Skip to content
Volume 67, Issue 2
  • ISSN: 2056-5135


Lozenge-patterned surfaces obtained with laser texturing can reduce the risk of infection by preventing or delaying biofilm formation of To investigate this aspect, the biofilm formation ability of on both lozenge-patterned and untreated surfaces of 630 stainless steel coupons was examined over 48 h. Biofilm on the coupons was analysed for bacterial enumeration and total carbohydrates concentration and was observed using scanning electron microscopy (SEM). The surface modification by texturing caused a 6 h delay in the attachment of and an approximately 99% decrease in the number of adhered bacteria. However, it was determined that produced more extracellular polymeric substances (EPS) (<0.01) to attach to the lozenge-patterned surface and formed a multi-layered biofilm. In conclusion, lozenge-patterned surfaces can be applied to reduce bacterial count and induce a delay in attachment, but the increased amount of EPS limits its use.


Article metrics loading...

Loading full text...

Full text loading...



  1. ‘Healthcare-Associated Infections (HAIs)’, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA: (Accessed on 20th September 2021) [Google Scholar]
  2. Allegranzi B., Nejad S. B., Combescure C., Graafmans W., Attar H., Donaldson L., and Pittet D. Lancet, 2011, 377, (9761), 228 LINK [Google Scholar]
  3. Donlan R. Emerg. Infect. Dis., 2001, 7, (2), 277 [Google Scholar]
  4. Sanchez C. J., Mende K., Beckius M. L., Akers K. S., Romano D. R., Wenke J. C., and Murray C. K. BMC Infect. Dis., 2013, 13, 47 LINK [Google Scholar]
  5. de Souza Evangelista S., dos Santos S. G., de Resende Stoianoff M. A., and de Oliveira A. C. Am. J. Infect. Control, 2015, 43, (5), 522 LINK [Google Scholar]
  6. Kaper J. B., Nataro J. P., and Mobley H. L. T. Nat. Rev. Microbiol., 2004, 2, (2), 123 LINK [Google Scholar]
  7. Jang J., Hur H.-G., Sadowsky M. J., Byappanahalli M. N., Yan T., and Ishii S. J. Appl. Microbiol., 2017, 123, (3), 570 LINK [Google Scholar]
  8. Croxen M. A., and Finlay B. B. Nat. Rev. Microbiol., 2009, 8, (1), 26 LINK [Google Scholar]
  9. Vickery K., Hu H., Jacombs A. S., Bradshaw D. A., and Deva A. K. Healthc. Infect., 2013, 18, (2), 61 LINK [Google Scholar]
  10. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., and Lappin-Scott H. M. Annu. Rev. Microbiol., 1995, 49, (1), 711 LINK [Google Scholar]
  11. Davey M. E., and O’toole G. A. Microbiol. Mol. Biol. Rev., 2000, 64, (4), 847 LINK [Google Scholar]
  12. Flemming H.-C., and Wingender J. Nat. Rev. Microbiol., 2010, 8, (9), 623 LINK [Google Scholar]
  13. Fulaz S., Vitale S., Quinn L., and Casey E. Trends Microbiol., 2019, 27, (11), 915 LINK [Google Scholar]
  14. Frølund B., Palmgren R., Keiding K., and Nielsen P. H. Water Res., 1996, 30, (8), 1749 LINK [Google Scholar]
  15. Wingender J., Strathmann M., Rode A., Leis A., Flemming H.-C., ‘Section Extracellular VI. Polymers: Isolation and Biochemical Characterization of Extracellular Polymeric Substances from Pseudomonas Aeruginosa’, in “Microbial Growth in Biofilms – Part A: Developmental and Molecular Biological Aspects”, ed. and Doyle R. J. 336, Elsevier, Cambridge, USA, 2001, pp. 302314 LINK [Google Scholar]
  16. Decho A. W., and Gutierrez T. Front. Microbiol., 2017, 8, 922 LINK [Google Scholar]
  17. Flemming H.-C., Wingender J., Szewzyk U., Steinberg P., Rice S. A., and Kjelleberg S. Nat. Rev. Microbiol., 2016, 14, (9), 563 LINK [Google Scholar]
  18. Sutherland I. Trends Microbiol., 2001, 9, (5), 222 LINK [Google Scholar]
  19. Li X. Z., Hauer B., and Rosche B. Appl. Microbiol. Biotechnol., 2007, 76, (6), 1255 LINK [Google Scholar]
  20. Bryers J. D. Biotechnol. Bioeng., 2008, 100, (1), 1 LINK [Google Scholar]
  21. Costerton J. W., Montanaro L., and Arciola C. r. Int. J. Artif. Organs, 2007, 30, (9), 757 LINK [Google Scholar]
  22. Kostakioti M., Hadjifrangiskou M., and Hultgren S. J. Cold Spring Harb. Perspect. Med., 2013, 3, (4), a010306 LINK [Google Scholar]
  23. Rutala W. A., and Weber D. J. Clin. Infect. Dis., 2004, 39, (5), 702 LINK [Google Scholar]
  24. Lorenzetti M., Dogša I., Stošicki T., Stopar D., Kalin M., Kobe S., and Novak S. ACS Appl. Mater. Interfaces, 2015, 7, (3), 1644 LINK [Google Scholar]
  25. Hasan J., Raj S., Yadav L., and Chatterjee K. RSC Adv., 2015, 5, (56), 44953 LINK [Google Scholar]
  26. Zhang X., Wang L., and Levänen E. RSC Adv., 2013, 3, (30), 12003 LINK [Google Scholar]
  27. Wu S., Zhang B., Liu Y., Suo X., and Li H. Biointerphases, 2018, 13, (6), 060801 LINK [Google Scholar]
  28. Hsu L. C., Fang J., Borca-Tasciuc D. A., Worobo R. W., and Moraru C. I. Appl. Environ. Microbiol., 2013, 79, (8), 2703 LINK [Google Scholar]
  29. Whitehead K. A., Colligon J., and Verran J. Coll. Surf. B: Bioint., 2005, 41, (2–3), 129 LINK [Google Scholar]
  30. Friedlander R. S., Vlamakis H., Kim P., Khan M., Kolter R., and Aizenberg J. Proc. Natl. Acad. Sci., 2013, 110, (14), 5624 LINK [Google Scholar]
  31. Chen F., Zhang D., Yang Q., Yong J., Du G., Si J., Yun F., and Hou X. ACS Appl. Mater. Interfaces, 2013, 5, (15), 6777 LINK [Google Scholar]
  32. Vorobyev A. Y., and Guo C. Laser Photonics Rev., 2012, 7, (3), 385 LINK [Google Scholar]
  33. Dunn A., Carstensen J. V., Wlodarczyk K. L., Hansen E. B., Gabzdyl J., Harrison P. M., Shephard J. D., and Hand D. P. Opt. Lasers Eng., 2014, 62, 9 LINK [Google Scholar]
  34. Song F., Koo H., and Ren D. J. Dent. Res., 2015, 94, (8), 1027 LINK [Google Scholar]
  35. Wassmann T., Kreis S., Behr M., and Buergers R. Int. J. Implant Dent., 2017, 3, 32 LINK [Google Scholar]
  36. Díaz C., Cortizo M. C., Schilardi P. L., de Saravia S. G. G., and de Mele M. A. F. L. Mat. Res., 2007, 10, (1), 11 LINK [Google Scholar]
  37. Lutey A. H. A., Gemini L., Romoli L., Lazzini G., Fuso F., Faucon M., and Kling R. Sci. Rep., 2018, 8, (1), 10112 LINK [Google Scholar]
  38. Helbig R., Günther D., Friedrichs J., Rößler F., Lasagni A., and Werner C. Biomater. Sci., 2016, 4, (7), 1074 LINK [Google Scholar]
  39. Pan Q., Cao Y., Xue W., Zhu D., and Liu W. Langmuir, 2019, 35, (35), 11414 LINK [Google Scholar]
  40. de Bruin A. Johnson Matthey Technol. Rev., 2018, 62, (3), 259 LINK [Google Scholar]
  41. Ayazi M., Ebrahimi N. G., and Nodoushan E. J. Int. J. Adhes. Adhes., 2019, 88, 66 LINK [Google Scholar]
  42. Xu L.-C., and Siedlecki C. A. Acta Biomater., 2012, 8, (1), 72 LINK [Google Scholar]
  43. Ge H.-H., Zhou G.-D., and Wu W.-Q. Appl. Surf. Sci., 2003, 211, (1–4), 321 LINK [Google Scholar]
  44. Zhang X., Bishop P. L., and Kinkle B. K. Water Sci. Technol., 1999, 39, (7), 211 LINK [Google Scholar]
  45. DuBois M., Gilles K. A., Hamilton J. K., Rebers P. A., and Smith F. Anal. Chem., 1956, 28, (3), 350 LINK [Google Scholar]
  46. Campanac C., Pineau L., Payard A., Baziard-Mouysset G., and Roques C. Antimicrob. Agents Chemother., 2002, 46, (5), 1469 LINK [Google Scholar]
  47. Mah T.-F. C., and O’Toole G. A. Trends Microbiol., 2001, 9, (1), 34 LINK [Google Scholar]
  48. Stoodley P., Sauer K., Davies D. G., and Costerton J. W. Annu. Rev. Microbiol., 2002, 56, 187 LINK [Google Scholar]
  49. An Y. H., and Friedman R. J. J. Biomed. Mater. Res., 1998, 43, (3), 338 LINK<338::aid-jbm16>;2-b [Google Scholar]
  50. Katsikogianni M., and Missirlis Y. F. Eur. Cells Mater., 2004, 8, 37 LINK [Google Scholar]
  51. Garrett T. R., Bhakoo M., and Zhang Z. Prog. Nat. Sci., 2008, 18, (9), 1049 LINK [Google Scholar]
  52. Goulter R. M., Gentle I. R., and Dykes G. A. Lett. Appl. Microbiol., 2009, 49, (1), 1 LINK [Google Scholar]
  53. Villapún V. M., Gomez A. P., Wei W., Dover L. G., Thompson J. R., Barthels T., Rodriguez J., Cox S., and González S. APL Mater., 2020, 8, (9), 091108 LINK [Google Scholar]
  54. Chik N., Wan Md Zain W. S., Mohamad A. J., Sidek M. Z., Wan Ibrahim W. H., Reif A., Rakebrandt J. H., Pfleging W., and Liu X. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 358, 012034 LINK [Google Scholar]
  55. Mirani Z. A., Fatima A., Urooj S., Aziz M., Khan M., and Abbas T. Iran J. Basic Med. Sci., 2018, 21, (7), 760 LINK [Google Scholar]
  56. Hassan A. N., and Frank J. F. Int. J. Food Microbiol., 2004, 96, (1), 103 LINK [Google Scholar]
  57. Rajab F. H., Liauw C. M., Benson P. S., Li L., and Whitehead K. A. Food Bioprod. Process., 2018, 109, 29 LINK [Google Scholar]
  58. Patil D., Aravindan S., Wasson M. K., and V. P., and Rao P. V. J. Micro Nano-Manuf., 2018, 6, (1), 011002 LINK [Google Scholar]
  59. Mahalakshmi P. V., Vanithakumari S. C., Gopal J., Mudali U. K., and Raj B. Curr. Sci., 2011, 101, (10), 1328 LINK [Google Scholar]
  60. Chapman J., and Regan F. Adv. Eng. Mater., 2012, 14, (4), B 175 LINK [Google Scholar]
  61. Pitt W. G., Alizadeh M., Husseini G. A., McClellan D. S., Buchanan C. M., Bledsoe C. G., Robison R. A., Blanco R., Roeder B. L., Melville M., and Hunter A. K. Biotechnol. Prog., 2016, 32, (4), 823 LINK [Google Scholar]
  62. Arkan-Ozdemir S., Cansever N., and Ilhan-Sungur E. Water Sci. Technol., 2020, 82, (5), 940 LINK [Google Scholar]
  63. Ilhan-Sungur E., and Çotuk A. Corros. Sci., 2010, 52, (1), 161 LINK [Google Scholar]
  64. Rohde H., Burandt E. C., Siemssen N., Frommelt L., Burdelski C., Wurster S., Scherpe S., Davies A. P., Harris L. G., Horstkotte M. A., Knobloch J. K.-M., Ragunath C., Kaplan J. B., and Mack D. Biomaterials, 2007, 28, (9), 1711 LINK [Google Scholar]
  65. Izano E. A., Amarante M. A., Kher W. B., and Kaplan J. B. Appl. Environ. Microbiol., 2008, 74, (2), 470 LINK [Google Scholar]
  66. Sharma G., Sharma S., Sharma P., Chandola D., Dang S., Gupta S., and Gabrani R. J. Appl. Microbiol., 2016, 121, (2), 309 LINK [Google Scholar]
  67. Anderson G. G., Palermo J. J., Schilling J. D., Roth R., Heuser J., and Hultgren S. J. Science, 2003, 301, (5629), 105 LINK [Google Scholar]
  68. Justice S. S., Hung C., Theriot J. A., Fletcher D. A., Anderson G. G., Footer M. J., and Hultgren S. J. Proc. Natl. Acad. Sci., 2004, 101, (5), 1333 LINK [Google Scholar]
  69. Beloin C., Roux A., Ghigo J.-M., and Romeo T Escherichia coli Biofilms’, in “Bacterial Biofilms”, ed. 322, Springer-Verlag, Berlin, Germany, 2008, pp. 249289 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error