Skip to content
Volume 66, Issue 4
  • ISSN: 2056-5135


It is imperative to develop novel processes that rely on cheap, sustainable and abundant resources whilst providing carbon circularity. Microbial electrochemical technologies (MET) offer unique opportunities to facilitate the conversion of chemicals to electrical energy or by harnessing the metabolic processes of bacteria to valorise a range of waste products including greenhouse gases (GHGs). Part I (1) introduced the EET pathways, their limitations and applications. Here in Part II, we outline the strategies researchers have used to modulate microbial electron transfer, through synthetic biology and biohybrid approaches and present the conclusions and future directions.


Article metrics loading...

Loading full text...

Full text loading...



  1. Myers B., Hill P., Rawson F., and Kovács K. Johnson Matthey Technol. Rev., 2022, 66, (4), 443 LINK [Google Scholar]
  2. Das S., Diels L., Pant D., Patil S. A., and Ghangrekar M. M. J. Electrochem. Soc., 2020, 167, (15), 155510 LINK [Google Scholar]
  3. Malvankar N. S., and Lovley D. R. ChemSusChem, 2012, 5, (6), 1039 LINK [Google Scholar]
  4. Liu X., Wang S., Xu A., Zhang L., Liu H., and Ma L. Z. Appl. Microbiol. Biotechnol., 2019, 103, (3), 1535 LINK [Google Scholar]
  5. Rabaey K., Boon N., Siciliano S. D., Verhaege M., and Verstraete W. Appl. Environ. Microbiol., 2004, 70, (9), 5373 LINK [Google Scholar]
  6. Ueki T., Walker D. J. F., Woodard T. L., Nevin K. P., Nonnenmann S. S., and Lovley D. R. ACS Synth. Biol., 2020, 9, (3), 647 LINK [Google Scholar]
  7. Bardiaux B., de Amorim G. C., Luna Rico A., Zheng W., Guilvout I., Jollivet C., Nilges M., Egelman E. H., Izadi-Pruneyre N., and Francetic O. Structure, 2019, 27, (7), P 1082 LINK [Google Scholar]
  8. Shapiro D. M., Mandava G., Yalcin S. E., Arranz-Gibert P., Dahl P. J., Shipps C., Gu Y., Srikanth V., Salazar-Morales A. I., O’Brien J. P., Vanderschuren K., Vu D., Batista V. S., Malvankar N. S., and Isaacs F. J. Nat. Commun., 2022, 13, 829 LINK [Google Scholar]
  9. Ueki T., Walker D. J. F., Tremblay P.-L., Nevin K. P., Ward J. E., Woodard T. L., Nonnenmann S. S., and Lovley D. R. ACS Synth. Biol., 2019, 8, (8), 1809 LINK [Google Scholar]
  10. Gescher J. S., Cordova C. D., and Spormann A. M. Mol. Microbiol., 2008, 68, (3), 706 LINK [Google Scholar]
  11. Schuetz B., Schicklberger M., Kuermann J., Spormann A. M., and Gescher J. Appl. Environ. Microbiol., 2009, 75, (24), 7789 LINK [Google Scholar]
  12. Sturm-Richter K., Golitsch F., Sturm G., Kipf E., Dittrich A., Beblawy S., Kerzenmacher S., and Gescher J. Bioresour. Technol., 2015, 186, 89 LINK [Google Scholar]
  13. Jensen H. M., Albers A. E., Malley K. R., Londer Y. Y., Cohen B. E., Helms B. A., Weigele P., Groves J. T., and Ajo-Franklin C. M. Proc. Natl. Acad. Sci., 2010, 107, (45), 19213 LINK [Google Scholar]
  14. Wu Z., Wang J., Liu J., Wang Y., Bi C., and Zhang X. Microb. Cell Fact., 2019, 18, 15 LINK [Google Scholar]
  15. Su L., Fukushima T., Prior A., Baruch M., Zajdel T. J., and Ajo-Franklin C. M. ACS Synth. Biol., 2020, 9, (1), 115 LINK [Google Scholar]
  16. Baruch M., Tejedor-Sanz S., Su L., and Ajo-Franklin C. M. PLoS One, 2021, 16, (11), e0258380 LINK [Google Scholar]
  17. Bird L. J., Kundu B. B., Tschirhart T., Corts A. D., Su L., Gralnick J. A., Ajo-Franklin C. M., and Glaven S. M. ACS Synth. Biol., 2021, 10, (11), 2808 LINK [Google Scholar]
  18. Tschirhart T., Kim E., McKay R., Ueda H., Wu H.-C., Pottash A. E., Zargar A., Negrete A., Shiloach J., Payne G. F., and Bentley W. E. Nat. Commun., 2017, 8, 14030 LINK [Google Scholar]
  19. Terrell J. L., Tschirhart T., Jahnke J. P., Stephens K., Liu Y., Dong H., Hurley M. M., Pozo M., McKay R., Tsao C. Y., Wu H.-C., Vora G., Payne G. F., Stratis-Cullum D. N., and Bentley W. E. Nat. Nanotechnol., 2021, 16, (6), 688 LINK [Google Scholar]
  20. Bhokisham N., VanArsdale E., Stephens K. T., Hauk P., Payne G. F., and Bentley W. E. Nat. Commun., 2020, 11, 2427 LINK [Google Scholar]
  21. Yim S. S., McBee R. M., Song A. M., Huang Y., Sheth R. U., and Wang H. H. Nat. Chem. Biol., 2021, 17, (3), 246 LINK [Google Scholar]
  22. Zheng T., Zhang M., Wu L., Guo S., Liu X., Zhao J., Xue W., Li J., Liu C., Li X., Jiang Q., Bao J., Zeng J., Yu T., and Xia C. Nat. Catal., 2022, 5, (5), 388 LINK [Google Scholar]
  23. Ajo-Franklin C. M., and Noy A. Adv. Mater., 2015, 27, (38), 5797 LINK [Google Scholar]
  24. Kalathil S., and Pant D. RSC Adv., 2016, 6, (36), 30582 LINK [Google Scholar]
  25. Bollella P., Fusco G., Tortolini C., Sanzò G., Favero G., Gorton L., and Antiochia R. Biosens. Bioelectron., 2017, 89, (1), 152 LINK [Google Scholar]
  26. Nguyen P. Q., Courchesne N.-M. D., Duraj-Thatte A., Praveschotinunt P., and Joshi N. S. Adv. Mater., 2018, 30, (19), 1870134 LINK [Google Scholar]
  27. Yoon J., Shin M., Lim J., Kim D. Y., Lee T., and Choi J. Biotechnol. J., 2020, 15, (6), 1900347 LINK [Google Scholar]
  28. Wang R., Li H., Sun J., Zhang L., Jiao J., Wang Q., and Liu S. Adv. Mater., 2021, 33, (6), 2004051 LINK [Google Scholar]
  29. Hsu L. (H.-H.), Deng P., Zhang Y., Nguyen H. N., and Jiang X. J. Mater. Chem. B, 2018, 6, (44), 7144 LINK [Google Scholar]
  30. Zhang P., Liu J., Qu Y., Li D., He W., and Feng Y. Bioelectrochemistry, 2018, 123, 190 LINK [Google Scholar]
  31. Peng Z Z., Liu J., Qu Y., Li D., He W., and Feng Y. Bioelectrochemistry, 2018, 123, 190 LINK [Google Scholar]
  32. Cai T., Meng L., Chen G., Xi Y., Jiang N., Song J., Zheng S., Liu Y., Zhen G., and Huang M. Chemosphere, 2020, 248, 125985 LINK [Google Scholar]
  33. Zhang P., Liu J., Qu Y., Zhang J., Zhong Y., and Feng Y. J. Power Sources, 2017, 361, 318 LINK [Google Scholar]
  34. Cheng Q., and Call D. F. Environ. Sci.: Process. Impacts., 2016, 18, (8), 968 LINK [Google Scholar]
  35. Rawson F. J., Yeung C. L., Jackson S. K., and Mendes P. M. Nano Lett., 2012, 13, (1), 1 LINK [Google Scholar]
  36. Rawson F. J., Hicks J., Dodd N., Abate W., Garrett D. J., Yip N., Fejer G., Downard A. J., Baronian K. H. R., Jackson S. K., and Mendes P. M. ACS Appl. Mater. Interfaces, 2015, 7, (42), 23527 LINK [Google Scholar]
  37. Rawson F. J., Cole M. T., Hicks J. M., Aylott J. W., Milne W. I., Collins C. M., Jackson S. K., Silman N. J., and Mendes P. M. Sci. Rep., 2016, 6, (1), 37672 LINK [Google Scholar]
  38. Hicks J. M., Halkerston R., Silman N., Jackson S. K., Aylott J. W., and Rawson F. J. Biosens. Bioelectron., 2019, 141, 111430 LINK [Google Scholar]
  39. Silhavy T. J., Kahne D., and Walker S. Cold Spring Harb. Perspect. Biol., 2010, 2, (5), a 000414 LINK [Google Scholar]
  40. Tunuguntla R. H., Bangar M. A., Kim K., Stroeve P., Grigoropoulos C., Ajo-Franklin C. M., and Noy A. Adv. Mater., 2015, 27, (5), 831 LINK [Google Scholar]
  41. Sanborn J. R., Chen X., Yao Y.-C., Hammons J. A., Tunuguntla R. H., Zhang Y., Newcomb C. C., Soltis J. A., De Yoreo J. J., Van Buuren A., Parikh A. N., and Noy A. Adv. Mater., 2018, 30, (51), 1803355 LINK [Google Scholar]
  42. Tunuguntla R. H., Allen F. I., Kim K., Belliveau A., and Noy A. Nat. Nanotechnol., 2016, 11, (7), 639 LINK [Google Scholar]
  43. Ho N. T., Siggel M., Camacho K. V., Bhaskara R. M., Hicks J. M., Yao Y.-C., Zhang Y., Köfinger J., Hummer G., and Noy A. Proc. Natl. Acad. Sci., 2021, 118, (19), e2016974118 LINK [Google Scholar]
  44. Tunuguntla R. H., Escalada A., Frolov V. A., and Noy A. Nat. Protoc., 2016, 11, (10), 2029 LINK [Google Scholar]
  45. Teixeira-Santos R., Gomes M., Gomes L. C., and Mergulhão F. J. iScience, 2021, 24, (1), 102001 LINK [Google Scholar]
  46. Azizi-Lalabadi M., Hashemi H., Feng J., and Jafari S. M. Adv. Colloid Interface Sci., 2020, 284, 102250 LINK [Google Scholar]
  47. Schröder U. J. Solid State Electrochem., 2011, 15, (7–8), 1481 LINK [Google Scholar]
  48. Chiranjeevi P., and Patil S. A. Biotechnol. Adv., 2020, 39, 107468 LINK [Google Scholar]
  49. Reguera G., Nevin K. P., Nicoll J. S., Covalla S. F., Woodard T. L., and Lovley D. R. Appl. Environ. Microbiol., 2006, 72, (11), 7345 LINK [Google Scholar]
  50. Steidl R. J., Lampa-Pastirk S., and Reguera G. Nat. Commun., 2016, 7, 12217 LINK [Google Scholar]
  51. Kalathil S., Katuri K. P., Alazmi A. S., Pedireddy S., Kornienko N., Costa P. M. F. J., and Saikaly P. E. Chem. Mater., 2019, 31, (10), 3686 LINK [Google Scholar]
  52. Xie X., Hu L., Pasta M., Wells G. F., Kong D., Criddle C. S., and Cui Y. Nano Lett., 2010, 11, (1), 291 LINK [Google Scholar]
  53. Hou Y., Yuan H., Wen Z., Cui S., Guo X., He Z., and Chen J. J. Power Sources, 2016, 307, 561 LINK [Google Scholar]
  54. La J. A., Jeon J.-M., Sang B.-I., Yang Y.-H., and Cho E. C. ACS Appl. Mater. Interfaces, 2017, 9, (50), 43563 LINK [Google Scholar]
  55. Zhang T., Nie H., Bain T. S., Lu H., Cui M., Snoeyenbos-West O. L., Franks A. E., Nevin K. P., Russell T. P., and Lovley D. R. Energy Environ. Sci., 2013, 6, (1), 217 LINK [Google Scholar]
  56. Peng L., You S.-J., and Wang J.-Y. Biosens. Bioelectron., 2010, 25, (5), 1248 LINK [Google Scholar]
  57. Zhao C., Wu J., Ding Y., Wang V. B., Zhang Y., Kjelleberg S., Loo J. S. C., Cao B., and Zhang Q. ChemElectroChem, 2015, 2, (5), 654 LINK [Google Scholar]
  58. Yong Y.-C., Yu Y.-Y., Zhang X., and Song H. Angew. Chem. Int. Ed., 2014, 53, (17), 4480 LINK [Google Scholar]
  59. Ding C., Liu H., Zhu Y., Wan M., and Jiang L. Energy Environ. Sci., 2012, 5, (9), 8517 LINK [Google Scholar]
  60. Mehdinia A., Dejaloud M., and Jabbari A. Chem. Pap., 2013, 67, (8), 1096 LINK [Google Scholar]
  61. Zhang P., Zhou X., Qi R., Gai P., Liu L., Lv F., and Wang S. Adv. Electron. Mater., 2019, 5, (8), 1900320 LINK [Google Scholar]
  62. Pous N., Carmona-Martínez A. A., Vilajeliu-Pons A., Fiset E., Bañeras L., Trably E., Balaguer M. D., Colprim J., Bernet N., and Puig S. Biosens. Bioelectron., 2016, 75, 352 LINK [Google Scholar]
  63. Ueki T., Nevin K. P., Woodard T. L., Aklujkar M. A., Holmes D. E., and Lovley D. R. Front. Microbiol., 2018, 9, 1512 LINK [Google Scholar]
  64. Zhang W., Wu H., and Hsing I.-M. Electroanalysis, 2015, 27, (3), 648 LINK [Google Scholar]
  65. Malvankar N. S., Tuominen M. T., and Lovley D. R. Energy Environ. Sci., 2012, 5, (2), 5790 LINK [Google Scholar]
  66. Wu X., Zhao F., Rahunen N., Varcoe J. R., Avignone-Rossa C., Thumser A. E., and Slade R. C. T. Angew. Chem. Int. Ed., 2011, 50, (2), 427 LINK [Google Scholar]
  67. Zhang L., Hu Y., Chen J., Huang W., Cheng J., and Chen Y. J. Power Sources, 2018, 384, 98 LINK [Google Scholar]
  68. Kato S., Hashimoto K., and Watanabe K. Microbes Environ., 2013, 28, (1), 141 LINK [Google Scholar]
  69. Yang C., Aslan H., Zhang P., Zhu S., Xiao Y., Chen L., Khan N., Boesen T., Wang Y., Liu Y., Wang L., Sun Y., Feng Y., Besenbacher F., Zhao F., and Yu M. Nat. Commun., 2020, 11, 1379 LINK [Google Scholar]
  70. Chen M., Zhou X., Liu X., Zeng R. J., Zhang F., Ye J., and Zhou S. Biosens. Bioelectron., 2018, 108, 20 LINK [Google Scholar]
  71. Kaneko M., Ishihara K., and Nakanishi S. Small, 2020, 16, (34), 2001849 LINK [Google Scholar]
  72. Gomez-Carretero S., Libberton B., Svennersten K., Persson K., Jager E., Berggren M., Rhen M., and Richter-Dahlfors A. npj Biofilms Microbiomes, 2017, 3, 19 LINK [Google Scholar]
  73. Pankratova G., Hasan K., Leech D., Hederstedt L., and Gorton L. Electrochem. Commun., 2017, 75, 56 LINK [Google Scholar]
  74. Coman V., Gustavsson T., Finkelsteinas A., von Wachenfeldt C., Hägerhäll C., and Gorton L. J. Am. Chem. Soc., 2009, 131, (44), 16171 LINK [Google Scholar]
  75. Hasan K., Patil S. A., Leech D., Hägerhäll C., and Gorton L. Biochem. Soc. Trans., 2012, 40, (6), 1330 LINK [Google Scholar]
  76. Pankratova G., and Gorton L. Curr. Opin. Electrochem., 2017, 5, (1), 193 LINK [Google Scholar]
  77. Rawson F. J., Gross A. J., Garrett D. J., Downard A. J., and Baronian K. H. R. Electrochem. Commun., 2012, 15, (1), 85 LINK [Google Scholar]
  78. Yang Y., Wang Z., Gan C., Klausen L. H., Bonné R., Kong G., Luo D., Meert M., Zhu C., Sun G., Guo J., Ma Y., Bjerg J. T., Manca J., Xu M., Nielsen L. P., and Dong M. Nat. Commun., 2021, 12, 1709 LINK [Google Scholar]
  79. Logan B. E. Nat. Rev. Microbiol., 2009, 7, (5), 375 LINK [Google Scholar]
  80. Walker D. J. F., Adhikari R. Y., Holmes D. E., Ward J. E., Woodard T. L., Nevin K. P., and Lovley D. R. ISME J., 2018, 12, (1), 48 LINK [Google Scholar]
  81. Zou L., Qiao Y., Wu X.-S., and Li C. M. J. Power Sources, 2016, 328, 143 LINK [Google Scholar]
  82. Rawson F. J., Garrett D. J., Leech D., Downard A. J., and Baronian K. H. R. Biosens. Bioelectron., 2011, 26, (5), 2383 LINK [Google Scholar]
  83. Yalcin S. E., O’Brien J. P., Gu Y., Reiss K., Yi S. M., Jain R., Srikanth V., Dahl P. J., Huynh W., Vu D., Acharya A., Chaudhuri S., Varga T., Batista V. S., and Malvankar N. S. Nat. Chem. Biol., 2020, 16, (10), 1136 LINK [Google Scholar]
  84. Filman D. J., Marino S. F., Ward J. E., Yang L., Mester Z., Bullitt E., Lovley D. R., and Strauss M. Commun. Biol., 2019, 2, 219 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error