Google Scholar]
  2. Z. Pu, T. Liu, G. Zhang, H. Ranganathan, Z. Chen, S. Sun, ChemSusChem, 2021, 14, (21), 4636 LINK https://doi.org/10.1002/cssc.202101461 [Google Scholar]
  3. T. Reier, H. N. Nong, D. Teschner, R. Schlögl, P. Strasser, Adv. Energy Mater., 2016, 7, (1), 1601275 LINK https://doi.org/10.1002/aenm.201601275 [Google Scholar]
  4. T. Naito, T. Shinagawa, T. Nishimoto, K. Takanabe, Inorg. Chem. Front., 2021, 8, (11), 2900 LINK https://doi.org/10.1039/d0qi01465f [Google Scholar]
  5. L. J. Falling, J. J. Velasco-Vélez, R. V. Mom, A. Knop-Gericke, R. Schlögl, D. Teschner, T. E. Jones, Curr. Opin. Electrochem., 2021, 30, 100842 LINK https://doi.org/10.1016/j.coelec.2021.100842 [Google Scholar]
  6. Q. Feng, X.-Z. Yuan, G. Liu, B. Wei, Z. Zhang, H. Li, H. Wang, J. Power Sources, 2017, 366, 33 LINK https://doi.org/10.1016/j.jpowsour.2017.09.006 [Google Scholar]
  7. Y. Jiao, Y. Zheng, M. Jaroniec, S.-Z. Qiao, Chem. Soc. Rev., 2015, 44, (8), 2060 LINK https://doi.org/10.1039/c4cs00470a [Google Scholar]
  8. J. Shan, Y. Zheng, B. Shi, K. Davey, S.-Z. Qiao, ACS Energy Lett., 2019, 4, (11), 2719 LINK https://doi.org/10.1021/acsenergylett.9b01758 [Google Scholar]
  9. K. Schweinar, B. Gault, I. Mouton, O. Kasian, J. Phys. Chem. Lett., 2020, 11, (13), 5008 LINK https://doi.org/10.1021/acs.jpclett.0c01258 [Google Scholar]
  10. A. Zagalskaya, I. Evazzade, V. Alexandrov, ACS Energy Lett., 2021, 6, (3), 1124 LINK https://doi.org/10.1021/acsenergylett.1c00234 [Google Scholar]
  11. A. Zagalskaya, V. Alexandrov, ACS Catal., 2020, 10, (6), 3650 LINK https://doi.org/10.1021/acscatal.9b05544 [Google Scholar]
  12. K. Sardar, E. Petrucco, C. I. Hiley, J. D. B. Sharman, P. P. Wells, A. E. Russell, R. J. Kashtiban, J. Sloan, R. I. Walton, Angew. Chem. Int. Ed., 2014, 53, (41), 10960 LINK https://doi.org/10.1002/anie.201406668 [Google Scholar]
  13. D. L. Burnett, E. Petrucco, A. E. Russell, R. J. Kashtiban, J. D. B. Sharman, R. I. Walton, Phys. Chem. Chem. Phys., 2020, 22, (34), 18770 LINK https://doi.org/10.1039/d0cp01378a [Google Scholar]
  14. R. Kötz, H. Neff, S. Stucki, J. Electrochem. Soc., 1984, 131, (1), 72 LINK https://doi.org/10.1149/1.2115548 [Google Scholar]
  15. H. G. Sanchez Casalongue, M. L. Ng, S. Kaya, D. Friebel, H. Ogasawara, A. Nilsson, Angew. Chem. Int. Ed., 2014, 53, (28), 7169 LINK https://doi.org/10.1002/anie.201402311 [Google Scholar]
  16. O. Kasian, J.-P. Grote, S. Geiger, S. Cherevko, K. J. J. Mayrhofer, Angew. Chem. Int. Ed., 2018, 57, (9), 2488 LINK https://doi.org/10.1002/anie.201709652 [Google Scholar]
  17. A. Minguzzi, O. Lugaresi, E. Achilli, C. Locatelli, A. Vertova, P. Ghigna, S. Rondinini, Chem. Sci., 2014, 5, (9), 3591 LINK https://doi.org/10.1039/c4sc00975d [Google Scholar]
  18. D. F. Abbott, D. Lebedev, K. Waltar, M. Povia, M. Nachtegaal, E. Fabbri, C. Copéret, T. J. Schmidt, Chem. Mater., 2016, 28, (18), 6591 LINK https://doi.org/10.1021/acs.chemmater.6b02625 [Google Scholar]
  19. A. R. Hillman, M. A. Skopek, S. J. Gurman, Phys. Chem. Chem. Phys., 2011, 13, (12), 5252 LINK https://doi.org/10.1039/c0cp01472a [Google Scholar]
  20. V. A. Saveleva, L. Wang, D. Teschner, T. Jones, A. S. Gago, K. A. Friedrich, S. Zafeiratos, R. Schlögl, E. R. Savinova, J. Phys. Chem. Lett., 2018, 9, (11), 3154 LINK https://doi.org/10.1021/acs.jpclett.8b00810 [Google Scholar]
  21. V. Pfeifer, T. E. Jones, S. Wrabetz, C. Massué, J. J. Velasco Vélez, R. Arrigo, M. Scherzer, S. Piccinin, M. Hävecker, A. Knop-Gericke, R. Schlögl, Chem. Sci., 2016, 7, (11), 6791 LINK https://doi.org/10.1039/c6sc01860b [Google Scholar]
  22. S. Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A. M. Mingers, W. T. Fu, O. Diaz-Morales, Z. Li, T. Oellers, L. Fruchter, A. Ludwig, K. J. J. Mayrhofer, M. T. M. Koper, S. Cherevko, Nat. Catal., 2018, 1, (7), 508 LINK https://doi.org/10.1038/s41929-018-0085-6 [Google Scholar]
  23. L. She, G. Zhao, T. Ma, J. Chen, W. Sun, H. Pan, Adv. Funct. Mater., 2022, 32, (5), 2108465 LINK https://doi.org/10.1002/adfm.202108465 [Google Scholar]
  24. S. Czioska, A. Boubnov, D. Escalera-López, J. Geppert, A. Zagalskaya, P. Röse, E. Saraçi, V. Alexandrov, U. Krewer, S. Cherevko, J.-D. Grunwaldt, ACS Catal., 2021, 11, (15), 10043 LINK https://doi.org/10.1021/acscatal.1c02074 [Google Scholar]
  25. R. Kötz, S. Stucki, D. Scherson, D. M. Kolb, J. Electroanal. Chem. Interfacial Electrochem., 1984, 172, (1–2), 211 LINK https://doi.org/10.1016/0022-0728(84)80187-4 [Google Scholar]
  26. C. Spöri, J. T. H. Kwan, A. Bonakdarpour, D. P. Wilkinson, P. Strasser, Angew. Chem. Int. Ed., 2017, 56, (22), 5994 LINK https://doi.org/10.1002/anie.201608601 [Google Scholar]
  27. K. Hongsirikarn, J. G. Goodwin, S. Greenway, S. Creager, J. Power Sources, 2010, 195, (21), 7213 LINK https://doi.org/10.1016/j.jpowsour.2010.05.005 [Google Scholar]
  28. T. Binninger, R. Mohamed, K. Waltar, E. Fabbri, P. Levecque, R. Kötz, T. J. Schmidt, Sci. Rep., 2015, 5, 12167 LINK https://doi.org/10.1038/srep12167 [Google Scholar]
  29. A. S. Raman, A. Vojvodic, J. Phys. Chem. C, 2022, 126, (2), 922 LINK https://doi.org/10.1021/acs.jpcc.1c08737 [Google Scholar]
  30. N. Hodnik, P. Jovanovič, A. Pavlišič, B. Jozinovič, M. Zorko, M. Bele, V. S. Šelih, M. Šala, S. Hočevar, M. Gaberšček, J. Phys. Chem. C, 2015, 119, (18), 10140 LINK https://doi.org/10.1021/acs.jpcc.5b01832 [Google Scholar]
  31. Y. Liu, X. Liang, H. Chen, R. Gao, L. Shi, L. Yang, X. Zou, Chin. J. Catal., 2021, 42, (7), 1054 LINK https://doi.org/10.1016/s1872-2067(20)63722-6 [Google Scholar]
  32. Y. Zhang, X. Zhu, G. Zhang, P. Shi, A.-L. Wang, J. Mater. Chem. A, 2021, 9, (10), 5890 LINK https://doi.org/10.1039/d0ta11982b [Google Scholar]
  33. X.-K. Gu, J. C. A. Camayang, S. Samira, E. Nikolla, J. Catal., 2020, 388, 130 LINK https://doi.org/10.1016/j.jcat.2020.05.008 [Google Scholar]
  34. L. An, C. Wei, M. Lu, H. Liu, Y. Chen, G. G. Scherer, A. C. Fisher, P. Xi, Z. J. Xu, C.-H. Yan, Adv. Mater., 2021, 33, (20), 2006328 LINK https://doi.org/10.1002/adma.202006328 [Google Scholar]
  35. X. Miao, L. Zhang, L. Wu, Z. Hu, L. Shi, S. Zhou, Nat. Commun., 2019, 10, 3809 LINK https://doi.org/10.1038/s41467-019-11789-3 [Google Scholar]
  36. L. Zhang, H. Jang, Z. Li, H. Liu, M. G. Kim, X. Liu, J. Cho, Chem. Eng. J., 2021, 419, 129604 LINK https://doi.org/10.1016/j.cej.2021.129604 [Google Scholar]
  37. L. Wang, V. A. Saveleva, S. Zafeiratos, E. R. Savinova, P. Lettenmeier, P. Gazdzicki, A. S. Gago, K. A. Friedrich, Nano Energy, 2017, 34, 385 LINK https://doi.org/10.1016/j.nanoen.2017.02.045 [Google Scholar]
  38. Y. Lin, Z. Tian, L. Zhang, J. Ma, Z. Jiang, B. J. Deibert, R. Ge, L. Chen, Nat. Commun., 2019, 10, 162 LINK https://doi.org/10.1038/s41467-018-08144-3 [Google Scholar]
  39. L. Yang, G. Yu, X. Ai, W. Yan, H. Duan, W. Chen, X. Li, T. Wang, C. Zhang, X. Huang, J.-S. Chen, X. Zou, Nat. Commun., 2018, 9, 5236 LINK https://doi.org/10.1038/s41467-018-07678-w [Google Scholar]
  40. Q. Zhang, X. Liang, H. Chen, W. Yan, L. Shi, Y. Liu, J. Li, X. Zou, Chem. Mater., 2020, 32, (9), 3904 LINK https://doi.org/10.1021/acs.chemmater.0c00081 [Google Scholar]
  41. L. C. Seitz, C. F. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, H. Y. Hwang, J. K. Norskov, T. F. Jaramillo, Science, 2016, 353, (6303), 1011 LINK https://doi.org/10.1126/science.aaf5050 [Google Scholar]
  42. O. Diaz-Morales, S. Raaijman, R. Kortlever, P. J. Kooyman, T. Wezendonk, J. Gascon, W. T. Fu, M. T. M. Koper, Nat. Commun., 2016, 7, 12363 LINK https://doi.org/10.1038/ncomms12363 [Google Scholar]
  43. A. Grimaud, A. Demortière, M. Saubanère, W. Dachraoui, M. Duchamp, M.-L. Doublet, J.-M. Tarascon, Nat. Energy, 2016, 2, (1), 16189 LINK https://doi.org/10.1038/nenergy.2016.189 [Google Scholar]
  44. K. Sardar, S. C. Ball, J. D. B. Sharman, D. Thompsett, J. M. Fisher, R. A. P. Smith, P. K. Biswas, M. R. Lees, R. J. Kashtiban, J. Sloan, R. I. Walton, Chem. Mater., 2012, 24, (21), 4192 LINK https://doi.org/10.1021/cm302468b [Google Scholar]
  45. C. Shang, C. Cao, D. Yu, Y. Yan, Y. Lin, H. Li, T. Zheng, X. Yan, W. Yu, S. Zhou, J. Zeng, Adv. Mater., 2019, 31, (6), 1805104 LINK https://doi.org/10.1002/adma.201805104 [Google Scholar]
  46. J. Kim, P.-C. Shih, Y. Qin, Z. Al-Bardan, C.-J. Sun, H. Yang, Angew. Chem. Int. Ed., 2018, 57, (42), 13877 LINK https://doi.org/10.1002/anie.201808825 [Google Scholar]
  47. W. Sun, Y. Song, X.-Q. Gong, L. Cao, J. Yang, ACS Appl. Mater. Interfaces, 2016, 8, (1), 820 LINK https://doi.org/10.1021/acsami.5b10159 [Google Scholar]
  48. R. Zhang, P. E. Pearce, V. Pimenta, J. Cabana, H. Li, D. A. D. Corte, A. M. Abakumov, G. Rousse, D. Giaume, M. Deschamps, A. Grimaud, Chem. Mater., 2020, 32, (8), 3499 LINK https://doi.org/10.1021/acs.chemmater.0c00432 [Google Scholar]
  49. R. Frydendal, E. A. Paoli, B. P. Knudsen, B. Wickman, P. Malacrida, I. E. L. Stephens, I. Chorkendorff, ChemElectroChem, 2014, 1, (12), 2075 LINK https://doi.org/10.1002/celc.201402262 [Google Scholar]
  50. S. M. Alia, M.-A. Ha, G. C. Anderson, C. Ngo, S. Pylypenko, R. E. Larsen, J. Electrochem. Soc., 2019, 166, (15), F1243 LINK https://doi.org/10.1149/2.0771915jes [Google Scholar]
  51. D. L. Burnett, E. Petrucco, K. M. Rigg, C. M. Zalitis, J. G. Lok, R. J. Kashtiban, M. R. Lees, J. D. B. Sharman, R. I. Walton, Chem. Mater., 2020, 32, (14), 6150 LINK https://doi.org/10.1021/acs.chemmater.0c01884 [Google Scholar]
  52. H. A. El-Sayed, A. Weiß, L. F. Olbrich, G. P. Putro, H. A. Gasteiger, J. Electrochem. Soc., 2019, 166, (8), F458 LINK https://doi.org/10.1149/2.0301908jes [Google Scholar]
  53. A. Hartig-Weiss, M. F. Tovini, H. A. Gasteiger, H. A. El-Sayed, ACS Appl. Energy Mater., 2020, 3, (11), 10323 LINK https://doi.org/10.1021/acsaem.0c01944 [Google Scholar]
  54. C. Wei, R. R. Rao, J. Peng, B. Huang, I. E. L. Stephens, M. Risch, Z. J. Xu, Y. Shao-Horn, Adv. Mater., 2019, 31, (31), 1806296 LINK https://doi.org/10.1002/adma.201806296 [Google Scholar]
  55. P. Aßmann, A. S. Gago, P. Gazdzicki, K. A. Friedrich, M. Wark, Curr. Opin. Electrochem., 2020, 21, 225 LINK https://doi.org/10.1016/j.coelec.2020.02.024 [Google Scholar]
  56. C. Van Pham, D. Escalera-López, K. Mayrhofer, S. Cherevko, S. Thiele, Adv. Energy Mater., 2021, 11, (44), 2101998 LINK https://doi.org/10.1002/aenm.202101998 [Google Scholar]
  57. S. Trasatti, J. Electroanal. Chem. Interfacial Electrochem., 1980, 111, (1), 125 LINK https://doi.org/10.1016/s0022-0728(80)80084-2 [Google Scholar]
  58. M. A. Hubert, A. M. Patel, A. Gallo, Y. Liu, E. Valle, M. Ben-Naim, J. Sanchez, D. Sokaras, R. Sinclair, J. K. Nørskov, L. A. King, M. Bajdich, T. F. Jaramillo, ACS Catal., 2020, 10, (20), 12182 LINK https://doi.org/10.1021/acscatal.0c02252 [Google Scholar]
  59. D. F. Abbott, R. K. Pittkowski, K. Macounová, R. Nebel, E. Marelli, E. Fabbri, I. E. Castelli, P. Krtil, T. J. Schmidt, ACS Appl. Mater. Interfaces, 2019, 11, (41), 37748 LINK https://doi.org/10.1021/acsami.9b13220 [Google Scholar]
  60. Q. Feng, J. Zou, Y. Wang, Z. Zhao, M. C. Williams, H. Li, H. Wang, ACS Appl. Mater. Interfaces, 2020, 12, (4), 4520 LINK https://doi.org/10.1021/acsami.9b19352 [Google Scholar]
  61. N. Zhang, C. Wang, J. Chen, C. Hu, J. Ma, X. Deng, B. Qiu, L. Cai, Y. Xiong, Y. Chai, ACS Nano, 2021, 15, (5), 8537 LINK https://doi.org/10.1021/acsnano.1c00266 [Google Scholar]
  62. D. A. Kuznetsov, M. A. Naeem, P. V. Kumar, P. M. Abdala, A. Fedorov, C. R. Müller, J. Am. Chem. Soc., 2020, 142, (17), 7883 LINK https://doi.org/10.1021/jacs.0c01135 [Google Scholar]
  63. P. Wang, Q. Cheng, C. Mao, W. Su, L. Yang, G. Wang, L. Zou, Y. Shi, C. Yan, Z. Zou, H. Yang, J. Power Sources, 2021, 502, 229903 LINK https://doi.org/10.1016/j.jpowsour.2021.229903 [Google Scholar]
  64. F. Claudel, L. Dubau, G. Berthomé, L. Sola-Hernandez, C. Beauger, L. Piccolo, F. Maillard, ACS Catal., 2019, 9, (5), 4688 LINK https://doi.org/10.1021/acscatal.9b00280 [Google Scholar]
  65. A. Zagalskaya, V. Alexandrov, J. Phys. Chem. Lett., 2020, 11, (7), 2695 LINK https://doi.org/10.1021/acs.jpclett.0c00335 [Google Scholar]
  66. A. Lončar, D. Escalera-López, S. Cherevko, N. Hodnik, Angew. Chem. Int. Ed., 2022, 61, (14), e202114437 LINK https://doi.org/10.1002/anie.202114437 [Google Scholar]
  67. D. L. Burnett, E. Petrucco, R. J. Kashtiban, S. F. Parker, J. D. B. Sharman, R. I. Walton, J. Mater. Chem. A, 2021, 9, (44), 25114 LINK https://doi.org/10.1039/d1ta05457k [Google Scholar]
  68. D. Lebedev, M. Povia, K. Waltar, P. M. Abdala, I. E. Castelli, E. Fabbri, M. V. Blanco, A. Fedorov, C. Copéret, N. Marzari, T. J. Schmidt, Chem. Mater., 2017, 29, (12), 5182 LINK https://doi.org/10.1021/acs.chemmater.7b00766 [Google Scholar]
  69. C. W. Song, H. Suh, J. Bak, H. Bin Bae, S.-Y. Chung, Chem, 2019, 5, (12), 3243 LINK https://doi.org/10.1016/j.chempr.2019.10.011 [Google Scholar]
  70. J. Edgington, N. Schweitzer, S. Alayoglu, L. C. Seitz, J. Am. Chem. Soc., 2021, 143, (26), 9961 LINK https://doi.org/10.1021/jacs.1c04332 [Google Scholar]
  71. R. Zhang, N. Dubouis, M. Ben Osman, W. Yin, M. T. Sougrati, D. A. D. Corte, D. Giaume, A. Grimaud, Angew. Chem. Int. Ed., 2019, 58, (14), 4571 LINK https://doi.org/10.1002/anie.201814075 [Google Scholar]
  72. N. Li, L. Cai, C. Wang, Y. Lin, J. Huang, H. Sheng, H. Pan, W. Zhang, Q. Ji, H. Duan, W. Hu, W. Zhang, F. Hu, H. Tan, Z. Sun, B. Song, S. Jin, W. Yan, J. Am. Chem. Soc., 2021, 143, (43), 18001 LINK https://doi.org/10.1021/jacs.1c04087 [Google Scholar]
  73. C.-L. Ma, Z.-Q. Wang, W. Sun, L.-M. Cao, X.-Q. Gong, J. Yang, ACS Appl. Mater. Interfaces, 2021, 13, (25), 29654 LINK https://doi.org/10.1021/acsami.1c06599 [Google Scholar]
  74. Y. Chen, Y. Sun, M. Wang, J. Wang, H. Li, S. Xi, C. Wei, P. Xi, G. E. Sterbinsky, J. W. Freeland, A. C. Fisher, J. W. Ager, Z. Feng, Z. J. Xu, Sci. Adv., 2021, 7, (50), eabk1788 LINK https://doi.org/10.1126/sciadv.abk1788 [Google Scholar]
  75. M. Ben-Naim, Y. Liu, M. B. Stevens, K. Lee, M. R. Wette, A. Boubnov, A. A. Trofimov, A. V. Ievlev, A. Belianinov, R. C. Davis, B. M. Clemens, S. R. Bare, Y. Hikita, H. Y. Hwang, D. C. Higgins, R. Sinclair, T. F. Jaramillo, Adv. Funct. Mater., 2021, 31, (34), 2101542 LINK https://doi.org/10.1002/adfm.202101542 [Google Scholar]
  76. M. Ji, X. Yang, S. Chang, W. Chen, J. Wang, D. He, Y. Hu, Q. Deng, Y. Sun, B. Li, J. Xi, T. Yamada, J. Zhang, H. Xiao, C. Zhu, J. Li, Y. Li, Nano Res., 2022, 15, (3), 1959 LINK https://doi.org/10.1007/s12274-021-3843-8 [Google Scholar]
  77. C. W. Song, J. Lim, H. Bin Bae, S.-Y. Chung, Energy Environ. Sci., 2020, 13, (11), 4178 LINK https://doi.org/10.1039/d0ee01389g [Google Scholar]
  78. W. Sun, J.-Y. Liu, X.-Q. Gong, W.-Q. Zaman, L.-M. Cao, J. Yang, Sci. Rep., 2016, 6, 38429 LINK https://doi.org/10.1038/srep38429 [Google Scholar]
  79. M. Retuerto, L. Pascual, O. Piqué, P. Kayser, M. A. Salam, M. Mokhtar, J. A. Alonso, M. Peña, F. Calle-Vallejo, S. Rojas, J. Mater. Chem. A, 2021, 9, (5), 2980 LINK https://doi.org/10.1039/d0ta10316k [Google Scholar]
  80. T. Reier, D. Teschner, T. Lunkenbein, A. Bergmann, S. Selve, R. Kraehnert, R. Schlögl, P. Strasser, J. Electrochem. Soc., 2014, 161, (9), F876 LINK https://doi.org/10.1149/2.0411409jes [Google Scholar]
  81. H.-S. Oh, H. N. Nong, T. Reier, A. Bergmann, M. Gliech, J. Ferreira de Araújo, E. Willinger, R. Schlögl, D. Teschner, P. Strasser, J. Am. Chem. Soc., 2016, 138, (38), 12552 LINK https://doi.org/10.1021/jacs.6b07199 [Google Scholar]
  82. C. D. F. da Silva, F. Claudel, V. Martin, R. Chattot, S. Abbou, K. Kumar, I. Jiménez-Morales, S. Cavaliere, D. Jones, J. Rozière, L. Solà-Hernandez, C. Beauger, M. Faustini, J. Peron, B. Gilles, T. Encinas, L. Piccolo, F. H. Barros de Lima, L. Dubau, F. Maillard, ACS Catal., 2021, 11, (7), 4107 LINK https://doi.org/10.1021/acscatal.0c04613 [Google Scholar]
  83. J. Kibsgaard, I. Chorkendorff, Nat. Energy, 2019, 4, (6), 430 LINK https://doi.org/10.1038/s41560-019-0407-1 [Google Scholar]
  84. M. You, L. Gui, X. Ma, Z. Wang, Y. Xu, J. Zhang, J. Sun, B. He, L. Zhao, Appl. Catal. B: Environ., 2021, 298, 120562 LINK https://doi.org/10.1016/j.apcatb.2021.120562 [Google Scholar]
  85. J. Joo, Y. Park, J. Kim, T. Kwon, M. Jun, D. Ahn, H. Baik, J. H. Jang, J. Y. Kim, K. Lee, Small Methods, 2021, 6, (1), 2101236 LINK https://doi.org/10.1002/smtd.202101236 [Google Scholar]
  86. M. Kim, J. Park, M. Kang, J. Y. Kim, S. W. Lee, ACS Cent. Sci., 2020, 6, (6), 880 LINK https://doi.org/10.1021/acscentsci.0c00479 [Google Scholar]
/content/journals/10.1595/205651322X16605694237357
Loading
/content/journals/10.1595/205651322X16605694237357
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test