Skip to content
1887
Volume 66, Issue 4
  • ISSN: 2056-5135
  • oa Chemical Networks: A Methodology to Rapidly Assess the Environmental Impact of Chemical Processes

    Applying graph theory principles to chemical industry data enables early-stage decision making for optimum decarbonisation solutions

  • Authors: Joseph Staddon1, Joost Smit1, Zinovia Skoufa2 and David Watson3
  • Affiliations: 1 Johnson Matthey10 Eastbourne Terrace, London, W2 6LGUK 2 Johnson MattheyPO Box 1 Belasis Avenue, Billingham, TS23 1LBUK 3 Johnson Matthey Technology CentrePrinceton Drive, Stockton-on-Tees, TS17 6PYUK
  • Source: Johnson Matthey Technology Review, Volume 66, Issue 4, Oct 2022, p. 466 - 478
  • DOI: https://doi.org/10.1595/205651322X16594453018855
    • Received: 14 Jan 2022
    • Accepted: 02 Aug 2022
    • Published online: 02 Aug 2022

Abstract

As the chemicals industry transitions towards a net zero future, rapid assessment of the sustainability metrics of different process results will be essential to support investment decisions in innovation and deployment. Life cycle analysis (LCA) offers the gold standard for process assessment, but LCA can take weeks or months to complete, with incomplete databases and inflexibility in comparing different chemical pathways. In this study, we demonstrate an alternative and complementary methodology. By simplifying the metrics used to describe chemical processes, each process may be linked to another by its feedstocks and products. This generates a network of the chemical industry, which may be investigated using graph theory principles. A case study of the plastics industry is provided, using publicly available information to quantitatively compare with a more formalised and detailed LCA approach. This methodology proves useful for quickly estimating the carbon intensity and water footprint of thousands of routes. Further development, such as including Scope 3 emissions and additional industrial data, may further improve the methodology.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16594453018855
2022-08-02
2024-12-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/4/Staddon_16a_Imp.html?itemId=/content/journals/10.1595/205651322X16594453018855&mimeType=html&fmt=ahah

References

  1. “Climate Change 2021: The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change”, Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2021 LINK https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/ [Google Scholar]
  2. ‘The Paris Agreement’, United Nations, New York, USA, 2015, 27 pp LINK https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement [Google Scholar]
  3. ‘Companies Taking Action’, Science Based Targets: https://sciencebasedtargets.org/companies-taking-action?sector=Chemicals&ambitionToggle=1#table (Accessed on 15th October 2021) [Google Scholar]
  4. “Net Zero by 2050: A Roadmap for the Global Energy Sector”, International Energy Agency, Paris, May, 2021, 224 pp LINK https://www.iea.org/reports/net-zero-by-2050 [Google Scholar]
  5. “World Energy Outlook 2021”, International Energy Agency, Paris, France, October, 2021, 386 pp LINK https://www.iea.org/reports/world-energy-outlook-2021 [Google Scholar]
  6. “Corporate Sustainability Goal Setting and Measurement”, GreenBiz Group Inc, Oakland, USA, and Black & Veatch, Overland Park, USA, May, 2021, 15 pp LINK https://www.greenbiz.com/report/corporate-sustainability-goal-setting-and-measurement [Google Scholar]
  7. D. Saygin, D. Gielen, Energies, 2021, 14, (13), 3772 LINK https://doi.org/10.3390/en14133772 [Google Scholar]
  8. G. E. P. Box, G. N. Wilkinson, ‘Robustness in the Strategy of Scientific Model Building’, in “Robustness in Statistics”, eds. R. L. Launer, Academic Press Inc, New York, USA, 1979, pp. 201306 LINK https://doi.org/10.1016/b978-0-12-438150-6.50018-2 [Google Scholar]
  9. ‘ecoinvent Database’, ecoinvent, Zurich, Switzerland:https://ecoinvent.org/the-ecoinvent-database/ (Accessed on 5th September 2022) [Google Scholar]
  10. ‘SimaPro: LCA Software for Information Change-Makers’, Pré Sustainability, Amersfoort, The Netherlands:https://simapro.com/ (Accessed on 10th November 2021) [Google Scholar]
  11. M. Feinberg, Chem. Eng. Sci., 1987, 42, (10), 2229 LINK https://doi.org/10.1016/0009-2509(87)80099-4 [Google Scholar]
  12. C. I. Sandefur, M. Mincheva, S. Schnell, Mol. BioSyst., 2013, 9, (9), 2189 LINK https://doi.org/10.1039/c3mb70052f [Google Scholar]
  13. G. N. Simm, M. Reiher, J. Chem. Theory Comput., 2017, 13, (12), 6108 LINK https://doi.org/10.1021/acs.jctc.7b00945 [Google Scholar]
  14. M. Fialkowski, K. J. M. Bishop, V. A. Chubukov, C. J. Campbell, B. A. Grzybowski, Angew. Chem. Int. Ed., 2005, 44, (44), 7263 LINK https://doi.org/10.1002/anie.200502272 [Google Scholar]
  15. K. J. M. Bishop, R. Klajn, B. A. Grzybowski, Angew. Chem. Int. Ed., 2006, 45, (32), 5348 LINK https://doi.org/10.1002/anie.200600881 [Google Scholar]
  16. B. A. Grzybowski, K. J. M. Bishop, B. Kowalczyk, C. E. Wilmer, Nat. Chem., 2009, 1, (1), 31 LINK https://doi.org/10.1038/nchem.136 [Google Scholar]
  17. C. M. Gothard, S. Soh, N. A. Gothard, B. Kowalczyk, Y. Wei, B. Baytekin, B. A. Grzybowski, Angew. Chem. Int. Ed., 2012, 51, (32), 7922 LINK https://doi.org/10.1002/anie.201202155 [Google Scholar]
  18. M. Kowalik, C. M. Gothard, A. M. Drews, N. A. Gothard, A. Weckiewicz, P. E. Fuller, B. A. Grzybowski, K. J. M. Bishop, Angew. Chem. Int. Ed., 2012, 51, (32), 7928 LINK https://doi.org/10.1002/anie.201202209 [Google Scholar]
  19. P. E. Fuller, C. M. Gothard, N. A. Gothard, A. Weckiewicz, B. A. Grzybowski, Angew. Chem. Int. Ed., 2012, 51, (32), 7933 LINK https://doi.org/10.1002/anie.201202210 [Google Scholar]
  20. T. Klucznik, B. Mikulak-Klucznik, M. P. McCormack, H. Lima, S. Szymkuć, M. Bhowmick, K. Molga, Y. Zhou, L. Rickershauser, E. P. Gajewska, A. Toutchkine, P. Dittwald, M. P. Startek, G. J. Kirkovits, R. Roszak, A. Adamski, B. Sieredzińska, M. Mrksich, S. L. J. Trice, B. A. Grzybowski, Chem, 2018, 4, (3), 522 LINK https://doi.org/10.1016/j.chempr.2018.02.002 [Google Scholar]
  21. B. A. Grzybowski, S. Szymkuć, E. P. Gajewska, K. Molga, P. Dittwald, A. Wołos, T. Klucznik, Chem, 2018, 4, (3), 390 LINK https://doi.org/10.1016/j.chempr.2018.02.024 [Google Scholar]
  22. ‘SYNTHIATM Retrosynthesis Software’, Merck KGaA, Darmstadt, Germany:https://www.sigmaaldrich.com/GB/en/services/software-and-digital-platforms/synthia-retrosynthesis-software (Accessed on 15th October 2021) [Google Scholar]
  23. G. K. Al-Sharrah, I. Alatiqi, A. Elkamel, E. Alper, Ind. Eng. Chem. Res., 2001, 40, (9), 2103 LINK https://doi.org/10.1021/ie0007466 [Google Scholar]
  24. J. Duque, A. P. F. D. Barbosa-Póvoa, A. Q. Novais, Ind. Eng. Chem. Res., 2010, 49, (9), 4230 LINK https://doi.org/10.1021/ie900940h [Google Scholar]
  25. R. Calvo-Serrano, G. Guillén-Gosálbez, ACS Sustain. Chem. Eng., 2018, 6, (5), 7109 LINK https://doi.org/10.1021/acssuschemeng.8b01050 [Google Scholar]
  26. A. Gonzalez-Garay, G. Guillen-Gosalbez, Chem. Eng. Res. Des., 2018, 137, 246 LINK https://doi.org/10.1016/j.cherd.2018.07.009 [Google Scholar]
  27. D. Schack, L. Rihko-Struckmann, K. Sundmacher, Ind. Eng. Chem. Res., 2018, 57, (30), 9889 LINK https://doi.org/10.1021/acs.iecr.7b05305 [Google Scholar]
  28. R. Ahmed, S. Shehab, D. M. Al-Mohannadi, P. Linke, Chem. Eng. Sci., 2020, 227, 115922 LINK https://doi.org/10.1016/j.ces.2020.115922 [Google Scholar]
  29. I. Ioannou, S. C. D’Angelo, Á. Galán-Martín, C. Pozo, J. Pérez-Ramírez, G. Guillén-Gosálbez, React. Chem. Eng., 2021, 6, (7), 1179 LINK https://doi.org/10.1039/d0re00451k [Google Scholar]
  30. J. Zheng, S. Suh, Nat. Clim. Chang., 2019, 9, (5), 374 LINK https://doi.org/10.1038/s41558-019-0459-z [Google Scholar]
  31. R. J. Chang, J. Lacson, “Accounting for Carbon Emission Cost in Chemical Production Economics PEP Review”, PEP Review 2017-12, IHS Chemical, London, UK, October, 2017, 51 pp [Google Scholar]
  32. “Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2019”, EPA-430-R-21-005, US Environmental Protection Agency, Washington, DC, USA, 2021, 791 pp LINK https://www.epa.gov/sites/default/files/2021-04/documents/us-ghg-inventory-2021-main-text.pdf [Google Scholar]
  33. ‘How Much Carbon Dioxide is Produced per Kilowatthour of U.S. Electricity Generation?’, US Energy Information Administration, Washington, DC, USA, 4th November, 2021 LINK https://www.eia.gov/tools/faqs/faq.php?id=74&t=11 [Google Scholar]
  34. ‘National Greenhouse Gas Inventories (IPCC Common Reporting Format sector classification)’, European Environment Agency, Copenhagen, Denmark:https://www.eea.europa.eu/ds_resolveuid/45b73e8a0ced4df4b40e364c497717ee (Accessed on 5th September 2022) [Google Scholar]
  35. ‘Production: Gross Electricity Production in Germany’, Federal Statistical Office, Wiesbaden, Germany, 18th July, 2021 LINK https://www.destatis.de/EN/Themes/Economic-Sectors-Enterprises/Energy/Production/Tables/gross-electricity-production.html [Google Scholar]
  36. X. Tao, P. Wang, B. Zhu, Sustainability, 2016, 8, (6), 506 LINK https://doi.org/10.3390/su8060506 [Google Scholar]
  37. “China Energy Statistical Yearbook: 2015”, China Statistics Press, Beijing, China, 2015 LINK http://www.stats.gov.cn/tjsj/ndsj/2015/indexeh.htm [Google Scholar]
  38. P. W. Griffin, G. P. Hammond, J. B. Norman, Appl. Energy, 2018, 227, 587 LINK https://doi.org/10.1016/j.apenergy.2017.08.010 [Google Scholar]
  39. ‘Process Economics Program (PEP) Yearbook Database’, IHS Markit, London, UK, 2020 [Google Scholar]
  40. A. A. Hagberg, D. A. Schult, P. J. Swart, T. Vaught, J. Millman, ‘Exploring Network Structure, Dynamics, and Function using NetworkX’, Proceedings of the 7th Python in Science conference (SciPy 2008), Pasedena, USA, 19th–24th August, 2008, eds. G. Varoquaux, SciPy, Austin, USA, 2008, pp. 1115 LINK https://conference.scipy.org/proceedings/scipy2008/paper_2 [Google Scholar]
  41. P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker, Genome Res., 2003, 13, (11), 2498 LINK https://doi.org/10.1101/gr.1239303 [Google Scholar]
  42. D. Otasek, J. H. Morris, J. Bouças, A. R. Pico, B. Demchak, Genome Biol., 2019, 20, 185 LINK https://doi.org/10.1186/s13059-019-1758-4 [Google Scholar]
  43. Franklin Associates,, “Cradle-to-Gate Life Cycle Analysis of Polypropylene (PP) Resin”, American Chemistry Council, Washington, DC, USA, February, 2021, 44 pp LINK https://www.americanchemistry.com/better-policy-regulation/plastics/resources/cradle-to-gate-life-cycle-analysis-of-polypropylene-pp-resin [Google Scholar]
  44. T. Ren, M. Patel, K. Blok, Energy, 2006, 31, (4), 425 LINK https://doi.org/10.1016/j.energy.2005.04.001 [Google Scholar]
  45. T. Ren, B. Daniëls, M. K. Patel, K. Blok, Resour. Conserv. Recycl., 2009, 53, (12), 653 LINK https://doi.org/10.1016/j.resconrec.2009.04.016 [Google Scholar]
  46. I. Amghizar, L. A. Vandewalle, K. M. Van Geem, G. B. Marin, Engineering, 2017, 3, (2), 171 LINK https://doi.org/10.1016/j.eng.2017.02.006 [Google Scholar]
  47. ‘Environmental Management – Life Cycle Assessment – Requirements and Guidelines’, ISO 14044:2006, International Organization for Standardization, Geneva, Switzerland, 2006 LINK https://www.iso.org/standard/38498.html [Google Scholar]
/content/journals/10.1595/205651322X16594453018855
Loading
/content/journals/10.1595/205651322X16594453018855
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test