Skip to content
1887
Volume 66, Issue 4
  • ISSN: 2056-5135

Abstract

We continue our review of recent research into oxides of platinum group metals (pgms), in particular those of ruthenium and iridium, for use as electrocatalysts for the oxygen evolution reaction (OER). In Part I (1), the electrocatalytic splitting of water to oxygen and hydrogen was introduced as a key process in developing future devices for various energy-related applications. A survey of ruthenium and iridium oxide structures for oxygen evolution reaction catalysis was presented. Part II discusses mechanistic details and acid stability of pgm oxides and presents the conclusions and outlook. We highlight emerging work that shows how leaching of the base metals from the multinary compositions occurs during operation to yield active pgm-oxide phases, and how attempts to correlate stability with crystal structure have been made. Implications of these discoveries for the balance of activity and stability needed for effective electrocatalysis in real devices are discussed.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16605694237357
2022-05-19
2024-02-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/4/Walton_16a_Imp_pt2.html?itemId=/content/journals/10.1595/205651322X16605694237357&mimeType=html&fmt=ahah

References

  1. Clayton J. A., and Walton R. I. Johnson Matthey Technol. Rev., 2022, 66, (4), 393 LINK https://technology.matthey.com/article/66/4/393-405/ [Google Scholar]
  2. Pu Z., Liu T., Zhang G., Ranganathan H., Chen Z., and Sun S. ChemSusChem, 2021, 14, (21), 4636 LINK https://doi.org/10.1002/cssc.202101461 [Google Scholar]
  3. Reier T., Nong H. N., Teschner D., Schlögl R., and Strasser P. Adv. Energy Mater., 2016, 7, (1), 1601275 LINK https://doi.org/10.1002/aenm.201601275 [Google Scholar]
  4. Naito T., Shinagawa T., Nishimoto T., and Takanabe K. Inorg. Chem. Front., 2021, 8, (11), 2900 LINK https://doi.org/10.1039/d0qi01465f [Google Scholar]
  5. Falling L. J., Velasco-Vélez J. J., Mom R. V., Knop-Gericke A., Schlögl R., Teschner D., and Jones T. E. Curr. Opin. Electrochem., 2021, 30, 100842 LINK https://doi.org/10.1016/j.coelec.2021.100842 [Google Scholar]
  6. Feng Q., Yuan X.-Z., Liu G., Wei B., Zhang Z., Li H., and Wang H. J. Power Sources, 2017, 366, 33 LINK https://doi.org/10.1016/j.jpowsour.2017.09.006 [Google Scholar]
  7. Jiao Y., Zheng Y., Jaroniec M., and Qiao S.-Z. Chem. Soc. Rev., 2015, 44, (8), 2060 LINK https://doi.org/10.1039/c4cs00470a [Google Scholar]
  8. Shan J., Zheng Y., Shi B., Davey K., and Qiao S.-Z. ACS Energy Lett., 2019, 4, (11), 2719 LINK https://doi.org/10.1021/acsenergylett.9b01758 [Google Scholar]
  9. Schweinar K., Gault B., Mouton I., and Kasian O. J. Phys. Chem. Lett., 2020, 11, (13), 5008 LINK https://doi.org/10.1021/acs.jpclett.0c01258 [Google Scholar]
  10. Zagalskaya A., Evazzade I., and Alexandrov V. ACS Energy Lett., 2021, 6, (3), 1124 LINK https://doi.org/10.1021/acsenergylett.1c00234 [Google Scholar]
  11. Zagalskaya A., and Alexandrov V. ACS Catal., 2020, 10, (6), 3650 LINK https://doi.org/10.1021/acscatal.9b05544 [Google Scholar]
  12. Sardar K., Petrucco E., Hiley C. I., Sharman J. D. B., Wells P. P., Russell A. E., Kashtiban R. J., Sloan J., and Walton R. I. Angew. Chem. Int. Ed., 2014, 53, (41), 10960 LINK https://doi.org/10.1002/anie.201406668 [Google Scholar]
  13. Burnett D. L., Petrucco E., Russell A. E., Kashtiban R. J., Sharman J. D. B., and Walton R. I. Phys. Chem. Chem. Phys., 2020, 22, (34), 18770 LINK https://doi.org/10.1039/d0cp01378a [Google Scholar]
  14. Kötz R., Neff H., and Stucki S. J. Electrochem. Soc., 1984, 131, (1), 72 LINK https://doi.org/10.1149/1.2115548 [Google Scholar]
  15. Sanchez Casalongue H. G., Ng M. L., Kaya S., Friebel D., Ogasawara H., and Nilsson A. Angew. Chem. Int. Ed., 2014, 53, (28), 7169 LINK https://doi.org/10.1002/anie.201402311 [Google Scholar]
  16. Kasian O., Grote J.-P., Geiger S., Cherevko S., and Mayrhofer K. J. J. Angew. Chem. Int. Ed., 2018, 57, (9), 2488 LINK https://doi.org/10.1002/anie.201709652 [Google Scholar]
  17. Minguzzi A., Lugaresi O., Achilli E., Locatelli C., Vertova A., Ghigna P., and Rondinini S. Chem. Sci., 2014, 5, (9), 3591 LINK https://doi.org/10.1039/c4sc00975d [Google Scholar]
  18. Abbott D. F., Lebedev D., Waltar K., Povia M., Nachtegaal M., Fabbri E., Copéret C., and Schmidt T. J. Chem. Mater., 2016, 28, (18), 6591 LINK https://doi.org/10.1021/acs.chemmater.6b02625 [Google Scholar]
  19. Hillman A. R., Skopek M. A., and Gurman S. J. Phys. Chem. Chem. Phys., 2011, 13, (12), 5252 LINK https://doi.org/10.1039/c0cp01472a [Google Scholar]
  20. Saveleva V. A., Wang L., Teschner D., Jones T., Gago A. S., Friedrich K. A., Zafeiratos S., Schlögl R., and Savinova E. R. J. Phys. Chem. Lett., 2018, 9, (11), 3154 LINK https://doi.org/10.1021/acs.jpclett.8b00810 [Google Scholar]
  21. Pfeifer V., Jones T. E., Wrabetz S., Massué C., Velasco Vélez J. J., Arrigo R., Scherzer M., Piccinin S., Hävecker M., Knop-Gericke A., and Schlögl R. Chem. Sci., 2016, 7, (11), 6791 LINK https://doi.org/10.1039/c6sc01860b [Google Scholar]
  22. Geiger S., Kasian O., Ledendecker M., Pizzutilo E., Mingers A. M., Fu W. T., Diaz-Morales O., Li Z., Oellers T., Fruchter L., Ludwig A., Mayrhofer K. J. J., Koper M. T. M., and Cherevko S. Nat. Catal., 2018, 1, (7), 508 LINK https://doi.org/10.1038/s41929-018-0085-6 [Google Scholar]
  23. She L., Zhao G., Ma T., Chen J., Sun W., and Pan H. Adv. Funct. Mater., 2022, 32, (5), 2108465 LINK https://doi.org/10.1002/adfm.202108465 [Google Scholar]
  24. Czioska S., Boubnov A., Escalera-López D., Geppert J., Zagalskaya A., Röse P., Saraçi E., Alexandrov V., Krewer U., Cherevko S., and Grunwaldt J.-D. ACS Catal., 2021, 11, (15), 10043 LINK https://doi.org/10.1021/acscatal.1c02074 [Google Scholar]
  25. Kötz R., Stucki S., Scherson D., and Kolb D. M. J. Electroanal. Chem. Interfacial Electrochem., 1984, 172, (1–2), 211 LINK https://doi.org/10.1016/0022-0728(84)80187-4 [Google Scholar]
  26. Spöri C., Kwan J. T. H., Bonakdarpour A., Wilkinson D. P., and Strasser P. Angew. Chem. Int. Ed., 2017, 56, (22), 5994 LINK https://doi.org/10.1002/anie.201608601 [Google Scholar]
  27. Hongsirikarn K., Goodwin J. G., Greenway S., and Creager S. J. Power Sources, 2010, 195, (21), 7213 LINK https://doi.org/10.1016/j.jpowsour.2010.05.005 [Google Scholar]
  28. Binninger T., Mohamed R., Waltar K., Fabbri E., Levecque P., Kötz R., and Schmidt T. J. Sci. Rep., 2015, 5, 12167 LINK https://doi.org/10.1038/srep12167 [Google Scholar]
  29. Raman A. S., and Vojvodic A. J. Phys. Chem. C, 2022, 126, (2), 922 LINK https://doi.org/10.1021/acs.jpcc.1c08737 [Google Scholar]
  30. Hodnik N., Jovanovič P., Pavlišič A., Jozinovič B., Zorko M., Bele M., Šelih V. S., Šala M., Hočevar S., and Gaberšček M. J. Phys. Chem. C, 2015, 119, (18), 10140 LINK https://doi.org/10.1021/acs.jpcc.5b01832 [Google Scholar]
  31. Liu Y., Liang X., Chen H., Gao R., Shi L., Yang L., and Zou X. Chin. J. Catal., 2021, 42, (7), 1054 LINK https://doi.org/10.1016/s1872-2067(20)63722-6 [Google Scholar]
  32. Zhang Y., Zhu X., Zhang G., Shi P., and Wang A.-L. J. Mater. Chem. A, 2021, 9, (10), 5890 LINK https://doi.org/10.1039/d0ta11982b [Google Scholar]
  33. Gu X.-K., Camayang J. C. A., Samira S., and Nikolla E. J. Catal., 2020, 388, 130 LINK https://doi.org/10.1016/j.jcat.2020.05.008 [Google Scholar]
  34. An L., Wei C., Lu M., Liu H., Chen Y., Scherer G. G., Fisher A. C., Xi P., Xu Z. J., and Yan C.-H. Adv. Mater., 2021, 33, (20), 2006328 LINK https://doi.org/10.1002/adma.202006328 [Google Scholar]
  35. Miao X., Zhang L., Wu L., Hu Z., Shi L., and Zhou S. Nat. Commun., 2019, 10, 3809 LINK https://doi.org/10.1038/s41467-019-11789-3 [Google Scholar]
  36. Zhang L., Jang H., Li Z., Liu H., Kim M. G., Liu X., and Cho J. Chem. Eng. J., 2021, 419, 129604 LINK https://doi.org/10.1016/j.cej.2021.129604 [Google Scholar]
  37. Wang L., Saveleva V. A., Zafeiratos S., Savinova E. R., Lettenmeier P., Gazdzicki P., Gago A. S., and Friedrich K. A. Nano Energy, 2017, 34, 385 LINK https://doi.org/10.1016/j.nanoen.2017.02.045 [Google Scholar]
  38. Lin Y., Tian Z., Zhang L., Ma J., Jiang Z., Deibert B. J., Ge R., and Chen L. Nat. Commun., 2019, 10, 162 LINK https://doi.org/10.1038/s41467-018-08144-3 [Google Scholar]
  39. Yang L., Yu G., Ai X., Yan W., Duan H., Chen W., Li X., Wang T., Zhang C., Huang X., Chen J.-S., and Zou X. Nat. Commun., 2018, 9, 5236 LINK https://doi.org/10.1038/s41467-018-07678-w [Google Scholar]
  40. Zhang Q., Liang X., Chen H., Yan W., Shi L., Liu Y., Li J., and Zou X. Chem. Mater., 2020, 32, (9), 3904 LINK https://doi.org/10.1021/acs.chemmater.0c00081 [Google Scholar]
  41. Seitz L. C., Dickens C. F., Nishio K., Hikita Y., Montoya J., Doyle A., Kirk C., Vojvodic A., Hwang H. Y., Norskov J. K., and Jaramillo T. F. Science, 2016, 353, (6303), 1011 LINK https://doi.org/10.1126/science.aaf5050 [Google Scholar]
  42. Diaz-Morales O., Raaijman S., Kortlever R., Kooyman P. J., Wezendonk T., Gascon J., Fu W. T., and Koper M. T. M. Nat. Commun., 2016, 7, 12363 LINK https://doi.org/10.1038/ncomms12363 [Google Scholar]
  43. Grimaud A., Demortière A., Saubanère M., Dachraoui W., Duchamp M., Doublet M.-L., and Tarascon J.-M. Nat. Energy, 2016, 2, (1), 16189 LINK https://doi.org/10.1038/nenergy.2016.189 [Google Scholar]
  44. Sardar K., Ball S. C., Sharman J. D. B., Thompsett D., Fisher J. M., Smith R. A. P., Biswas P. K., Lees M. R., Kashtiban R. J., Sloan J., and Walton R. I. Chem. Mater., 2012, 24, (21), 4192 LINK https://doi.org/10.1021/cm302468b [Google Scholar]
  45. Shang C., Cao C., Yu D., Yan Y., Lin Y., Li H., Zheng T., Yan X., Yu W., Zhou S., and Zeng J. Adv. Mater., 2019, 31, (6), 1805104 LINK https://doi.org/10.1002/adma.201805104 [Google Scholar]
  46. Kim J., Shih P.-C., Qin Y., Al-Bardan Z., Sun C.-J., and Yang H. Angew. Chem. Int. Ed., 2018, 57, (42), 13877 LINK https://doi.org/10.1002/anie.201808825 [Google Scholar]
  47. Sun W., Song Y., Gong X.-Q., Cao L., and Yang J. ACS Appl. Mater. Interfaces, 2016, 8, (1), 820 LINK https://doi.org/10.1021/acsami.5b10159 [Google Scholar]
  48. Zhang R., Pearce P. E., Pimenta V., Cabana J., Li H., Corte D. A. D., Abakumov A. M., Rousse G., Giaume D., Deschamps M., and Grimaud A. Chem. Mater., 2020, 32, (8), 3499 LINK https://doi.org/10.1021/acs.chemmater.0c00432 [Google Scholar]
  49. Frydendal R., Paoli E. A., Knudsen B. P., Wickman B., Malacrida P., Stephens I. E. L., and Chorkendorff I. ChemElectroChem, 2014, 1, (12), 2075 LINK https://doi.org/10.1002/celc.201402262 [Google Scholar]
  50. Alia S. M., Ha M.-A., Anderson G. C., Ngo C., Pylypenko S., and Larsen R. E. J. Electrochem. Soc., 2019, 166, (15), F1243 LINK https://doi.org/10.1149/2.0771915jes [Google Scholar]
  51. Burnett D. L., Petrucco E., Rigg K. M., Zalitis C. M., Lok J. G., Kashtiban R. J., Lees M. R., Sharman J. D. B., and Walton R. I. Chem. Mater., 2020, 32, (14), 6150 LINK https://doi.org/10.1021/acs.chemmater.0c01884 [Google Scholar]
  52. El-Sayed H. A., Weiß A., Olbrich L. F., Putro G. P., and Gasteiger H. A. J. Electrochem. Soc., 2019, 166, (8), F458 LINK https://doi.org/10.1149/2.0301908jes [Google Scholar]
  53. Hartig-Weiss A., Tovini M. F., Gasteiger H. A., and El-Sayed H. A. ACS Appl. Energy Mater., 2020, 3, (11), 10323 LINK https://doi.org/10.1021/acsaem.0c01944 [Google Scholar]
  54. Wei C., Rao R. R., Peng J., Huang B., Stephens I. E. L., Risch M., Xu Z. J., and Shao-Horn Y. Adv. Mater., 2019, 31, (31), 1806296 LINK https://doi.org/10.1002/adma.201806296 [Google Scholar]
  55. Aßmann P., Gago A. S., Gazdzicki P., Friedrich K. A., and Wark M. Curr. Opin. Electrochem., 2020, 21, 225 LINK https://doi.org/10.1016/j.coelec.2020.02.024 [Google Scholar]
  56. Van Pham C., Escalera-López D., Mayrhofer K., Cherevko S., and Thiele S. Adv. Energy Mater., 2021, 11, (44), 2101998 LINK https://doi.org/10.1002/aenm.202101998 [Google Scholar]
  57. Trasatti S. J. Electroanal. Chem. Interfacial Electrochem., 1980, 111, (1), 125 LINK https://doi.org/10.1016/s0022-0728(80)80084-2 [Google Scholar]
  58. Hubert M. A., Patel A. M., Gallo A., Liu Y., Valle E., Ben-Naim M., Sanchez J., Sokaras D., Sinclair R., Nørskov J. K., King L. A., Bajdich M., and Jaramillo T. F. ACS Catal., 2020, 10, (20), 12182 LINK https://doi.org/10.1021/acscatal.0c02252 [Google Scholar]
  59. Abbott D. F., Pittkowski R. K., Macounová K., Nebel R., Marelli E., Fabbri E., Castelli I. E., Krtil P., and Schmidt T. J. ACS Appl. Mater. Interfaces, 2019, 11, (41), 37748 LINK https://doi.org/10.1021/acsami.9b13220 [Google Scholar]
  60. Feng Q., Zou J., Wang Y., Zhao Z., Williams M. C., Li H., and Wang H. ACS Appl. Mater. Interfaces, 2020, 12, (4), 4520 LINK https://doi.org/10.1021/acsami.9b19352 [Google Scholar]
  61. Zhang N., Wang C., Chen J., Hu C., Ma J., Deng X., Qiu B., Cai L., Xiong Y., and Chai Y. ACS Nano, 2021, 15, (5), 8537 LINK https://doi.org/10.1021/acsnano.1c00266 [Google Scholar]
  62. Kuznetsov D. A., Naeem M. A., Kumar P. V., Abdala P. M., Fedorov A., and Müller C. R. J. Am. Chem. Soc., 2020, 142, (17), 7883 LINK https://doi.org/10.1021/jacs.0c01135 [Google Scholar]
  63. Wang P., Cheng Q., Mao C., Su W., Yang L., Wang G., Zou L., Shi Y., Yan C., Zou Z., and Yang H. J. Power Sources, 2021, 502, 229903 LINK https://doi.org/10.1016/j.jpowsour.2021.229903 [Google Scholar]
  64. Claudel F., Dubau L., Berthomé G., Sola-Hernandez L., Beauger C., Piccolo L., and Maillard F. ACS Catal., 2019, 9, (5), 4688 LINK https://doi.org/10.1021/acscatal.9b00280 [Google Scholar]
  65. Zagalskaya A., and Alexandrov V. J. Phys. Chem. Lett., 2020, 11, (7), 2695 LINK https://doi.org/10.1021/acs.jpclett.0c00335 [Google Scholar]
  66. Lončar A., Escalera-López D., Cherevko S., and Hodnik N. Angew. Chem. Int. Ed., 2022, 61, (14), e202114437 LINK https://doi.org/10.1002/anie.202114437 [Google Scholar]
  67. Burnett D. L., Petrucco E., Kashtiban R. J., Parker S. F., Sharman J. D. B., and Walton R. I. J. Mater. Chem. A, 2021, 9, (44), 25114 LINK https://doi.org/10.1039/d1ta05457k [Google Scholar]
  68. Lebedev D., Povia M., Waltar K., Abdala P. M., Castelli I. E., Fabbri E., Blanco M. V., Fedorov A., Copéret C., Marzari N., and Schmidt T. J. Chem. Mater., 2017, 29, (12), 5182 LINK https://doi.org/10.1021/acs.chemmater.7b00766 [Google Scholar]
  69. Song C. W., Suh H., Bak J., Bin Bae H., and Chung S.-Y. Chem, 2019, 5, (12), 3243 LINK https://doi.org/10.1016/j.chempr.2019.10.011 [Google Scholar]
  70. Edgington J., Schweitzer N., Alayoglu S., and Seitz L. C. J. Am. Chem. Soc., 2021, 143, (26), 9961 LINK https://doi.org/10.1021/jacs.1c04332 [Google Scholar]
  71. Zhang R., Dubouis N., Ben Osman M., Yin W., Sougrati M. T., Corte D. A. D., Giaume D., and Grimaud A. Angew. Chem. Int. Ed., 2019, 58, (14), 4571 LINK https://doi.org/10.1002/anie.201814075 [Google Scholar]
  72. Li N., Cai L., Wang C., Lin Y., Huang J., Sheng H., Pan H., Zhang W., Ji Q., Duan H., Hu W., Zhang W., Hu F., Tan H., Sun Z., Song B., Jin S., and Yan W. J. Am. Chem. Soc., 2021, 143, (43), 18001 LINK https://doi.org/10.1021/jacs.1c04087 [Google Scholar]
  73. Ma C.-L., Wang Z.-Q., Sun W., Cao L.-M., Gong X.-Q., and Yang J. ACS Appl. Mater. Interfaces, 2021, 13, (25), 29654 LINK https://doi.org/10.1021/acsami.1c06599 [Google Scholar]
  74. Chen Y., Sun Y., Wang M., Wang J., Li H., Xi S., Wei C., Xi P., Sterbinsky G. E., Freeland J. W., Fisher A. C., Ager J. W., Feng Z., and Xu Z. J. Sci. Adv., 2021, 7, (50), eabk1788 LINK https://doi.org/10.1126/sciadv.abk1788 [Google Scholar]
  75. Ben-Naim M., Liu Y., Stevens M. B., Lee K., Wette M. R., Boubnov A., Trofimov A. A., Ievlev A. V., Belianinov A., Davis R. C., Clemens B. M., Bare S. R., Hikita Y., Hwang H. Y., Higgins D. C., Sinclair R., and Jaramillo T. F. Adv. Funct. Mater., 2021, 31, (34), 2101542 LINK https://doi.org/10.1002/adfm.202101542 [Google Scholar]
  76. Ji M., Yang X., Chang S., Chen W., Wang J., He D., Hu Y., Deng Q., Sun Y., Li B., Xi J., Yamada T., Zhang J., Xiao H., Zhu C., Li J., and Li Y. Nano Res., 2022, 15, (3), 1959 LINK https://doi.org/10.1007/s12274-021-3843-8 [Google Scholar]
  77. Song C. W., Lim J., Bin Bae H., and Chung S.-Y. Energy Environ. Sci., 2020, 13, (11), 4178 LINK https://doi.org/10.1039/d0ee01389g [Google Scholar]
  78. Sun W., Liu J.-Y., Gong X.-Q., Zaman W.-Q., Cao L.-M., and Yang J. Sci. Rep., 2016, 6, 38429 LINK https://doi.org/10.1038/srep38429 [Google Scholar]
  79. Retuerto M., Pascual L., Piqué O., Kayser P., Salam M. A., Mokhtar M., Alonso J. A., Peña M., Calle-Vallejo F., and Rojas S. J. Mater. Chem. A, 2021, 9, (5), 2980 LINK https://doi.org/10.1039/d0ta10316k [Google Scholar]
  80. Reier T., Teschner D., Lunkenbein T., Bergmann A., Selve S., Kraehnert R., Schlögl R., and Strasser P. J. Electrochem. Soc., 2014, 161, (9), F876 LINK https://doi.org/10.1149/2.0411409jes [Google Scholar]
  81. Oh H.-S., Nong H. N., Reier T., Bergmann A., Gliech M., Ferreira de Araújo J., Willinger E., Schlögl R., Teschner D., and Strasser P. J. Am. Chem. Soc., 2016, 138, (38), 12552 LINK https://doi.org/10.1021/jacs.6b07199 [Google Scholar]
  82. da Silva C. D. F., Claudel F., Martin V., Chattot R., Abbou S., Kumar K., Jiménez-Morales I., Cavaliere S., Jones D., Rozière J., Solà-Hernandez L., Beauger C., Faustini M., Peron J., Gilles B., Encinas T., Piccolo L., Barros de Lima F. H., Dubau L., and Maillard F. ACS Catal., 2021, 11, (7), 4107 LINK https://doi.org/10.1021/acscatal.0c04613 [Google Scholar]
  83. Kibsgaard J., and Chorkendorff I. Nat. Energy, 2019, 4, (6), 430 LINK https://doi.org/10.1038/s41560-019-0407-1 [Google Scholar]
  84. You M., Gui L., Ma X., Wang Z., Xu Y., Zhang J., Sun J., He B., and Zhao L. Appl. Catal. B: Environ., 2021, 298, 120562 LINK https://doi.org/10.1016/j.apcatb.2021.120562 [Google Scholar]
  85. Joo J., Park Y., Kim J., Kwon T., Jun M., Ahn D., Baik H., Jang J. H., Kim J. Y., and Lee K. Small Methods, 2021, 6, (1), 2101236 LINK https://doi.org/10.1002/smtd.202101236 [Google Scholar]
  86. Kim M., Park J., Kang M., Kim J. Y., and Lee S. W. ACS Cent. Sci., 2020, 6, (6), 880 LINK https://doi.org/10.1021/acscentsci.0c00479 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651322X16605694237357
Loading
/content/journals/10.1595/205651322X16605694237357
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error