Skip to content
Volume 67, Issue 2
  • ISSN: 2056-5135


Many additive manufacturing (AM) processes have been developed to fabricate lightweight metal matrix composites (LMMCs) from constituent materials. However, the improvement in mechanical properties is significantly affected by the added reinforcing materials in the LMMC compared to metallic materials and their alloys. Recent advances in understanding the selecting criteria and effect of the reinforcement, preparation methods and AM process on the properties of LMMCs are summarised in this review. The preparation methods of particle-reinforced LMMCs include and synthesis. The effect of various reinforcement and AM processes such as powder bed fusion (PBF) processes and direct energy deposition (DED) processes on the mechanical properties of LMMC parts are discussed.


Article metrics loading...

Loading full text...

Full text loading...



  1. Nturanabo F., Masu L., Kirabira J. B., ‘Novel Applications of Aluminium Metal Matrix Composites’, in “Aluminium Alloys and Compounds”, ed. and Cooke K. Intech Open Ltd, London, UK, 2020, 24 pp LINK [Google Scholar]
  2. Fereiduni E., Yakout M., Elbestawi M., ‘Laser-Based Additive Manufacturing of Lightweight Metal Matrix Composites’, in “Additive Manufacturing of Emerging Materials”, ed. and AlMangour B. Springer International Publishing AG, Cham, Switzerland, 2019, pp. 55109 LINK [Google Scholar]
  3. Mussatto A., Ahad I. U., Mousavian R. T., Delaure Y., and Brabazon D. Eng. Rep., 2021, 3, (5), e12330 LINK [Google Scholar]
  4. Dadbakhsh S., Mertens R., Hao L., Van Humbeeck J., and Kruth J.-P. Adv. Eng. Mater., 2019, 21, (3), 1801244 LINK [Google Scholar]
  5. Dadkhah M., Mosallanejad M. H., Iuliano L., and Saboori A. Acta Metall. Sin. (Eng. Lett.), 2021, 34, (9), 1173 LINK [Google Scholar]
  6. Mostafaei A., Heidarzadeh A., Brabazon D., ‘Production of Metal Matrix Composites Via Additive Manufacturing’, in “Encyclopedia of Materials: Composites”, ed. and Brabazon D. 2, Elsevier Inc, Amsterdam, The Netherlands, 2021, pp. 605614 LINK [Google Scholar]
  7. ‘Standard Terminology for Additive Manufacturing Technologies’, ASTM F2792-12, American Society for Testing and Materials, West Conshohocken, USA, 2012, 3 pp LINK [Google Scholar]
  8. ‘Additive Manufacturing – General Principles – Terminology’, ISO/ASTM 52900:2015, International Organization for Standardization, Geneva, Switzerland, 2015, 19 pp LINK [Google Scholar]
  9. Guo N., and Leu M. C. Front. Mech. Eng., 2013, 8, (3), 215 LINK [Google Scholar]
  10. DebRoy T., Wei H. L., Zuback J. S., Mukherjee T., Elmer J. W., Milewski J. O., Beese A. M., Wilson-Heid A., De A., and Zhang W. Prog. Mater. Sci., 2018, 92, 112 LINK [Google Scholar]
  11. Gibson I., Rosen D., and Stucker B. ‘Powder Bed Fusion Processes’, in “Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing”, 2nd Edn., Ch. 5, Springer Science and Business Media, New York, USA, 2015, pp. 107145 LINK [Google Scholar]
  12. Agapovichev A., Sotov A., Kokareva V., and Smelov V. MATEC Web Conf., 2018, 224, 01064 LINK [Google Scholar]
  13. Yilmaz O., and Ugla A. A. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 2016, 230, (10), 1781 LINK [Google Scholar]
  14. Manfredi D., Calignano F., Krishnan M., Canali R., Ambrosio E. P., Biamino S., Ugues D., Pavese M., Fino P., ‘Additive Manufacturing of Al Alloys and Aluminium Matrix Composites (AMCs)’, in “Light Metal Alloys Applications”, ed. and Monteiro W. A. Intech Open Ltd, London, UK, 2014, pp. 334 LINK [Google Scholar]
  15. Barroqueiro B., Andrade-Campos A., Valente R. A. F., and Neto V. J. Manuf. Mater. Process., 2019, 3, (3), 52 LINK [Google Scholar]
  16. Serin G., Kahya M., Ünver H. Ö., Güleç Y., Durlu N., and Erođul O. ‘A Review of Additive Manufacturing Technologies’, in “Conference Programme and Book of Abstracts”, UMTIK 2016: 17th International Conference on Machine Design and Production, 12th–15th July, 2016, Bursa, Turkey, Mechanical Engineering Department, Middle East Technical University, Ankara, Turkey, 2016, pp. 3233 [Google Scholar]
  17. Razzaq G. H. A., Jafar S. A., and Humadi J. I. J. Phys.: Conf. Ser., 2021, 1963, 012042 LINK [Google Scholar]
  18. Yu W. H., Sing S. L., Chua C. K., Kuo C. N., and Tian X. L. Prog. Mater. Sci., 2019, 104, 330 LINK [Google Scholar]
  19. Chen M., Wang J., Yan X., Ren J., Dai Y., Wang Q., Wang Y., and Cheng X. J. Alloys Compd., 2017, 722, 250 LINK [Google Scholar]
  20. Liu X., Zhuo L., Wang Z., Zhao Z., Zhang H., Yuan B., An Z., Li C., Yin E., and Xu T. Mater. Lett., 2022, 308, (Part B), 131254 LINK [Google Scholar]
  21. Liu Y. Y., Yao Z., Zhang S., and Tao X. Mater. Res. Express., 2019, 6, 0965c3 LINK [Google Scholar]
  22. Liverani E., Toschi S., Ceschini L., and Fortunato A. J. Mater. Process. Technol., 2017, 249, 255 LINK [Google Scholar]
  23. Li J. C., Lin X., Kang N., Lu J. L., Wang Q. Z., and Huang W. D. J. Alloys Compd., 2020, 826, 154077 LINK [Google Scholar]
  24. Fereiduni E., Ghasemi A., and Elbestawi M. Materials, 2019, 12, (22), 3673 LINK [Google Scholar]
  25. Cheng W., Liu Y., Xiao X., Huang B., Zhou Z., and Liu X. Mater. Sci. Eng.: A, 2022, 834, 142435 LINK [Google Scholar]
  26. Tiwari J. K., Mandal A., Sathish N., Kumar S., Ashiq M., Nagini M., Sharma R. K., Agrawal A. K., Rajput P., and Srivastava A. K. J. Alloys Compd., 2022, 890, 161725 LINK [Google Scholar]
  27. Zhang D., Yi D., Wu X., Liu Z., Wang W., Poprawe R., Schleifenbaumc J. H., and Zieglerd S. J. Alloys Compd., 2022, 894, 162365 LINK [Google Scholar]
  28. Fang Y., Kim M.-K., Zhang Y., Duan Z., Yuan Q., and Suhr J. J. Manuf. Process., 2022, 74, 592 LINK [Google Scholar]
  29. Raj Mohan R., Venkatraman R., Raghuraman S., Kumar P. M., Rinawa M. L., Subbiah R., Arulmurugan B., and Rajkumar S. Scanning, 2022, 5610333 LINK [Google Scholar]
  30. Shi Q., Mertens R., Dadbakhsh S., Li G., and Yang S. J. Mater. Process. Technol., 2022, 299, 117357 LINK [Google Scholar]
  31. Pan D., Li S., Liu L., Zhang X., Li B., Chen B., Chu M., Hou X., Sun Z., Umeda J., and Kondoh K. Addit. Manuf., 2022, 50, 102519 LINK [Google Scholar]
  32. Xiao Y. K., Chen H., Bian Z. Y., Sun T. T., Ding H., Yang Q., Wu Y., Lian Q., Chen Z., and Wang H. W. J. Mater. Sci. Technol., 2022, 109, 254 LINK [Google Scholar]
  33. Matvienko O., Daneyko O., Kovalevskaya T., Khrustalyov A., Zhukov I., and Vorozhtsov A. Metals, 2021, 11, (2), 279 LINK [Google Scholar]
  34. Parrini L., and Schaller R. Acta Mater., 1996, 44, (12), 4881 LINK [Google Scholar]
  35. Safonova M. N., Fedotov A. A., and Syromiatnikova A. S. Mater. Sci. Forum, 2019, 945, 476 LINK [Google Scholar]
  36. Gao C., Wang Z., Xiao Z., You D., Wong K., and Akbarzadeh A. H. J. Mater. Process. Technol., 2020, 281, 116618 LINK [Google Scholar]
  37. Gao C., Liu Z., Xiao Z., Zhang W., Wong K., and Akbarzadeh A. H. J. Alloys Compd., 2021, 853, 156722 LINK [Google Scholar]
  38. Chang F., Gu D., Dai D., and Yuan P. Surf. Coatings Technol., 2015, 272, 15 LINK [Google Scholar]
  39. Gu D., Rao X., Dai D., Ma C., Xi L., and Lin K. Addit. Manuf., 2019, 29, 100801 LINK [Google Scholar]
  40. Li H., Yang Z., Cai D., Jia D., and Zhou Y. Mater. Des., 2020, 185, 108245 LINK [Google Scholar]
  41. Pouzet S., Peyre P., Gorny C., Castelnau O., Baudin T., Brisset F., Colin C., and Gadaud P. Mater. Sci. Eng.: A, 2016, 677, 171 LINK [Google Scholar]
  42. Liu S., and Shin Y. C. Mater. Des., 2017, 136, 185 LINK [Google Scholar]
  43. Builuk A., Kazachenok M., and Martynov S. AIP Conf. Proc., 2019, 2167, (1), 020039 LINK [Google Scholar]
  44. Li L., Wang J., Lin P., and Liu H. Ceram. Int., 2017, 43, (18), 16638 LINK [Google Scholar]
  45. Terrazas C. A., Murr L. E., Bermudez D., Arrieta E., Roberson D. A., and Wicker R. B. J. Mater. Sci. Technol., 2019, 35, (2), 309 LINK [Google Scholar]
  46. Liu Y., Li S., Misra R. D. K., Geng K., and Yang Y. Scr. Mater., 2020, 183, 6 LINK [Google Scholar]
  47. Farayibi P. K., Abioye T. E., Kennedy A., and Clare A. T. J. Manuf. Process., 2019, 45, 429 LINK [Google Scholar]
  48. Patil A. S., Hiwarkar V. D., Verma P. K., and Khatirkar R. K. J. Alloys Compd., 2019, 777, 165 LINK [Google Scholar]
  49. Zykova A., Vorontsov A., Nikolaeva A., Chumaevskii A., Kalashnikov K., Gurianov D., Savchenko N., Nikonov S., and Kolubaev E. Mater. Lett., 2022, 312, 131586 LINK [Google Scholar]
  50. Hattal A., Mukhtarova K., Djemai M., Chauveau T., Hocini A., Fouchet J. J., Bacroix B., Gubicza J., and Dirras G. Mater. Des., 2022, 214, 110392 LINK [Google Scholar]
  51. Md Ali A., Omar M. Z., Hashim H., Salleh M. S., and Mohamed I. F. Rev. Adv. Mater. Sci., 2021, 60, (1), 801 LINK [Google Scholar]
  52. Li Y., Gu D., Zhang H., and Xi L. Chin. J. Mech. Eng., 2020, 33, 33 LINK [Google Scholar]
  53. Li X. P., Ji G., Chen Z., Addad A., Wu Y., Wang H. W., Vleugels J., Van Humbeeck J., and Kruth J. P. Acta Mater., 2017, 129, 183 LINK [Google Scholar]
  54. Tan H., Hao D., Al-Hamdani K., Zhang F., Xu Z., and Clare A. T. Mater. Lett., 2018, 214, 123 LINK [Google Scholar]
  55. Lorusso M., Aversa A., Manfredi D., Calignano F., Ambrosio E. P., Ugues D., and Pavese M. J. Mater. Eng. Perform., 2016, 25, (8), 3152 LINK [Google Scholar]
  56. Lorusso M., Aversa A., Marchese G., Calignano F., Manfredi D., and Pavese M. Adv. Eng. Mater., 2020, 22, (2), 1900815 LINK [Google Scholar]
  57. Xi L., Guo S., Gu D., Guo M., and Lin K. J. Alloys Compd., 2020, 819, 152980 LINK [Google Scholar]
  58. Meng Y., Yu Z., Rong P., and Li G. J. Laser Appl., 2020, 32, (2), 022007 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error