Skip to content
Volume 68, Issue 1
  • ISSN: 2056-5135


Coating surfaces with bioactive glass can be defined as depositing fine bioactive glasses on biomaterial substrates. Cobalt-chromium is a viable alternative to stainless steel for long-term applications with superior ductility. The mechanical properties of cobalt-chromium alloys are high strength with elastic modulus of 220–2300 GPa, more significant than the 30 GPa of bones. Combining metals and bioactive glass results in high biocompatibility and improved bioactivity of implant surfaces. In addition, it triggers new bone tissue to regenerate through osteogenesis and mineralisation. However, implantation failure still occurs and requires surgery revision due to a lack of adequate bone bonding and delamination at the coating surface of the implant. The current review summarises the adhesion between bioactive glass coatings and cobalt-chromium substrates applied through electrophoretic deposition (EPD).


Article metrics loading...

Loading full text...

Full text loading...



  1. Oliver J. N., Su Y., Lu X., Kuo P.-H., Du J., and Zhu D. Bioact. Mater., 2019, 4, 261 LINK [Google Scholar]
  2. Cho J., Cannio M., and Boccaccini A. R. Int. J. Mater. Prod. Technol., 2009, 35, (3/4), 260 LINK [Google Scholar]
  3. Asri R. I. M., Harun W. S. W., Samykano M., Lah N. A. C., Ghani S. A. C., Tarlochan F., and Raza M. R. Mater. Sci. Eng.: C, 2017, 77, 1261 LINK [Google Scholar]
  4. Dehghanghadikolaei A., and Fotovvati B. Materials, 2019, 12, (11), 1795 LINK [Google Scholar]
  5. Nouri A., Hodgson P. D., Wen C., ‘Biomimetic Porous Titanium Scaffolds for Orthopedic and Dental Applications’, in “Biomimetics Learning from Nature”, ed. and Mukherjee A. InTech Open Ltd, London, UK, 2010, pp. 415450 LINK [Google Scholar]
  6. Su Y., Cockerill I., Zheng Y., Tang L., Qin Y.-X., and Zhu D. Bioact. Mater., 2019, 4, 196 LINK [Google Scholar]
  7. Sola A., Bellucci D., Cannillo V., and Cattini A. Surf. Eng., 2011, 27, (8), 560 LINK [Google Scholar]
  8. Liu J., Rafiq N. B. M., Wong L. M., and Wang S. Front. Chem., 2021, 9, 768007 LINK [Google Scholar]
  9. Gittens R. A., Olivares-Navarrete R., Schwartz Z., and Boyan B. D. Acta Biomater., 2014, 10, (8), 3363 LINK [Google Scholar]
  10. Priyadarshini B., Rama, Chetan M., and Vijayalakshmi U. J. Asian Ceram. Soc., 2019, 7, (4), 397 LINK [Google Scholar]
  11. Nuss K. M. R., and von Rechenberg B. Open Orthop. J., 2008, 2, 66 LINK [Google Scholar]
  12. Haseeb M., Butt M. F., Altaf T., Muzaffar K., Gupta A., and Jallu A. Int. J. Health Sci. (Qassim), 2017, 11, (1), 1 LINK [Google Scholar]
  13. Chen Q., Jing J., Qi H., Ahmed I., Yang H., Liu X., Lu T. L., and Boccaccini A. R. ACS Appl. Mater. Interfaces, 2018, 10, (14), 11529 LINK [Google Scholar]
  14. Ballo A. M., Omar O., Xia W., Palmquist A., ‘Dental Implant Surfaces –Physicochemical Properties, Biological Performance, and Trends’, in “Implant Dentistry – A Rapidly Evolving Practice”, ed. and Turkyilmaz I. InTech Open Ltd, London, UK, 2011, pp. 1956 LINK [Google Scholar]
  15. Dorozhkin S. V. Acta Biomater., 2014, 10, (7), 2919 LINK [Google Scholar]
  16. Besra L., and Liu M. Prog. Mater. Sci., 2007, 52, 1 LINK [Google Scholar]
  17. Seuss S., Chavez A., Yoshioka T., Stein J., Boccaccini A. R., Bose S., and Bandyopadhyay A. ‘Electrophoretic Deposition of Soft Coatings for Orthopaedic Applications’, in “Biomaterials Science: Processing, Properties and Applications II: Ceramic Transactions”, eds. Narayan R., 237, John Wiley & Sons Inc, Hoboken, USA, 2012, pp. 145152 LINK [Google Scholar]
  18. Bekmurzayeva A., Duncanson W. J., Azevedo H. S., and Kanayeva D. Mater. Sci. Eng.: C, 2018, 93, 1073 LINK [Google Scholar]
  19. Chen Q., and Thouas G. A. Mater. Sci. Eng. R: Rep., 2015, 87, 1 LINK [Google Scholar]
  20. Zheng Y. F., Gu X. N., and Witte F. Mater. Sci. Eng. R: Reports, 2014, 77, 1 LINK [Google Scholar]
  21. Elias C. N., Fernandes D. J., de Souza F. M., dos Santos Monteiro E., and de Biasi R. S. J. Mater. Res. Technol., 2019, 8, (1), 1060 LINK [Google Scholar]
  22. Kuei-Haw-Wang K., Dumbleton J. H., and Gustavson L. J. Pfizer Hospital Products Group Inc, ‘Dispersion Strengthened Cobalt-Chromium-Molybdenum Alloy Produced by Gas Atomization’, European Patent 213,781; 1989 [Google Scholar]
  23. ‘Cobalt Chrome Chromium Precision Alloy With Good Price’, Alibaba Group, Hangzhou, China: (Accessed on 11th January 2022) [Google Scholar]
  24. del Corso D. J. CRS Holding Inc, ‘Co-Cr-Mo Powder Metallurgy Articles and Process for Their Manufacture’, US Patent 5,462,575; 1995 [Google Scholar]
  25. Mavrogenis A. F., Papagelopoulos P. J., and Babis G. C. J. Long-Term. Eff. Med. Implants, 2011, 21, (4), 349 LINK [Google Scholar]
  26. Marti A. Injury, 2000, 31, (Suppl 4), D18 LINK [Google Scholar]
  27. Jacobs J., Skipor A., Doorn P., Campbell P., Schmalzried T., Black J., and Amstutz H. Clin. Orthop. Relat. Res., 1996, 329, S256 LINK [Google Scholar]
  28. Lhotka C., Szekeres T., Steffan I., Zhuber K., and Zweymüller K. J. Orthop. Res., 2003, 21, (2), 189 LINK [Google Scholar]
  29. Schaffer A. W., Schaffer A., Pilger A., Engelhardt C., Zweymueller K., Ruediger H. W., and Schaffer A. J. Toxicol: Clin. Toxicol., 1999, 37, (7), 839 LINK [Google Scholar]
  30. Haynes D. R., Rogers S. D., Hay S., Pearcy M. J., and Howie D. W. J. Bone Joint Surg., 1993, 75, (6), 825 LINK [Google Scholar]
  31. Okazaki Y., and Gotoh E. Biomaterials, 2005, 26, (1), 11 LINK [Google Scholar]
  32. Navarro M., Michiardi A., Castaño O., and Planell J. A. J. R. Soc. Interface, 2008, 5, (27), 1137 LINK [Google Scholar]
  33. Rani Bijukumar D., Segu A., Mou Y., Ghodsi R., Shokufhar T., Barba M., Li X.-J., and Thoppil Mathew M. Nanotoxicology, 2018, 12, (9), 941 LINK [Google Scholar]
  34. Bijukumar D., Segu A., Chastain P., and Mathew M. T. Cell Biol. Toxicol., 2021, 37, (6), 833 LINK [Google Scholar]
  35. Bijukumar D. R., Segu A., Souza J. C. M., Li X. J., Barba M., Mercuri L. G., Jacobs J. J., and Mathew M. T. Nanomed.: Nanotechnol. Biol. Med., 2018, 14, (3), 951 LINK [Google Scholar]
  36. Green B., Griffiths E., and Almond S. BMC Psychiatry, 2017, 17, 33 LINK [Google Scholar]
  37. Holy C. E., Zhang S., Perkins L. E., Hasgall P., Katz L. B., Brown J. R., Orlandini L., Fessel G., Nasseri-Aghbosh B., Eichenbaum G., Egnot N. S., Marcello S., and Coplan P. M. Regul. Toxicol. Pharmacol., 2022, 129, 105096 LINK [Google Scholar]
  38. Fujino S., Tokunaga H., Saiz E., and Tomsia A. P. Mater. Trans., 2004, 45, (4), 1147 LINK [Google Scholar]
  39. Genchi G., Carocci A., Lauria G., Sinicropi M. S., and Catalano A. Int. J. Environ. Res. Public Health, 2020, 17, (3), 679 LINK [Google Scholar]
  40. Guo Z., Pang X., Yan Y., Gao K., Volinsky A. A., and Zhang T.-Y. Appl. Surf. Sci., 2015, 347, 23 LINK [Google Scholar]
  41. Bellucci D., Cannillo V., and Sola A. Ceram. Int., 2011, 37, (8), 2963 LINK [Google Scholar]
  42. Garrido B., Dosta S., and Cano I. G. Bol. Soc. Esp. Ceram. Vidr., 2021, 61, (5), 516 LINK [Google Scholar]
  43. Kirsten A., Hausmann A., Weber M., Fischer J., and Fischer H. J. Dent. Res., 2015, 94, (2), 297 LINK [Google Scholar]
  44. Fischer J., Stawarczyk B., Tomic M., Strub J. R., and Hämmerle C. H. F. Dent. Mater. J., 2007, 26, (6), 766 LINK [Google Scholar]
  45. Evans A. G., Crumley G. B., and Demaray R. E. Oxid. Met., 1983, 20, (5–6), 193 LINK [Google Scholar]
  46. “Biomedical Materials”, ed. Narayan R. Springer Science and Business Media LLC, New York, USA, 2009, 566 pp LINK [Google Scholar]
  47. Babu M. M., Prasad P. S., Bindu S. H., Prasad A., Rao P. V., Govindan N. P., Veeraiah N., and Özcan M. J. Compos. Sci., 2020, 4, (3), 129 LINK [Google Scholar]
  48. Anigrahawati P., Sahar M. R., and Ghoshal S. K. Mater. Chem. Phys., 2015, 155, 155 LINK [Google Scholar]
  49. Kapoor S., Goel A., Correia A. F., Pascual M. J., Lee H.-Y., Kim H.-W., and Ferreira J. M. F. Mater. Sci. Eng.: C, 2015, 53, 252 LINK [Google Scholar]
  50. Zhang L., and Liu S. J. Non-Cryst. Solids, 2017, 473, 108 LINK [Google Scholar]
  51. Jackson M. J., and Mills B. J. Mater. Sci. Lett., 1997, 16, (15), 1264 LINK [Google Scholar]
  52. Fluegel A. Glass Technol. – Eur. J. Glass Sci. Technol. Part A, 2010, 51, (5), 191 LINK [Google Scholar]
  53. O’Donnell M. D. Acta Biomater., 2011, 7, (5), 2264 LINK [Google Scholar]
  54. Hench L. L. J. Mater. Sci.: Mater. Med., 2006, 17, (11), 967 LINK [Google Scholar]
  55. Parry T., and Fitzsimons B. ‘Coating Failures and Defects: A Comprehensive Field Guide’, Corrosionpedia, Janalta Interactive Inc, Edmonton, Canada, 46 pp: (Accessed on 3rd January 2022) [Google Scholar]
  56. Schoff C. K. ‘Automotive Coatings: Application Defects’, American Coatings Association, Washington, DC, USA: (Accessed on 3rd January 2022) [Google Scholar]
  57. Talbert R. ‘Porosity Causes on Powder – Coated Surfaces’, Products Finishing, Cincinnati, USA: (Accessed on 3rd January 2022) [Google Scholar]
  58. Lacefleld W. R., and Hench L. L. Biomaterials, 1986, 7, (2), 104 LINK [Google Scholar]
  59. Farrokhi-Rad M., Loghmani S. K., Shahrabi T., and Khanmohammadi S. J. Eur. Ceram. Soc., 2014, 34, (1), 97 LINK [Google Scholar]
  60. Henriques B., Gasik M., Souza J. C. M., Nascimento R. M., Soares D., and Silva F. S. J. Mech. Behav. Biomed. Mater., 2014, 30, 103 LINK [Google Scholar]
  61. Li Y., Jahr H., Zhou J., and Zadpoor A. A. Acta Biomater., 2020, 115, 29 LINK [Google Scholar]
  62. Singh S., Singh G., and Bala N. Mater. Today: Proc., 2018, 5, (9), Part 3, 20160 LINK [Google Scholar]
  63. Tabia Z., Bricha M., El Mabrouk K., and Vaudreuil S. J. Mater. Sci., 2021, 56, (2), 1658 LINK [Google Scholar]
  64. Hench L. L., and Paschall H. A. J. Biomed. Mater. Res., 1973, 7, (3), 25 LINK [Google Scholar]
  65. Rahaman M. N., Day D. E., Bal B. S., Fu Q., Jung S. B., Bonewald L. F., and Tomsia A. P. Acta Biomater., 2011, 7, (6), 2355 LINK [Google Scholar]
  66. de Greñu B. D., de los Reyes R., Costero A. M., Amorós P., and Ros-Lis J. V. Nanomaterials, 2020, 10, (6), 1092 LINK [Google Scholar]
  67. Azzouz I., Faure J., Khlifi K., Larbi A. C., and Benhayoune H. Coatings, 2020, 10, (12), 1192 LINK [Google Scholar]
  68. Kuo P.-H., Joshi S. S., Lu X., Ho Y.-H., Xiang Y., Dahotre N. B., and Du J. Int. J. Appl. Glass Sci., 2019, 10, (3), 307 LINK [Google Scholar]
  69. Krause D., Thomas B., Leinenbach C., Eifler D., Minay E. J., and Boccaccini A. R. Surf. Coatings Technol., 2006, 200, (16–17), 4835 LINK [Google Scholar]
  70. Pishbin F., Mouriño V., Flor S., Kreppel S., Salih V., Ryan M. P., and Boccaccini A. R. ACS Appl. Mater. Interfaces, 2014, 6, (11), 8796 LINK [Google Scholar]
  71. Batool S. A., Wadood A., Hussain S. W., Yasir M., and Ur Rehman M. A. Surfaces, 2021, 4, (3), 205 LINK [Google Scholar]
  72. Fathi M. H., and Doostmohammadi A. J. Mater. Process. Technol., 2009, 209, (3), 1385 LINK [Google Scholar]
  73. Cattini A., Bellucci D., Sola A., Pawłowski L., and Cannillo V. J. Biomed. Mater. Res.: B.: Appl. Biomater., 2014, 102, (3), 551 LINK [Google Scholar]
  74. Miola M., Verné E., Ciraldo F. E., Cordero-Arias L., and Boccaccini A. R. Front. Bioeng. Biotechnol., 2015, 3, 1 LINK [Google Scholar]
  75. Distler T., Fournier N., Grünewald A., Polley C., Seitz H., Detsch R., and Boccaccini A. R. Front. Bioeng. Biotechnol., 2020, 8, 552 LINK [Google Scholar]
  76. Bagherpour I., Naghib S. M., and Yaghtin A. H. IET Nanobiotechnol., 2018, 12, (7), 895 LINK [Google Scholar]
  77. Joung Y. S., and Buie C. R. Massachusetts Institute of Technology, ‘Electrophoretic-Deposited Surfaces’, US Patent 9,096,942; 2015 [Google Scholar]
  78. Cordero-Arias L., Cabanas-Polo S., Gilabert J., Goudouri O. M., Sanchez E., Virtanen S., and Boccaccini A. R. Adv. Appl. Ceram., 2014, 113, (1), 42 LINK [Google Scholar]
  79. Kollath V. O., Chen Q., Mullens S., Luyten J., Traina K., Boccaccini A. R., and Cloots R. J. Mater. Sci., 2016, 51, (5), 2338 LINK [Google Scholar]
  80. Farhadian M., Raeissi K., Golozar M. A., Labbaf S., Hajilou T., and Barnoush A. Surf. Coat. Technol., 2019, 380, 125015 LINK [Google Scholar]
  81. Shirdar M. R., Izman S., Ahmad H. M. K. N., and Ma’aram A. Surf. Innov., 2017, 5, (2), 90 LINK [Google Scholar]
  82. Han C., Yao Y., Cheng X., Luo J., Luo P., Wang Q., Yang F., Wei Q., and Zhang Z. Biomacromolecules, 2017, 18, (11), 3776 LINK [Google Scholar]
  83. Seuss S., Lehmann M., and Boccaccini A. R. Int. J. Mol. Sci., 2014, 15, (7), 12231 LINK [Google Scholar]
  84. Hanaor D., Michelazzi M., Veronesi P., Leonelli C., Romagnoli M., and Sorrell C. J. Eur. Ceram. Soc., 2011, 31, (6), 1041 LINK [Google Scholar]
  85. Su Y., and Zhitomirsky I. J. Colloid Inteface Sci., 2013, 399, 46 LINK [Google Scholar]
  86. ‘An Introduction to Zeta Potential in 30 Minutes’, Zetasizer Nano Series Technical Note MRK 654-01, Malvern Panalytical Ltd, Malvern, UK, 2011 [Google Scholar]
  87. Ma K., Huang D., Cai J., Cai X., Gong L., Huang P., Wang Y., and Jiang T. Colloids Surf. B: Biointerfaces, 2016, 146, 97 LINK [Google Scholar]
  88. Diba M., Fam D. W. H., Boccaccini A. R., and Shaffer M. S. P. Prog. Mater. Sci., 2016, 82, 83 LINK [Google Scholar]
  89. Ahmed Y., Nawaz A., Virk R. S., Wadood A., and Rehman M. A. U. Int. J. Ceram. Eng. Sci., 2020, 2, (5), 254 LINK [Google Scholar]
  90. Safavi M. S., Walsh F. C., Surmeneva M. A., Surmenev R. A., and Allafi J. K.- Coatings, 2021, 11, (1), 110 LINK [Google Scholar]
  91. Sari M., Kristianto, Chotimah N. A., Ana I. D., and Yusuf Y. Coatings, 2021, 11, (8), 941 LINK [Google Scholar]
  92. Boccaccini A. R., Chicatun F., Cho J., Bretcanu O., Roether J. A., Novak S., and Chen Q. Z. Adv. Funct. Mater., 2007, 17, (15), 2815 LINK [Google Scholar]
  93. Boccaccini A. R., Keim S., Ma R., Li Y., and Zhitomirsky I. J. R. Soc. Interface, 2010, 7, (5), S 581 LINK [Google Scholar]
  94. ‘Adhesion in Paint and Coatings’, SpecialChem, Paris, France: (Accessed on 1st November 2022) [Google Scholar]
  95. Owate I. O., Ezi C. W. I., and Avwiri G. J. Appl. Sci. Environ. Manag., 2002, 6, (2), 79 LINK [Google Scholar]
  96. Moghadas H., Saidi M. S., Kashaninejad N., Kiyoumarsioskouei A., and Nguyen N.-T. Biomed. Microdevices, 2017, 19, (4), 74 LINK [Google Scholar]
  97. Abbass M. K., Khadhim M. J., Jasim A. N., and Issa M. J. J. Phys.: Conf. Ser., 2021, 1773, 012035 LINK [Google Scholar]
  98. Hong J.-Y., Ko S.-Y., Lee W., Chang Y.-Y., Kim S.-H., and Yun J.-H. Materials, 2020, 13, (14), 3061 LINK [Google Scholar]
  99. Van Tassel J. J., and Randall C. A. Key Eng. Mater., 2006, 314, 167 LINK [Google Scholar]
  100. Dorozhkin S. V. Adv. Nano-Bio-Mater. Dev., 2019, 3, (4), 422 LINK [Google Scholar]
  101. Kawaguchi K., Iijima M., Endo K., and Mizoguchi I. Coatings, 2017, 7, (11), 199 LINK [Google Scholar]
  102. Miola M., Cordero-Arias L., Ferlenda G., Cochis A., Virtanen S., Rimondini L., Verné E., and Boccaccini A. R. Surf. Coatings Technol., 2021, 418, 127183 LINK [Google Scholar]
  103. Xin A., Zhang R., Yu K., and Wang Q. J. Mech. Phys. Solids, 2019, 125, 1 LINK [Google Scholar]
  104. Nawaz A., and Ur Rehman M. A. J. Appl. Polym. Sci., 2021, 138, (15), 50220 LINK [Google Scholar]
  105. Folgado J., and Fernandes P. R. ‘Bone Tissue Mechanics’, Biomecânica dos Tecidos, Instituto Superior Tecnico, Lisbon, Portugal, 2015 LINK [Google Scholar]
  106. ‘Bone Density Scan’, MedlinePlus, National Library of Medicine, Bethesda, USA, 2020: (Accessed on 26th March 2021) [Google Scholar]
  107. Chlebus E., Kuźnicka B., Kurzynowski T., and Dybała B. Mater. Charact., 2011, 62, (5), 488 LINK [Google Scholar]
  108. Li Y., Jahr H., Lietaert K., Pavanram P., Yilmaz A., Fockaert L. I., Leeflang M. A., Pouran B., Gonzalez-Garcia Y., Weinans H., Mol J. M. C., Zhou J., and Zadpoor A. A. Acta Biomater., 2018, 77, 380 LINK [Google Scholar]
  109. Liverani E., Rogati G., Pagani S., Brogini S., Fortunato A., and Caravaggi P. J. Mech. Behav. Biomed. Mater., 2021, 121, 104608 LINK [Google Scholar]
  110. Adhikari J., Saha P., Sinha A., Sreekala M. S., and Thomas S. ‘Surface Modification of metallic bone implants –Polymer and Polymer-Assisted Coating for Bone In-Growth’, in “Fundemental Biomaterials: Metals”, eds. Balakrishnan P., Elsevier Ltd, Duxford, UK, 2018, pp. 299321 LINK [Google Scholar]
  111. Kahla R. B., and Barkaoui A. ‘Bone Multiscale Mechanics’, in “Bone Remodelling Process: Mechanics, Biology, and Numerical Modeling”, Elsevier Inc, San Diego, USA, 2021, pp. 147 LINK [Google Scholar]
  112. Sahoo P., Das S. K., Paulo Davim J., ‘Tribiology of Materials for Biomedical Applications’, in “Mechanical Behaviour of Biomaterials”, ed. and Davim J. P. Woodhead Pulishing Series in Biomaterials, Ch. 1, Elsevier Ltd, Duxford, UK, 2019, pp. 145 LINK [Google Scholar]
  113. Singh B., Singh G., and Sidhu B. S. J. Therm. Spray Technol., 2018, 27, (8), 1401 LINK [Google Scholar]
  114. Djošić M., Janković A., and Mišković-Stanković V. Materials, 2021, 14, (18), 5391 LINK [Google Scholar]
  115. Lacefield W. R. Ann. N. Y. Acad. Sci., 1988, 523, (1), 72 LINK [Google Scholar]
  116. Hazlehurst K. B., Jiang C. J., and Stanford M. Mater. Des., 2014, 60, 177 LINK [Google Scholar]
  117. Hazlehurst K., Wang C. J., and Stanford M. Mater. Des., 2013, 51, 949 LINK [Google Scholar]
  118. Baino F., Hamzehlou S., and Kargozar S. J. Funct. Biomater., 2018, 9, (1), 25 LINK [Google Scholar]
  119. van der Biest O., Put S., Anné G., and Vleugels J. J. Mater. Sci., 2004, 39, (3), 779 LINK [Google Scholar]
  120. Zhou J., He H., Shi Z., Liu G., and Nan C.-W. J. Appl. Phys., 2006, 100, (9), 094106 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error