Skip to content
Volume 66, Issue 4
  • ISSN: 2056-5135


We continue our review of recent research into oxides of platinum group metals (pgms), in particular those of ruthenium and iridium, for use as electrocatalysts for the oxygen evolution reaction (OER). In Part I (1), the electrocatalytic splitting of water to oxygen and hydrogen was introduced as a key process in developing future devices for various energy-related applications. A survey of ruthenium and iridium oxide structures for oxygen evolution reaction catalysis was presented. Part II discusses mechanistic details and acid stability of pgm oxides and presents the conclusions and outlook. We highlight emerging work that shows how leaching of the base metals from the multinary compositions occurs during operation to yield active pgm-oxide phases, and how attempts to correlate stability with crystal structure have been made. Implications of these discoveries for the balance of activity and stability needed for effective electrocatalysis in real devices are discussed.


Article metrics loading...

Loading full text...

Full text loading...



  1. Clayton J. A., and Walton R. I. Johnson Matthey Technol. Rev., 2022, 66, (4), 393 LINK [Google Scholar]
  2. Pu Z., Liu T., Zhang G., Ranganathan H., Chen Z., and Sun S. ChemSusChem, 2021, 14, (21), 4636 LINK [Google Scholar]
  3. Reier T., Nong H. N., Teschner D., Schlögl R., and Strasser P. Adv. Energy Mater., 2016, 7, (1), 1601275 LINK [Google Scholar]
  4. Naito T., Shinagawa T., Nishimoto T., and Takanabe K. Inorg. Chem. Front., 2021, 8, (11), 2900 LINK [Google Scholar]
  5. Falling L. J., Velasco-Vélez J. J., Mom R. V., Knop-Gericke A., Schlögl R., Teschner D., and Jones T. E. Curr. Opin. Electrochem., 2021, 30, 100842 LINK [Google Scholar]
  6. Feng Q., Yuan X.-Z., Liu G., Wei B., Zhang Z., Li H., and Wang H. J. Power Sources, 2017, 366, 33 LINK [Google Scholar]
  7. Jiao Y., Zheng Y., Jaroniec M., and Qiao S.-Z. Chem. Soc. Rev., 2015, 44, (8), 2060 LINK [Google Scholar]
  8. Shan J., Zheng Y., Shi B., Davey K., and Qiao S.-Z. ACS Energy Lett., 2019, 4, (11), 2719 LINK [Google Scholar]
  9. Schweinar K., Gault B., Mouton I., and Kasian O. J. Phys. Chem. Lett., 2020, 11, (13), 5008 LINK [Google Scholar]
  10. Zagalskaya A., Evazzade I., and Alexandrov V. ACS Energy Lett., 2021, 6, (3), 1124 LINK [Google Scholar]
  11. Zagalskaya A., and Alexandrov V. ACS Catal., 2020, 10, (6), 3650 LINK [Google Scholar]
  12. Sardar K., Petrucco E., Hiley C. I., Sharman J. D. B., Wells P. P., Russell A. E., Kashtiban R. J., Sloan J., and Walton R. I. Angew. Chem. Int. Ed., 2014, 53, (41), 10960 LINK [Google Scholar]
  13. Burnett D. L., Petrucco E., Russell A. E., Kashtiban R. J., Sharman J. D. B., and Walton R. I. Phys. Chem. Chem. Phys., 2020, 22, (34), 18770 LINK [Google Scholar]
  14. Kötz R., Neff H., and Stucki S. J. Electrochem. Soc., 1984, 131, (1), 72 LINK [Google Scholar]
  15. Sanchez Casalongue H. G., Ng M. L., Kaya S., Friebel D., Ogasawara H., and Nilsson A. Angew. Chem. Int. Ed., 2014, 53, (28), 7169 LINK [Google Scholar]
  16. Kasian O., Grote J.-P., Geiger S., Cherevko S., and Mayrhofer K. J. J. Angew. Chem. Int. Ed., 2018, 57, (9), 2488 LINK [Google Scholar]
  17. Minguzzi A., Lugaresi O., Achilli E., Locatelli C., Vertova A., Ghigna P., and Rondinini S. Chem. Sci., 2014, 5, (9), 3591 LINK [Google Scholar]
  18. Abbott D. F., Lebedev D., Waltar K., Povia M., Nachtegaal M., Fabbri E., Copéret C., and Schmidt T. J. Chem. Mater., 2016, 28, (18), 6591 LINK [Google Scholar]
  19. Hillman A. R., Skopek M. A., and Gurman S. J. Phys. Chem. Chem. Phys., 2011, 13, (12), 5252 LINK [Google Scholar]
  20. Saveleva V. A., Wang L., Teschner D., Jones T., Gago A. S., Friedrich K. A., Zafeiratos S., Schlögl R., and Savinova E. R. J. Phys. Chem. Lett., 2018, 9, (11), 3154 LINK [Google Scholar]
  21. Pfeifer V., Jones T. E., Wrabetz S., Massué C., Velasco Vélez J. J., Arrigo R., Scherzer M., Piccinin S., Hävecker M., Knop-Gericke A., and Schlögl R. Chem. Sci., 2016, 7, (11), 6791 LINK [Google Scholar]
  22. Geiger S., Kasian O., Ledendecker M., Pizzutilo E., Mingers A. M., Fu W. T., Diaz-Morales O., Li Z., Oellers T., Fruchter L., Ludwig A., Mayrhofer K. J. J., Koper M. T. M., and Cherevko S. Nat. Catal., 2018, 1, (7), 508 LINK [Google Scholar]
  23. She L., Zhao G., Ma T., Chen J., Sun W., and Pan H. Adv. Funct. Mater., 2022, 32, (5), 2108465 LINK [Google Scholar]
  24. Czioska S., Boubnov A., Escalera-López D., Geppert J., Zagalskaya A., Röse P., Saraçi E., Alexandrov V., Krewer U., Cherevko S., and Grunwaldt J.-D. ACS Catal., 2021, 11, (15), 10043 LINK [Google Scholar]
  25. Kötz R., Stucki S., Scherson D., and Kolb D. M. J. Electroanal. Chem. Interfacial Electrochem., 1984, 172, (1–2), 211 LINK [Google Scholar]
  26. Spöri C., Kwan J. T. H., Bonakdarpour A., Wilkinson D. P., and Strasser P. Angew. Chem. Int. Ed., 2017, 56, (22), 5994 LINK [Google Scholar]
  27. Hongsirikarn K., Goodwin J. G., Greenway S., and Creager S. J. Power Sources, 2010, 195, (21), 7213 LINK [Google Scholar]
  28. Binninger T., Mohamed R., Waltar K., Fabbri E., Levecque P., Kötz R., and Schmidt T. J. Sci. Rep., 2015, 5, 12167 LINK [Google Scholar]
  29. Raman A. S., and Vojvodic A. J. Phys. Chem. C, 2022, 126, (2), 922 LINK [Google Scholar]
  30. Hodnik N., Jovanovič P., Pavlišič A., Jozinovič B., Zorko M., Bele M., Šelih V. S., Šala M., Hočevar S., and Gaberšček M. J. Phys. Chem. C, 2015, 119, (18), 10140 LINK [Google Scholar]
  31. Liu Y., Liang X., Chen H., Gao R., Shi L., Yang L., and Zou X. Chin. J. Catal., 2021, 42, (7), 1054 LINK [Google Scholar]
  32. Zhang Y., Zhu X., Zhang G., Shi P., and Wang A.-L. J. Mater. Chem. A, 2021, 9, (10), 5890 LINK [Google Scholar]
  33. Gu X.-K., Camayang J. C. A., Samira S., and Nikolla E. J. Catal., 2020, 388, 130 LINK [Google Scholar]
  34. An L., Wei C., Lu M., Liu H., Chen Y., Scherer G. G., Fisher A. C., Xi P., Xu Z. J., and Yan C.-H. Adv. Mater., 2021, 33, (20), 2006328 LINK [Google Scholar]
  35. Miao X., Zhang L., Wu L., Hu Z., Shi L., and Zhou S. Nat. Commun., 2019, 10, 3809 LINK [Google Scholar]
  36. Zhang L., Jang H., Li Z., Liu H., Kim M. G., Liu X., and Cho J. Chem. Eng. J., 2021, 419, 129604 LINK [Google Scholar]
  37. Wang L., Saveleva V. A., Zafeiratos S., Savinova E. R., Lettenmeier P., Gazdzicki P., Gago A. S., and Friedrich K. A. Nano Energy, 2017, 34, 385 LINK [Google Scholar]
  38. Lin Y., Tian Z., Zhang L., Ma J., Jiang Z., Deibert B. J., Ge R., and Chen L. Nat. Commun., 2019, 10, 162 LINK [Google Scholar]
  39. Yang L., Yu G., Ai X., Yan W., Duan H., Chen W., Li X., Wang T., Zhang C., Huang X., Chen J.-S., and Zou X. Nat. Commun., 2018, 9, 5236 LINK [Google Scholar]
  40. Zhang Q., Liang X., Chen H., Yan W., Shi L., Liu Y., Li J., and Zou X. Chem. Mater., 2020, 32, (9), 3904 LINK [Google Scholar]
  41. Seitz L. C., Dickens C. F., Nishio K., Hikita Y., Montoya J., Doyle A., Kirk C., Vojvodic A., Hwang H. Y., Norskov J. K., and Jaramillo T. F. Science, 2016, 353, (6303), 1011 LINK [Google Scholar]
  42. Diaz-Morales O., Raaijman S., Kortlever R., Kooyman P. J., Wezendonk T., Gascon J., Fu W. T., and Koper M. T. M. Nat. Commun., 2016, 7, 12363 LINK [Google Scholar]
  43. Grimaud A., Demortière A., Saubanère M., Dachraoui W., Duchamp M., Doublet M.-L., and Tarascon J.-M. Nat. Energy, 2016, 2, (1), 16189 LINK [Google Scholar]
  44. Sardar K., Ball S. C., Sharman J. D. B., Thompsett D., Fisher J. M., Smith R. A. P., Biswas P. K., Lees M. R., Kashtiban R. J., Sloan J., and Walton R. I. Chem. Mater., 2012, 24, (21), 4192 LINK [Google Scholar]
  45. Shang C., Cao C., Yu D., Yan Y., Lin Y., Li H., Zheng T., Yan X., Yu W., Zhou S., and Zeng J. Adv. Mater., 2019, 31, (6), 1805104 LINK [Google Scholar]
  46. Kim J., Shih P.-C., Qin Y., Al-Bardan Z., Sun C.-J., and Yang H. Angew. Chem. Int. Ed., 2018, 57, (42), 13877 LINK [Google Scholar]
  47. Sun W., Song Y., Gong X.-Q., Cao L., and Yang J. ACS Appl. Mater. Interfaces, 2016, 8, (1), 820 LINK [Google Scholar]
  48. Zhang R., Pearce P. E., Pimenta V., Cabana J., Li H., Corte D. A. D., Abakumov A. M., Rousse G., Giaume D., Deschamps M., and Grimaud A. Chem. Mater., 2020, 32, (8), 3499 LINK [Google Scholar]
  49. Frydendal R., Paoli E. A., Knudsen B. P., Wickman B., Malacrida P., Stephens I. E. L., and Chorkendorff I. ChemElectroChem, 2014, 1, (12), 2075 LINK [Google Scholar]
  50. Alia S. M., Ha M.-A., Anderson G. C., Ngo C., Pylypenko S., and Larsen R. E. J. Electrochem. Soc., 2019, 166, (15), F1243 LINK [Google Scholar]
  51. Burnett D. L., Petrucco E., Rigg K. M., Zalitis C. M., Lok J. G., Kashtiban R. J., Lees M. R., Sharman J. D. B., and Walton R. I. Chem. Mater., 2020, 32, (14), 6150 LINK [Google Scholar]
  52. El-Sayed H. A., Weiß A., Olbrich L. F., Putro G. P., and Gasteiger H. A. J. Electrochem. Soc., 2019, 166, (8), F458 LINK [Google Scholar]
  53. Hartig-Weiss A., Tovini M. F., Gasteiger H. A., and El-Sayed H. A. ACS Appl. Energy Mater., 2020, 3, (11), 10323 LINK [Google Scholar]
  54. Wei C., Rao R. R., Peng J., Huang B., Stephens I. E. L., Risch M., Xu Z. J., and Shao-Horn Y. Adv. Mater., 2019, 31, (31), 1806296 LINK [Google Scholar]
  55. Aßmann P., Gago A. S., Gazdzicki P., Friedrich K. A., and Wark M. Curr. Opin. Electrochem., 2020, 21, 225 LINK [Google Scholar]
  56. Van Pham C., Escalera-López D., Mayrhofer K., Cherevko S., and Thiele S. Adv. Energy Mater., 2021, 11, (44), 2101998 LINK [Google Scholar]
  57. Trasatti S. J. Electroanal. Chem. Interfacial Electrochem., 1980, 111, (1), 125 LINK [Google Scholar]
  58. Hubert M. A., Patel A. M., Gallo A., Liu Y., Valle E., Ben-Naim M., Sanchez J., Sokaras D., Sinclair R., Nørskov J. K., King L. A., Bajdich M., and Jaramillo T. F. ACS Catal., 2020, 10, (20), 12182 LINK [Google Scholar]
  59. Abbott D. F., Pittkowski R. K., Macounová K., Nebel R., Marelli E., Fabbri E., Castelli I. E., Krtil P., and Schmidt T. J. ACS Appl. Mater. Interfaces, 2019, 11, (41), 37748 LINK [Google Scholar]
  60. Feng Q., Zou J., Wang Y., Zhao Z., Williams M. C., Li H., and Wang H. ACS Appl. Mater. Interfaces, 2020, 12, (4), 4520 LINK [Google Scholar]
  61. Zhang N., Wang C., Chen J., Hu C., Ma J., Deng X., Qiu B., Cai L., Xiong Y., and Chai Y. ACS Nano, 2021, 15, (5), 8537 LINK [Google Scholar]
  62. Kuznetsov D. A., Naeem M. A., Kumar P. V., Abdala P. M., Fedorov A., and Müller C. R. J. Am. Chem. Soc., 2020, 142, (17), 7883 LINK [Google Scholar]
  63. Wang P., Cheng Q., Mao C., Su W., Yang L., Wang G., Zou L., Shi Y., Yan C., Zou Z., and Yang H. J. Power Sources, 2021, 502, 229903 LINK [Google Scholar]
  64. Claudel F., Dubau L., Berthomé G., Sola-Hernandez L., Beauger C., Piccolo L., and Maillard F. ACS Catal., 2019, 9, (5), 4688 LINK [Google Scholar]
  65. Zagalskaya A., and Alexandrov V. J. Phys. Chem. Lett., 2020, 11, (7), 2695 LINK [Google Scholar]
  66. Lončar A., Escalera-López D., Cherevko S., and Hodnik N. Angew. Chem. Int. Ed., 2022, 61, (14), e202114437 LINK [Google Scholar]
  67. Burnett D. L., Petrucco E., Kashtiban R. J., Parker S. F., Sharman J. D. B., and Walton R. I. J. Mater. Chem. A, 2021, 9, (44), 25114 LINK [Google Scholar]
  68. Lebedev D., Povia M., Waltar K., Abdala P. M., Castelli I. E., Fabbri E., Blanco M. V., Fedorov A., Copéret C., Marzari N., and Schmidt T. J. Chem. Mater., 2017, 29, (12), 5182 LINK [Google Scholar]
  69. Song C. W., Suh H., Bak J., Bin Bae H., and Chung S.-Y. Chem, 2019, 5, (12), 3243 LINK [Google Scholar]
  70. Edgington J., Schweitzer N., Alayoglu S., and Seitz L. C. J. Am. Chem. Soc., 2021, 143, (26), 9961 LINK [Google Scholar]
  71. Zhang R., Dubouis N., Ben Osman M., Yin W., Sougrati M. T., Corte D. A. D., Giaume D., and Grimaud A. Angew. Chem. Int. Ed., 2019, 58, (14), 4571 LINK [Google Scholar]
  72. Li N., Cai L., Wang C., Lin Y., Huang J., Sheng H., Pan H., Zhang W., Ji Q., Duan H., Hu W., Zhang W., Hu F., Tan H., Sun Z., Song B., Jin S., and Yan W. J. Am. Chem. Soc., 2021, 143, (43), 18001 LINK [Google Scholar]
  73. Ma C.-L., Wang Z.-Q., Sun W., Cao L.-M., Gong X.-Q., and Yang J. ACS Appl. Mater. Interfaces, 2021, 13, (25), 29654 LINK [Google Scholar]
  74. Chen Y., Sun Y., Wang M., Wang J., Li H., Xi S., Wei C., Xi P., Sterbinsky G. E., Freeland J. W., Fisher A. C., Ager J. W., Feng Z., and Xu Z. J. Sci. Adv., 2021, 7, (50), eabk1788 LINK [Google Scholar]
  75. Ben-Naim M., Liu Y., Stevens M. B., Lee K., Wette M. R., Boubnov A., Trofimov A. A., Ievlev A. V., Belianinov A., Davis R. C., Clemens B. M., Bare S. R., Hikita Y., Hwang H. Y., Higgins D. C., Sinclair R., and Jaramillo T. F. Adv. Funct. Mater., 2021, 31, (34), 2101542 LINK [Google Scholar]
  76. Ji M., Yang X., Chang S., Chen W., Wang J., He D., Hu Y., Deng Q., Sun Y., Li B., Xi J., Yamada T., Zhang J., Xiao H., Zhu C., Li J., and Li Y. Nano Res., 2022, 15, (3), 1959 LINK [Google Scholar]
  77. Song C. W., Lim J., Bin Bae H., and Chung S.-Y. Energy Environ. Sci., 2020, 13, (11), 4178 LINK [Google Scholar]
  78. Sun W., Liu J.-Y., Gong X.-Q., Zaman W.-Q., Cao L.-M., and Yang J. Sci. Rep., 2016, 6, 38429 LINK [Google Scholar]
  79. Retuerto M., Pascual L., Piqué O., Kayser P., Salam M. A., Mokhtar M., Alonso J. A., Peña M., Calle-Vallejo F., and Rojas S. J. Mater. Chem. A, 2021, 9, (5), 2980 LINK [Google Scholar]
  80. Reier T., Teschner D., Lunkenbein T., Bergmann A., Selve S., Kraehnert R., Schlögl R., and Strasser P. J. Electrochem. Soc., 2014, 161, (9), F876 LINK [Google Scholar]
  81. Oh H.-S., Nong H. N., Reier T., Bergmann A., Gliech M., Ferreira de Araújo J., Willinger E., Schlögl R., Teschner D., and Strasser P. J. Am. Chem. Soc., 2016, 138, (38), 12552 LINK [Google Scholar]
  82. da Silva C. D. F., Claudel F., Martin V., Chattot R., Abbou S., Kumar K., Jiménez-Morales I., Cavaliere S., Jones D., Rozière J., Solà-Hernandez L., Beauger C., Faustini M., Peron J., Gilles B., Encinas T., Piccolo L., Barros de Lima F. H., Dubau L., and Maillard F. ACS Catal., 2021, 11, (7), 4107 LINK [Google Scholar]
  83. Kibsgaard J., and Chorkendorff I. Nat. Energy, 2019, 4, (6), 430 LINK [Google Scholar]
  84. You M., Gui L., Ma X., Wang Z., Xu Y., Zhang J., Sun J., He B., and Zhao L. Appl. Catal. B: Environ., 2021, 298, 120562 LINK [Google Scholar]
  85. Joo J., Park Y., Kim J., Kwon T., Jun M., Ahn D., Baik H., Jang J. H., Kim J. Y., and Lee K. Small Methods, 2021, 6, (1), 2101236 LINK [Google Scholar]
  86. Kim M., Park J., Kang M., Kim J. Y., and Lee S. W. ACS Cent. Sci., 2020, 6, (6), 880 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error