Skip to content
1887
Volume 67, Issue 2
  • ISSN: 2056-5135

Abstract

Lozenge-patterned surfaces obtained with laser texturing can reduce the risk of infection by preventing or delaying biofilm formation of To investigate this aspect, the biofilm formation ability of on both lozenge-patterned and untreated surfaces of 630 stainless steel coupons was examined over 48 h. Biofilm on the coupons was analysed for bacterial enumeration and total carbohydrates concentration and was observed using scanning electron microscopy (SEM). The surface modification by texturing caused a 6 h delay in the attachment of and an approximately 99% decrease in the number of adhered bacteria. However, it was determined that produced more extracellular polymeric substances (EPS) (<0.01) to attach to the lozenge-patterned surface and formed a multi-layered biofilm. In conclusion, lozenge-patterned surfaces can be applied to reduce bacterial count and induce a delay in attachment, but the increased amount of EPS limits its use.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16457881164562
2022-02-25
2024-09-16
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/2/Ozdemir_16a_Imp.html?itemId=/content/journals/10.1595/205651322X16457881164562&mimeType=html&fmt=ahah

References

  1. ‘Healthcare-Associated Infections (HAIs)’, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA:https://www.cdc.gov/hai/index.html (Accessed on 20th September 2021) [Google Scholar]
  2. B. Allegranzi, S. B. Nejad, C. Combescure, W. Graafmans, H. Attar, L. Donaldson, D. Pittet, Lancet, 2011, 377, (9761), 228 LINK https://doi.org/10.1016/s0140-6736(10)61458-4 [Google Scholar]
  3. R. Donlan, Emerg. Infect. Dis., 2001, 7, (2), 277 [Google Scholar]
  4. C. J. Sanchez, K. Mende, M. L. Beckius, K. S. Akers, D. R. Romano, J. C. Wenke, C. K. Murray, BMC Infect. Dis., 2013, 13, 47 LINK https://doi.org/10.1186/1471-2334-13-47 [Google Scholar]
  5. S. de Souza Evangelista, S. G. dos Santos, M. A. de Resende Stoianoff, A. C. de Oliveira, Am. J. Infect. Control, 2015, 43, (5), 522 LINK https://doi.org/10.1016/j.ajic.2014.12.018 [Google Scholar]
  6. J. B. Kaper, J. P. Nataro, H. L. T. Mobley, Nat. Rev. Microbiol., 2004, 2, (2), 123 LINK https://doi.org/10.1038/nrmicro818 [Google Scholar]
  7. J. Jang, H.-G. Hur, M. J. Sadowsky, M. N. Byappanahalli, T. Yan, S. Ishii, J. Appl. Microbiol., 2017, 123, (3), 570 LINK https://doi.org/10.1111/jam.13468 [Google Scholar]
  8. M. A. Croxen, B. B. Finlay, Nat. Rev. Microbiol., 2009, 8, (1), 26 LINK https://doi.org/10.1038/nrmicro2265 [Google Scholar]
  9. K. Vickery, H. Hu, A. S. Jacombs, D. A. Bradshaw, A. K. Deva, Healthc. Infect., 2013, 18, (2), 61 LINK https://doi.org/10.1071/hi12059 [Google Scholar]
  10. J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, H. M. Lappin-Scott, Annu. Rev. Microbiol., 1995, 49, (1), 711 LINK https://doi.org/10.1146/annurev.mi.49.100195.003431 [Google Scholar]
  11. M. E. Davey, G. A. O’toole, Microbiol. Mol. Biol. Rev., 2000, 64, (4), 847 LINK https://doi.org/10.1128/mmbr.64.4.847-867.2000 [Google Scholar]
  12. H.-C. Flemming, J. Wingender, Nat. Rev. Microbiol., 2010, 8, (9), 623 LINK https://doi.org/10.1038/nrmicro2415 [Google Scholar]
  13. S. Fulaz, S. Vitale, L. Quinn, E. Casey, Trends Microbiol., 2019, 27, (11), 915 LINK https://doi.org/10.1016/j.tim.2019.07.004 [Google Scholar]
  14. B. Frølund, R. Palmgren, K. Keiding, P. H. Nielsen, Water Res., 1996, 30, (8), 1749 LINK https://doi.org/10.1016/0043-1354(95)00323-1 [Google Scholar]
  15. J. Wingender, M. Strathmann, A. Rode, A. Leis, H.-C. Flemming, ‘Section Extracellular VI. Polymers: Isolation and Biochemical Characterization of Extracellular Polymeric Substances from Pseudomonas Aeruginosa’, in “Microbial Growth in Biofilms – Part A: Developmental and Molecular Biological Aspects”, ed. R. J. Doyle, 336, Elsevier, Cambridge, USA, 2001, pp. 302314 LINK https://doi.org/10.1016/s0076-6879(01)36597-7 [Google Scholar]
  16. A. W. Decho, T. Gutierrez, Front. Microbiol., 2017, 8, 922 LINK https://doi.org/10.3389/fmicb.2017.00922 [Google Scholar]
  17. H.-C. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S. A. Rice, S. Kjelleberg, Nat. Rev. Microbiol., 2016, 14, (9), 563 LINK https://doi.org/10.1038/nrmicro.2016.94 [Google Scholar]
  18. I. Sutherland, Trends Microbiol., 2001, 9, (5), 222 LINK https://doi.org/10.1016/s0966-842x(01)02012-1 [Google Scholar]
  19. X. Z. Li, B. Hauer, B. Rosche, Appl. Microbiol. Biotechnol., 2007, 76, (6), 1255 LINK https://doi.org/10.1007/s00253-007-1108-4 [Google Scholar]
  20. J. D. Bryers, Biotechnol. Bioeng., 2008, 100, (1), 1 LINK https://doi.org/10.1002/bit.21838 [Google Scholar]
  21. J. W. Costerton, L. Montanaro, C. r. Arciola, Int. J. Artif. Organs, 2007, 30, (9), 757 LINK https://doi.org/10.1177/039139880703000903 [Google Scholar]
  22. M. Kostakioti, M. Hadjifrangiskou, S. J. Hultgren, Cold Spring Harb. Perspect. Med., 2013, 3, (4), a010306 LINK https://doi.org/10.1101/cshperspect.a010306 [Google Scholar]
  23. W. A. Rutala, D. J. Weber, Clin. Infect. Dis., 2004, 39, (5), 702 LINK https://doi.org/10.1086/423182 [Google Scholar]
  24. M. Lorenzetti, I. Dogša, T. Stošicki, D. Stopar, M. Kalin, S. Kobe, S. Novak, ACS Appl. Mater. Interfaces, 2015, 7, (3), 1644 LINK https://doi.org/10.1021/am507148n [Google Scholar]
  25. J. Hasan, S. Raj, L. Yadav, K. Chatterjee, RSC Adv., 2015, 5, (56), 44953 LINK https://doi.org/10.1039/c5ra05206h [Google Scholar]
  26. X. Zhang, L. Wang, E. Levänen, RSC Adv., 2013, 3, (30), 12003 LINK https://doi.org/10.1039/c3ra40497h [Google Scholar]
  27. S. Wu, B. Zhang, Y. Liu, X. Suo, H. Li, Biointerphases, 2018, 13, (6), 060801 LINK https://doi.org/10.1116/1.5054057 [Google Scholar]
  28. L. C. Hsu, J. Fang, D. A. Borca-Tasciuc, R. W. Worobo, C. I. Moraru, Appl. Environ. Microbiol., 2013, 79, (8), 2703 LINK https://doi.org/10.1128/aem.03436-12 [Google Scholar]
  29. K. A. Whitehead, J. Colligon, J. Verran, Coll. Surf. B: Bioint., 2005, 41, (2–3), 129 LINK https://doi.org/10.1016/j.colsurfb.2004.11.010 [Google Scholar]
  30. R. S. Friedlander, H. Vlamakis, P. Kim, M. Khan, R. Kolter, J. Aizenberg, Proc. Natl. Acad. Sci., 2013, 110, (14), 5624 LINK https://doi.org/10.1073/pnas.1219662110 [Google Scholar]
  31. F. Chen, D. Zhang, Q. Yang, J. Yong, G. Du, J. Si, F. Yun, X. Hou, ACS Appl. Mater. Interfaces, 2013, 5, (15), 6777 LINK https://doi.org/10.1021/am401677z [Google Scholar]
  32. A. Y. Vorobyev, C. Guo, Laser Photonics Rev., 2012, 7, (3), 385 LINK https://doi.org/10.1002/lpor.201200017 [Google Scholar]
  33. A. Dunn, J. V. Carstensen, K. L. Wlodarczyk, E. B. Hansen, J. Gabzdyl, P. M. Harrison, J. D. Shephard, D. P. Hand, Opt. Lasers Eng., 2014, 62, 9 LINK https://doi.org/10.1016/j.optlaseng.2014.05.003 [Google Scholar]
  34. F. Song, H. Koo, D. Ren, J. Dent. Res., 2015, 94, (8), 1027 LINK https://doi.org/10.1177/0022034515587690 [Google Scholar]
  35. T. Wassmann, S. Kreis, M. Behr, R. Buergers, Int. J. Implant Dent., 2017, 3, 32 LINK https://doi.org/10.1186/s40729-017-0093-3 [Google Scholar]
  36. C. Díaz, M. C. Cortizo, P. L. Schilardi, S. G. G. de Saravia, M. A. F. L. de Mele, Mat. Res., 2007, 10, (1), 11 LINK https://doi.org/10.1590/s1516-14392007000100004 [Google Scholar]
  37. A. H. A. Lutey, L. Gemini, L. Romoli, G. Lazzini, F. Fuso, M. Faucon, R. Kling, Sci. Rep., 2018, 8, (1), 10112 LINK https://doi.org/10.1038/s41598-018-28454-2 [Google Scholar]
  38. R. Helbig, D. Günther, J. Friedrichs, F. Rößler, A. Lasagni, C. Werner, Biomater. Sci., 2016, 4, (7), 1074 LINK https://doi.org/10.1039/c6bm00078a [Google Scholar]
  39. Q. Pan, Y. Cao, W. Xue, D. Zhu, W. Liu, Langmuir, 2019, 35, (35), 11414 LINK https://doi.org/10.1021/acs.langmuir.9b01333 [Google Scholar]
  40. A. de Bruin, Johnson Matthey Technol. Rev., 2018, 62, (3), 259 LINK https://technology.matthey.com/article/62/3/259-262/ [Google Scholar]
  41. M. Ayazi, N. G. Ebrahimi, E. J. Nodoushan, Int. J. Adhes. Adhes., 2019, 88, 66 LINK https://doi.org/10.1016/j.ijadhadh.2018.10.017 [Google Scholar]
  42. L.-C. Xu, C. A. Siedlecki, Acta Biomater., 2012, 8, (1), 72 LINK https://doi.org/10.1016/j.actbio.2011.08.009 [Google Scholar]
  43. H.-H. Ge, G.-D. Zhou, W.-Q. Wu, Appl. Surf. Sci., 2003, 211, (1–4), 321 LINK https://doi.org/10.1016/s0169-4332(03)00355-6 [Google Scholar]
  44. X. Zhang, P. L. Bishop, B. K. Kinkle, Water Sci. Technol., 1999, 39, (7), 211 LINK https://doi.org/10.2166/wst.1999.0361 [Google Scholar]
  45. M. DuBois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, F. Smith, Anal. Chem., 1956, 28, (3), 350 LINK https://doi.org/10.1021/ac60111a017 [Google Scholar]
  46. C. Campanac, L. Pineau, A. Payard, G. Baziard-Mouysset, C. Roques, Antimicrob. Agents Chemother., 2002, 46, (5), 1469 LINK https://doi.org/10.1128/aac.46.5.1469-1474.2002 [Google Scholar]
  47. T.-F. C. Mah, G. A. O’Toole, Trends Microbiol., 2001, 9, (1), 34 LINK https://doi.org/10.1016/s0966-842x(00)01913-2 [Google Scholar]
  48. P. Stoodley, K. Sauer, D. G. Davies, J. W. Costerton, Annu. Rev. Microbiol., 2002, 56, 187 LINK https://doi.org/10.1146/annurev.micro.56.012302.160705 [Google Scholar]
  49. Y. H. An, R. J. Friedman, J. Biomed. Mater. Res., 1998, 43, (3), 338 LINK https://doi.org/10.1002/(sici)1097-4636(199823)43:3<338::aid-jbm16>3.0.co;2-b [Google Scholar]
  50. M. Katsikogianni, Y. F. Missirlis, Eur. Cells Mater., 2004, 8, 37 LINK https://doi.org/10.22203/ecm.v008a05 [Google Scholar]
  51. T. R. Garrett, M. Bhakoo, Z. Zhang, Prog. Nat. Sci., 2008, 18, (9), 1049 LINK https://doi.org/10.1016/j.pnsc.2008.04.001 [Google Scholar]
  52. R. M. Goulter, I. R. Gentle, G. A. Dykes, Lett. Appl. Microbiol., 2009, 49, (1), 1 LINK https://doi.org/10.1111/j.1472-765x.2009.02591.x [Google Scholar]
  53. V. M. Villapún, A. P. Gomez, W. Wei, L. G. Dover, J. R. Thompson, T. Barthels, J. Rodriguez, S. Cox, S. González, APL Mater., 2020, 8, (9), 091108 LINK https://doi.org/10.1063/5.0017580 [Google Scholar]
  54. N. Chik, W. S. Wan Md Zain, A. J. Mohamad, M. Z. Sidek, W. H. Wan Ibrahim, A. Reif, J. H. Rakebrandt, W. Pfleging, X. Liu, IOP Conf. Ser.: Mater. Sci. Eng., 2018, 358, 012034 LINK https://doi.org/10.1088/1757-899x/358/1/012034 [Google Scholar]
  55. Z. A. Mirani, A. Fatima, S. Urooj, M. Aziz, M. Khan, T. Abbas, Iran J. Basic Med. Sci., 2018, 21, (7), 760 LINK https://doi.org/10.22038/IJBMS.2018.28525.6917 [Google Scholar]
  56. A. N. Hassan, J. F. Frank, Int. J. Food Microbiol., 2004, 96, (1), 103 LINK https://doi.org/10.1016/s0168-1605(03)00160-0 [Google Scholar]
  57. F. H. Rajab, C. M. Liauw, P. S. Benson, L. Li, K. A. Whitehead, Food Bioprod. Process., 2018, 109, 29 LINK https://doi.org/10.1016/j.fbp.2018.02.009 [Google Scholar]
  58. D. Patil, S. Aravindan, M. K. Wasson, V. P. and, P. V. Rao, J. Micro Nano-Manuf., 2018, 6, (1), 011002 LINK https://doi.org/10.1115/1.4038093 [Google Scholar]
  59. P. V. Mahalakshmi, S. C. Vanithakumari, J. Gopal, U. K. Mudali, B. Raj, Curr. Sci., 2011, 101, (10), 1328 LINK https://www.currentscience.ac.in/Volumes/101/10/1328.pdf [Google Scholar]
  60. J. Chapman, F. Regan, Adv. Eng. Mater., 2012, 14, (4), B 175 LINK https://doi.org/10.1002/adem.201180037 [Google Scholar]
  61. W. G. Pitt, M. Alizadeh, G. A. Husseini, D. S. McClellan, C. M. Buchanan, C. G. Bledsoe, R. A. Robison, R. Blanco, B. L. Roeder, M. Melville, A. K. Hunter, Biotechnol. Prog., 2016, 32, (4), 823 LINK https://doi.org/10.1002/btpr.2299 [Google Scholar]
  62. S. Arkan-Ozdemir, N. Cansever, E. Ilhan-Sungur, Water Sci. Technol., 2020, 82, (5), 940 LINK https://doi.org/10.2166/wst.2020.396 [Google Scholar]
  63. E. Ilhan-Sungur, A. Çotuk, Corros. Sci., 2010, 52, (1), 161 LINK https://doi.org/10.1016/j.corsci.2009.08.049 [Google Scholar]
  64. H. Rohde, E. C. Burandt, N. Siemssen, L. Frommelt, C. Burdelski, S. Wurster, S. Scherpe, A. P. Davies, L. G. Harris, M. A. Horstkotte, J. K.-M. Knobloch, C. Ragunath, J. B. Kaplan, D. Mack, Biomaterials, 2007, 28, (9), 1711 LINK https://doi.org/10.1016/j.biomaterials.2006.11.046 [Google Scholar]
  65. E. A. Izano, M. A. Amarante, W. B. Kher, J. B. Kaplan, Appl. Environ. Microbiol., 2008, 74, (2), 470 LINK https://doi.org/10.1128/aem.02073-07 [Google Scholar]
  66. G. Sharma, S. Sharma, P. Sharma, D. Chandola, S. Dang, S. Gupta, R. Gabrani, J. Appl. Microbiol., 2016, 121, (2), 309 LINK https://doi.org/10.1111/jam.13078 [Google Scholar]
  67. G. G. Anderson, J. J. Palermo, J. D. Schilling, R. Roth, J. Heuser, S. J. Hultgren, Science, 2003, 301, (5629), 105 LINK https://doi.org/10.1126/science.1084550 [Google Scholar]
  68. S. S. Justice, C. Hung, J. A. Theriot, D. A. Fletcher, G. G. Anderson, M. J. Footer, S. J. Hultgren, Proc. Natl. Acad. Sci., 2004, 101, (5), 1333 LINK https://doi.org/10.1073/pnas.0308125100 [Google Scholar]
  69. C. Beloin, A. Roux, J.-M. Ghigo, T Romeo, Escherichia coli Biofilms’, in “Bacterial Biofilms”, ed. 322, Springer-Verlag, Berlin, Germany, 2008, pp. 249289 LINK https://doi.org/10.1007/978-3-540-75418-3_12 [Google Scholar]
/content/journals/10.1595/205651322X16457881164562
Loading
/content/journals/10.1595/205651322X16457881164562
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test