Skip to content
1887
Volume 66, Issue 4
  • ISSN: 2056-5135

Abstract

It is imperative to develop novel processes that rely on cheap, sustainable and abundant resources whilst providing carbon circularity. Microbial electrochemical technologies (MET) offer unique opportunities to facilitate the conversion of chemicals to electrical energy or by harnessing the metabolic processes of bacteria to valorise a range of waste products including greenhouse gases (GHGs). Part I (1) introduced the EET pathways, their limitations and applications. Here in Part II, we outline the strategies researchers have used to modulate microbial electron transfer, through synthetic biology and biohybrid approaches and present the conclusions and future directions.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16621070592195
2022-06-10
2024-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/4/Kovacs_16a_Imp_pt2.html?itemId=/content/journals/10.1595/205651322X16621070592195&mimeType=html&fmt=ahah

References

  1. B. Myers, P. Hill, F. Rawson, K. Kovács, Johnson Matthey Technol. Rev., 2022, 66, (4), 443 LINK https://technology.matthey.com/article/66/4/443-454/ [Google Scholar]
  2. S. Das, L. Diels, D. Pant, S. A. Patil, M. M. Ghangrekar, J. Electrochem. Soc., 2020, 167, (15), 155510 LINK https://doi.org/10.1149/1945-7111/abb836 [Google Scholar]
  3. N. S. Malvankar, D. R. Lovley, ChemSusChem, 2012, 5, (6), 1039 LINK https://doi.org/10.1002/cssc.201100733 [Google Scholar]
  4. X. Liu, S. Wang, A. Xu, L. Zhang, H. Liu, L. Z. Ma, Appl. Microbiol. Biotechnol., 2019, 103, (3), 1535 LINK https://doi.org/10.1007/s00253-018-9484-5 [Google Scholar]
  5. K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege, W. Verstraete, Appl. Environ. Microbiol., 2004, 70, (9), 5373 LINK https://doi.org/10.1128/AEM.70.9.5373-5382.2004 [Google Scholar]
  6. T. Ueki, D. J. F. Walker, T. L. Woodard, K. P. Nevin, S. S. Nonnenmann, D. R. Lovley, ACS Synth. Biol., 2020, 9, (3), 647 LINK https://doi.org/10.1021/acssynbio.9b00506 [Google Scholar]
  7. B. Bardiaux, G. C. de Amorim, A. Luna Rico, W. Zheng, I. Guilvout, C. Jollivet, M. Nilges, E. H. Egelman, N. Izadi-Pruneyre, O. Francetic, Structure, 2019, 27, (7), P 1082 LINK https://doi.org/10.1016/j.str.2019.03.021 [Google Scholar]
  8. D. M. Shapiro, G. Mandava, S. E. Yalcin, P. Arranz-Gibert, P. J. Dahl, C. Shipps, Y. Gu, V. Srikanth, A. I. Salazar-Morales, J. P. O’Brien, K. Vanderschuren, D. Vu, V. S. Batista, N. S. Malvankar, F. J. Isaacs, Nat. Commun., 2022, 13, 829 LINK https://doi.org/10.1038/s41467-022-28206-x [Google Scholar]
  9. T. Ueki, D. J. F. Walker, P.-L. Tremblay, K. P. Nevin, J. E. Ward, T. L. Woodard, S. S. Nonnenmann, D. R. Lovley, ACS Synth. Biol., 2019, 8, (8), 1809 LINK https://doi.org/10.1021/acssynbio.9b00131 [Google Scholar]
  10. J. S. Gescher, C. D. Cordova, A. M. Spormann, Mol. Microbiol., 2008, 68, (3), 706 LINK https://doi.org/10.1111/j.1365-2958.2008.06183.x [Google Scholar]
  11. B. Schuetz, M. Schicklberger, J. Kuermann, A. M. Spormann, J. Gescher, Appl. Environ. Microbiol., 2009, 75, (24), 7789 LINK https://doi.org/10.1128/AEM.01834-09 [Google Scholar]
  12. K. Sturm-Richter, F. Golitsch, G. Sturm, E. Kipf, A. Dittrich, S. Beblawy, S. Kerzenmacher, J. Gescher, Bioresour. Technol., 2015, 186, 89 LINK https://doi.org/10.1016/j.biortech.2015.02.116 [Google Scholar]
  13. H. M. Jensen, A. E. Albers, K. R. Malley, Y. Y. Londer, B. E. Cohen, B. A. Helms, P. Weigele, J. T. Groves, C. M. Ajo-Franklin, Proc. Natl. Acad. Sci., 2010, 107, (45), 19213 LINK https://doi.org/10.1073/pnas.1009645107 [Google Scholar]
  14. Z. Wu, J. Wang, J. Liu, Y. Wang, C. Bi, X. Zhang, Microb. Cell Fact., 2019, 18, 15 LINK https://doi.org/10.1186/s12934-019-1067-3 [Google Scholar]
  15. L. Su, T. Fukushima, A. Prior, M. Baruch, T. J. Zajdel, C. M. Ajo-Franklin, ACS Synth. Biol., 2020, 9, (1), 115 LINK https://doi.org/10.1021/acssynbio.9b00379 [Google Scholar]
  16. M. Baruch, S. Tejedor-Sanz, L. Su, C. M. Ajo-Franklin, PLoS One, 2021, 16, (11), e0258380 LINK https://doi.org/10.1371/journal.pone.0258380 [Google Scholar]
  17. L. J. Bird, B. B. Kundu, T. Tschirhart, A. D. Corts, L. Su, J. A. Gralnick, C. M. Ajo-Franklin, S. M. Glaven, ACS Synth. Biol., 2021, 10, (11), 2808 LINK https://doi.org/10.1021/acssynbio.1c00335 [Google Scholar]
  18. T. Tschirhart, E. Kim, R. McKay, H. Ueda, H.-C. Wu, A. E. Pottash, A. Zargar, A. Negrete, J. Shiloach, G. F. Payne, W. E. Bentley, Nat. Commun., 2017, 8, 14030 LINK https://doi.org/10.1038/ncomms14030 [Google Scholar]
  19. J. L. Terrell, T. Tschirhart, J. P. Jahnke, K. Stephens, Y. Liu, H. Dong, M. M. Hurley, M. Pozo, R. McKay, C. Y. Tsao, H.-C. Wu, G. Vora, G. F. Payne, D. N. Stratis-Cullum, W. E. Bentley, Nat. Nanotechnol., 2021, 16, (6), 688 LINK https://doi.org/10.1038/s41565-021-00878-4 [Google Scholar]
  20. N. Bhokisham, E. VanArsdale, K. T. Stephens, P. Hauk, G. F. Payne, W. E. Bentley, Nat. Commun., 2020, 11, 2427 LINK https://doi.org/10.1038/s41467-020-16249-x [Google Scholar]
  21. S. S. Yim, R. M. McBee, A. M. Song, Y. Huang, R. U. Sheth, H. H. Wang, Nat. Chem. Biol., 2021, 17, (3), 246 LINK https://doi.org/10.1038/s41589-020-00711-4 [Google Scholar]
  22. T. Zheng, M. Zhang, L. Wu, S. Guo, X. Liu, J. Zhao, W. Xue, J. Li, C. Liu, X. Li, Q. Jiang, J. Bao, J. Zeng, T. Yu, C. Xia, Nat. Catal., 2022, 5, (5), 388 LINK https://doi.org/10.1038/s41929-022-00775-6 [Google Scholar]
  23. C. M. Ajo-Franklin, A. Noy, Adv. Mater., 2015, 27, (38), 5797 LINK https://doi.org/10.1002/adma.201500344 [Google Scholar]
  24. S. Kalathil, D. Pant, RSC Adv., 2016, 6, (36), 30582 LINK https://doi.org/10.1039/c6ra04734c [Google Scholar]
  25. P. Bollella, G. Fusco, C. Tortolini, G. Sanzò, G. Favero, L. Gorton, R. Antiochia, Biosens. Bioelectron., 2017, 89, (1), 152 LINK https://doi.org/10.1016/j.bios.2016.03.068 [Google Scholar]
  26. P. Q. Nguyen, N.-M. D. Courchesne, A. Duraj-Thatte, P. Praveschotinunt, N. S. Joshi, Adv. Mater., 2018, 30, (19), 1870134 LINK https://doi.org/10.1002/adma.201870134 [Google Scholar]
  27. J. Yoon, M. Shin, J. Lim, D. Y. Kim, T. Lee, J. Choi, Biotechnol. J., 2020, 15, (6), 1900347 LINK https://doi.org/10.1002/biot.201900347 [Google Scholar]
  28. R. Wang, H. Li, J. Sun, L. Zhang, J. Jiao, Q. Wang, S. Liu, Adv. Mater., 2021, 33, (6), 2004051 LINK https://doi.org/10.1002/adma.202004051 [Google Scholar]
  29. L. (H.-H.) Hsu, P. Deng, Y. Zhang, H. N. Nguyen, X. Jiang, J. Mater. Chem. B, 2018, 6, (44), 7144 LINK https://doi.org/10.1039/c8tb01598h [Google Scholar]
  30. P. Zhang, J. Liu, Y. Qu, D. Li, W. He, Y. Feng, Bioelectrochemistry, 2018, 123, 190 LINK https://doi.org/10.1016/j.bioelechem.2018.05.005 [Google Scholar]
  31. Z. Peng Z, J. Liu, Y. Qu, D. Li, W. He, Y. Feng, Bioelectrochemistry, 2018, 123, 190 LINK https://doi.org/10.1016/j.bioelechem.2018.05.005 [Google Scholar]
  32. T. Cai, L. Meng, G. Chen, Y. Xi, N. Jiang, J. Song, S. Zheng, Y. Liu, G. Zhen, M. Huang, Chemosphere, 2020, 248, 125985 LINK https://doi.org/10.1016/j.chemosphere.2020.125985 [Google Scholar]
  33. P. Zhang, J. Liu, Y. Qu, J. Zhang, Y. Zhong, Y. Feng, J. Power Sources, 2017, 361, 318 LINK https://doi.org/10.1016/j.jpowsour.2017.06.069 [Google Scholar]
  34. Q. Cheng, D. F. Call, Environ. Sci.: Process. Impacts., 2016, 18, (8), 968 LINK https://doi.org/10.1039/C6EM00219F [Google Scholar]
  35. F. J. Rawson, C. L. Yeung, S. K. Jackson, P. M. Mendes, Nano Lett., 2012, 13, (1), 1 LINK https://doi.org/10.1021/nl203780d [Google Scholar]
  36. F. J. Rawson, J. Hicks, N. Dodd, W. Abate, D. J. Garrett, N. Yip, G. Fejer, A. J. Downard, K. H. R. Baronian, S. K. Jackson, P. M. Mendes, ACS Appl. Mater. Interfaces, 2015, 7, (42), 23527 LINK https://doi.org/10.1021/acsami.5b06493 [Google Scholar]
  37. F. J. Rawson, M. T. Cole, J. M. Hicks, J. W. Aylott, W. I. Milne, C. M. Collins, S. K. Jackson, N. J. Silman, P. M. Mendes, Sci. Rep., 2016, 6, (1), 37672 LINK https://doi.org/10.1038/srep37672 [Google Scholar]
  38. J. M. Hicks, R. Halkerston, N. Silman, S. K. Jackson, J. W. Aylott, F. J. Rawson, Biosens. Bioelectron., 2019, 141, 111430 LINK https://doi.org/10.1016/j.bios.2019.111430 [Google Scholar]
  39. T. J. Silhavy, D. Kahne, S. Walker, Cold Spring Harb. Perspect. Biol., 2010, 2, (5), a 000414 LINK https://doi.org/10.1101/cshperspect.a000414 [Google Scholar]
  40. R. H. Tunuguntla, M. A. Bangar, K. Kim, P. Stroeve, C. Grigoropoulos, C. M. Ajo-Franklin, A. Noy, Adv. Mater., 2015, 27, (5), 831 LINK https://doi.org/10.1002/adma.201403988 [Google Scholar]
  41. J. R. Sanborn, X. Chen, Y.-C. Yao, J. A. Hammons, R. H. Tunuguntla, Y. Zhang, C. C. Newcomb, J. A. Soltis, J. J. De Yoreo, A. Van Buuren, A. N. Parikh, A. Noy, Adv. Mater., 2018, 30, (51), 1803355 LINK https://doi.org/10.1002/adma.201803355 [Google Scholar]
  42. R. H. Tunuguntla, F. I. Allen, K. Kim, A. Belliveau, A. Noy, Nat. Nanotechnol., 2016, 11, (7), 639 LINK https://doi.org/10.1038/nnano.2016.43 [Google Scholar]
  43. N. T. Ho, M. Siggel, K. V. Camacho, R. M. Bhaskara, J. M. Hicks, Y.-C. Yao, Y. Zhang, J. Köfinger, G. Hummer, A. Noy, Proc. Natl. Acad. Sci., 2021, 118, (19), e2016974118 LINK https://doi.org/10.1073/pnas.2016974118 [Google Scholar]
  44. R. H. Tunuguntla, A. Escalada, V. A. Frolov, A. Noy, Nat. Protoc., 2016, 11, (10), 2029 LINK https://doi.org/10.1038/nprot.2016.119 [Google Scholar]
  45. R. Teixeira-Santos, M. Gomes, L. C. Gomes, F. J. Mergulhão, iScience, 2021, 24, (1), 102001 LINK https://doi.org/10.1016/j.isci.2020.102001 [Google Scholar]
  46. M. Azizi-Lalabadi, H. Hashemi, J. Feng, S. M. Jafari, Adv. Colloid Interface Sci., 2020, 284, 102250 LINK https://doi.org/10.1016/j.cis.2020.102250 [Google Scholar]
  47. U. Schröder, J. Solid State Electrochem., 2011, 15, (7–8), 1481 LINK https://doi.org/10.1007/s10008-011-1395-7 [Google Scholar]
  48. P. Chiranjeevi, S. A. Patil, Biotechnol. Adv., 2020, 39, 107468 LINK https://doi.org/10.1016/j.biotechadv.2019.107468 [Google Scholar]
  49. G. Reguera, K. P. Nevin, J. S. Nicoll, S. F. Covalla, T. L. Woodard, D. R. Lovley, Appl. Environ. Microbiol., 2006, 72, (11), 7345 LINK https://doi.org/10.1128/aem.01444-06 [Google Scholar]
  50. R. J. Steidl, S. Lampa-Pastirk, G. Reguera, Nat. Commun., 2016, 7, 12217 LINK https://doi.org/10.1038/ncomms12217 [Google Scholar]
  51. S. Kalathil, K. P. Katuri, A. S. Alazmi, S. Pedireddy, N. Kornienko, P. M. F. J. Costa, P. E. Saikaly, Chem. Mater., 2019, 31, (10), 3686 LINK https://doi.org/10.1021/acs.chemmater.9b00394 [Google Scholar]
  52. X. Xie, L. Hu, M. Pasta, G. F. Wells, D. Kong, C. S. Criddle, Y. Cui, Nano Lett., 2010, 11, (1), 291 LINK https://doi.org/10.1021/nl103905t [Google Scholar]
  53. Y. Hou, H. Yuan, Z. Wen, S. Cui, X. Guo, Z. He, J. Chen, J. Power Sources, 2016, 307, 561 LINK https://doi.org/10.1016/j.jpowsour.2016.01.018 [Google Scholar]
  54. J. A. La, J.-M. Jeon, B.-I. Sang, Y.-H. Yang, E. C. Cho, ACS Appl. Mater. Interfaces, 2017, 9, (50), 43563 LINK https://doi.org/10.1021/acsami.7b09874 [Google Scholar]
  55. T. Zhang, H. Nie, T. S. Bain, H. Lu, M. Cui, O. L. Snoeyenbos-West, A. E. Franks, K. P. Nevin, T. P. Russell, D. R. Lovley, Energy Environ. Sci., 2013, 6, (1), 217 LINK https://doi.org/10.1039/c2ee23350a [Google Scholar]
  56. L. Peng, S.-J. You, J.-Y. Wang, Biosens. Bioelectron., 2010, 25, (5), 1248 LINK https://doi.org/10.1016/j.bios.2009.10.002 [Google Scholar]
  57. C. Zhao, J. Wu, Y. Ding, V. B. Wang, Y. Zhang, S. Kjelleberg, J. S. C. Loo, B. Cao, Q. Zhang, ChemElectroChem, 2015, 2, (5), 654 LINK https://doi.org/10.1002/celc.201402458 [Google Scholar]
  58. Y.-C. Yong, Y.-Y. Yu, X. Zhang, H. Song, Angew. Chem. Int. Ed., 2014, 53, (17), 4480 LINK https://doi.org/10.1002/anie.201400463 [Google Scholar]
  59. C. Ding, H. Liu, Y. Zhu, M. Wan, L. Jiang, Energy Environ. Sci., 2012, 5, (9), 8517 LINK https://doi.org/10.1039/c2ee22269h [Google Scholar]
  60. A. Mehdinia, M. Dejaloud, A. Jabbari, Chem. Pap., 2013, 67, (8), 1096 LINK https://doi.org/10.2478/s11696-013-0381-1 [Google Scholar]
  61. P. Zhang, X. Zhou, R. Qi, P. Gai, L. Liu, F. Lv, S. Wang, Adv. Electron. Mater., 2019, 5, (8), 1900320 LINK https://doi.org/10.1002/aelm.201900320 [Google Scholar]
  62. N. Pous, A. A. Carmona-Martínez, A. Vilajeliu-Pons, E. Fiset, L. Bañeras, E. Trably, M. D. Balaguer, J. Colprim, N. Bernet, S. Puig, Biosens. Bioelectron., 2016, 75, 352 LINK https://doi.org/10.1016/j.bios.2015.08.035 [Google Scholar]
  63. T. Ueki, K. P. Nevin, T. L. Woodard, M. A. Aklujkar, D. E. Holmes, D. R. Lovley, Front. Microbiol., 2018, 9, 1512 LINK https://doi.org/10.3389/fmicb.2018.01512 [Google Scholar]
  64. W. Zhang, H. Wu, I.-M. Hsing, Electroanalysis, 2015, 27, (3), 648 LINK https://doi.org/10.1002/elan.201400578 [Google Scholar]
  65. N. S. Malvankar, M. T. Tuominen, D. R. Lovley, Energy Environ. Sci., 2012, 5, (2), 5790 LINK https://doi.org/10.1039/c2ee03388g [Google Scholar]
  66. X. Wu, F. Zhao, N. Rahunen, J. R. Varcoe, C. Avignone-Rossa, A. E. Thumser, R. C. T. Slade, Angew. Chem. Int. Ed., 2011, 50, (2), 427 LINK https://doi.org/10.1002/anie.201002951 [Google Scholar]
  67. L. Zhang, Y. Hu, J. Chen, W. Huang, J. Cheng, Y. Chen, J. Power Sources, 2018, 384, 98 LINK https://doi.org/10.1016/j.jpowsour.2018.02.078 [Google Scholar]
  68. S. Kato, K. Hashimoto, K. Watanabe, Microbes Environ., 2013, 28, (1), 141 LINK https://doi.org/10.1264/jsme2.me12161 [Google Scholar]
  69. C. Yang, H. Aslan, P. Zhang, S. Zhu, Y. Xiao, L. Chen, N. Khan, T. Boesen, Y. Wang, Y. Liu, L. Wang, Y. Sun, Y. Feng, F. Besenbacher, F. Zhao, M. Yu, Nat. Commun., 2020, 11, 1379 LINK https://doi.org/10.1038/s41467-020-14866-0 [Google Scholar]
  70. M. Chen, X. Zhou, X. Liu, R. J. Zeng, F. Zhang, J. Ye, S. Zhou, Biosens. Bioelectron., 2018, 108, 20 LINK https://doi.org/10.1016/j.bios.2018.02.030 [Google Scholar]
  71. M. Kaneko, K. Ishihara, S. Nakanishi, Small, 2020, 16, (34), 2001849 LINK https://doi.org/10.1002/smll.202001849 [Google Scholar]
  72. S. Gomez-Carretero, B. Libberton, K. Svennersten, K. Persson, E. Jager, M. Berggren, M. Rhen, A. Richter-Dahlfors, npj Biofilms Microbiomes, 2017, 3, 19 LINK https://doi.org/10.1038/s41522-017-0027-0 [Google Scholar]
  73. G. Pankratova, K. Hasan, D. Leech, L. Hederstedt, L. Gorton, Electrochem. Commun., 2017, 75, 56 LINK https://doi.org/10.1016/j.elecom.2016.12.010 [Google Scholar]
  74. V. Coman, T. Gustavsson, A. Finkelsteinas, C. von Wachenfeldt, C. Hägerhäll, L. Gorton, J. Am. Chem. Soc., 2009, 131, (44), 16171 LINK https://doi.org/10.1021/ja905442a [Google Scholar]
  75. K. Hasan, S. A. Patil, D. Leech, C. Hägerhäll, L. Gorton, Biochem. Soc. Trans., 2012, 40, (6), 1330 LINK https://doi.org/10.1042/bst20120120 [Google Scholar]
  76. G. Pankratova, L. Gorton, Curr. Opin. Electrochem., 2017, 5, (1), 193 LINK https://doi.org/10.1016/j.coelec.2017.09.013 [Google Scholar]
  77. F. J. Rawson, A. J. Gross, D. J. Garrett, A. J. Downard, K. H. R. Baronian, Electrochem. Commun., 2012, 15, (1), 85 LINK https://doi.org/10.1016/j.elecom.2011.11.030 [Google Scholar]
  78. Y. Yang, Z. Wang, C. Gan, L. H. Klausen, R. Bonné, G. Kong, D. Luo, M. Meert, C. Zhu, G. Sun, J. Guo, Y. Ma, J. T. Bjerg, J. Manca, M. Xu, L. P. Nielsen, M. Dong, Nat. Commun., 2021, 12, 1709 LINK https://doi.org/10.1038/s41467-021-21709-z [Google Scholar]
  79. B. E. Logan, Nat. Rev. Microbiol., 2009, 7, (5), 375 LINK https://doi.org/10.1038/nrmicro2113 [Google Scholar]
  80. D. J. F. Walker, R. Y. Adhikari, D. E. Holmes, J. E. Ward, T. L. Woodard, K. P. Nevin, D. R. Lovley, ISME J., 2018, 12, (1), 48 LINK https://doi.org/10.1038/ismej.2017.141 [Google Scholar]
  81. L. Zou, Y. Qiao, X.-S. Wu, C. M. Li, J. Power Sources, 2016, 328, 143 LINK https://doi.org/10.1016/j.jpowsour.2016.08.009 [Google Scholar]
  82. F. J. Rawson, D. J. Garrett, D. Leech, A. J. Downard, K. H. R. Baronian, Biosens. Bioelectron., 2011, 26, (5), 2383 LINK https://doi.org/10.1016/j.bios.2010.10.016 [Google Scholar]
  83. S. E. Yalcin, J. P. O’Brien, Y. Gu, K. Reiss, S. M. Yi, R. Jain, V. Srikanth, P. J. Dahl, W. Huynh, D. Vu, A. Acharya, S. Chaudhuri, T. Varga, V. S. Batista, N. S. Malvankar, Nat. Chem. Biol., 2020, 16, (10), 1136 LINK https://doi.org/10.1038/s41589-020-0623-9 [Google Scholar]
  84. D. J. Filman, S. F. Marino, J. E. Ward, L. Yang, Z. Mester, E. Bullitt, D. R. Lovley, M. Strauss, Commun. Biol., 2019, 2, 219 LINK https://doi.org/10.1038/s42003-019-0448-9 [Google Scholar]
/content/journals/10.1595/205651322X16621070592195
Loading
/content/journals/10.1595/205651322X16621070592195
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test