Skip to content
1887
Volume 67, Issue 1
  • ISSN: 2056-5135

Abstract

Flame is a natural phenomenon and is a basic element of any combustion process. The majority of flames consist of a gas; there is, however, a small amount of ionisation occurring in the flame. Despite the increased focus on combustion-free energy production such as wind, air and water power, and the refocus on nuclear energy now considered to be carbon-free, nonetheless combustion will remain, for the next few decades, the major energy and heat production route worldwide. Apart from carbon dioxide, which is commonly considered to be the major pollutant, there are other gases like nitric oxide and nitrogen dioxide which, although found in significantly lower amounts in the exhaust gases from combustion units, still present a large environmental impact and are a concern. There are however well-established technologies for removing combustion products from the exhaust gas, and the combustion process can in general be made CO and environmentally neutral. Combustion optimisation is a route for further reduction of undesirable byproducts, fuel consumption minimisation and finally an overall energy and heat production enhancement. The key parameter in any combustion process is reliable flame and (post-) combustion gas temperature measurement and control. Various combustion environments such as waste incineration, internal combustion engines or solids explosions cause the appearance of various optical emission features in different spectral ranges not accessible to the human eye. A combination of modern and newly developed fast spectral optical techniques with extensive theoretical developments in spectral and heat radiative transfer modelling allows us to obtain detailed snapshots of what is happening in the combustion process. That also gives a possibility to establish a direct link to the industrial process control and pollutant emission reduction. In this article some examples of flame and gas temperature measurements in various combustion environments and advanced spectral modelling are given and perspectives for further commercial instrumentation developments are discussed.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16643556587827
2022-09-28
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/1/Fateev_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16643556587827&mimeType=html&fmt=ahah

References

  1. Nicholas J. V., and White D. R. “Traceable Temperatures: An Introduction to Temperature Measurement and Calibration”, 2nd Edn., John Wiley and Sons Ltd, Chichester, UK, 2001, 421 pp [Google Scholar]
  2. “Radiometric Temperature Measurements: I. Fundamentals”, eds. Zhang Z. M., Tsai B. K., and Machin G. Elsevier Inc, San Diego, USA, 2010 [Google Scholar]
  3. “Radiometric Temperature Measurements: II. Applications”, eds. Zhang Z. M., Tsai B. K., and Machin G. Elsevier Inc, San Diego, USA, 2010 [Google Scholar]
  4. Michalski L., Eckersdorf K., Kucharski J., and McGhee J. “Temperature Measurement”, 2nd Edn., John Wiley and Sons Ltd, Chichester, UK, 2001 [Google Scholar]
  5. Childs P. R. N. “Practical Temperature Measurement”, Butterworth-Heinemann, Oxford, UK, 2001 [Google Scholar]
  6. Thorne A. P. “Spectrophysics”, 2nd Edn., Chapman and Hall Ltd, London, UK, 1988 [Google Scholar]
  7. Book A. “Optical Temperature Measurement in Combustion Plants”, Technical Report TR_017_202007_en, KELLER HCW GmbH, Ibbenbüren, Germany, 2020 LINK https://www.keller.de/dl.php?f=optical-temperature-measurement-in-combustion-plants&h=8a3bf569ce2a0ffL3Zhci93d3cvZnRwL2l0cy9JVFMvw7ZmZmVudGxpY2hlciBCZXJlaWNoIGZyZWllciBadWdhbmcvZW4vVGVjaG5pY2FsIFJlcG9ydHMvMDIgQXBwbGljYXRpb25zL1RSIE9wdGljYWwgdGVtcGVyYXR1cmUgbWVhc3VyZW1lbnQgaW4gY29tYnVzdGlvbiBwbGFudHNfSUQyNTEwXzIwMjAwN19lbi5wZGY [Google Scholar]
  8. Modest M. F., and Mazumder S. “Radiative Heat Transfer”, 4th Edn., Elsevier Inc, San Diego, USA, 2022, 987 pp [Google Scholar]
  9. Deguchi Y. “Industrial Applications of Laser Diagnostics”, Taylor and Francis Group LLC, Boca Raton, USA, 2012, 302 pp LINK https://doi.org/10.1201/b11497 [Google Scholar]
  10. Himes R. “Demonstration of the ZoloBOSS System at TVA’s Gallatin Station”, Document No. 1018182, Electric Power Research Institute, Palo Alto, USA, 2008, 90 pp LINK https://www.epri.com/research/products/000000000001018182 [Google Scholar]
  11. Chung K. B., Gouldin F. C., and Wolga G. J. Appl. Opt., 1995, 34, (24), 5492 LINK https://doi.org/10.1364/AO.34.005492 [Google Scholar]
  12. Altmann U.-S., and Förster T. “Development of a Firing Diagnosis System for Utility Steam Generator using Soft-Computing Methods”, Final Report aFuE-Project, FMER Grant No. 1744X04, University of Applied Science Zittau/Goerlitz, Zittau, Germany, 2007 [Google Scholar]
  13. Gordon I. E., Rothman L. S., Hargreaves R. J., Hashemi R., Karlovets E. V., Skinner F. M., Conway E. K., Hill C., Kochanov R. V., Tan Y., Wcisło P., Finenko A. A., Nelson K., Bernath P. F., Birk M., Boudon V., Campargue A., Chance K. V., Coustenis A., Drouin B. J., Flaud J.-M., Gamache R. R., Hodges J. T., Jacquemart D., Mlawer E. J., Nikitin A. V., Perevalov V. I., Rotger M., Tennyson J., Toon G. C., Tran H., Tyuterev V. G., Adkins E. M., Baker A., Barbe A., Canè E., Császár A. G., Dudaryonok A., Egorov O., Fleisher A. J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J. J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N. N., Lee T. J., Long D. A., Lukashevskaya A. A., Lyulin O. M., Makhnev V. Yu., Matt W., Massie S. T., Melosso M., Mikhailenko S. N., Mondelain D., Müller H. S. P., Naumenko O. V., Perrin A., Polyansky O. L., Raddaoui E., Raston P. L., Reed Z. D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D. W., Starikova E., Sung K., Tamassia F., Tashkun S. A., Vander Auwera J., Vasilenko I. A., Vigasin A. A., Villanueva G. L., Vispoel B., Wagner G., Yachmenev A., and Yurchenko S. N. J. Quant. Spectrosc. Radiat. Trans., 2022, 277, 107949 LINK https://doi.org/10.1016/j.jqsrt.2021.107949 [Google Scholar]
  14. Rothman L. S., Gordon I. E., Barber R. J., Dothe H., Gamache R. R., Goldman A., Perevalov V., Tashkun S. A., and Tennyson J. J. Quant. Spectrosc. Radiat. Trans., 2010, 111, (15), 2139 LINK https://doi.org/10.1016/j.jqsrt.2010.05.001 [Google Scholar]
  15. Sutton G., Fateev A., Rodríguez-Conejo M. A., Meléndez J., and Guarnizo G. Int. J. Thermophys., 2019, 40, (11), 99 LINK https://doi.org/10.1007/s10765-019-2557-6 [Google Scholar]
  16. Ren T., Modest M. F., Fateev A., and Clausen S. J. Quant. Spectrosc. Radiat. Trans., 2015, 151, 198 LINK https://doi.org/10.1016/j.jqsrt.2014.10.005 [Google Scholar]
  17. Ren T., Modest M. F., Fateev A., Sutton G., Zhao W., and Rusu F. Appl. Energy, 2019, 252, 113448 LINK https://doi.org/10.1016/j.apenergy.2019.113448 [Google Scholar]
  18. Owens A., Mitrushchenkov A., Yurchenko S. N., and Tennyson J. Month. Not. Roy. Astron. Soc., 2022, 516, (3), 3995 LINK https://doi.org/10.1093/mnras/stac2462 [Google Scholar]
  19. de Groot J. J., and van Vliet J. A. J. M. ‘Spectrum and Related Discharge Properties: Calculated and Measured Spectra’, in “The High-Pressure Sodium Lamp”, Ch. 3, Kluwer Technische Boeken BV, Deventer, The Netherlands, 1986, pp. 7176 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651323X16643556587827
Loading
/content/journals/10.1595/205651323X16643556587827
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error