Skip to content
1887
Volume 68, Issue 1
  • ISSN: 2056-5135

Abstract

Coating surfaces with bioactive glass can be defined as depositing fine bioactive glasses on biomaterial substrates. Cobalt-chromium is a viable alternative to stainless steel for long-term applications with superior ductility. The mechanical properties of cobalt-chromium alloys are high strength with elastic modulus of 220–2300 GPa, more significant than the 30 GPa of bones. Combining metals and bioactive glass results in high biocompatibility and improved bioactivity of implant surfaces. In addition, it triggers new bone tissue to regenerate through osteogenesis and mineralisation. However, implantation failure still occurs and requires surgery revision due to a lack of adequate bone bonding and delamination at the coating surface of the implant. The current review summarises the adhesion between bioactive glass coatings and cobalt-chromium substrates applied through electrophoretic deposition (EPD).

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16685352825345
2022-11-15
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/1/ElMabrouk1_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16685352825345&mimeType=html&fmt=ahah

References

  1. J. N. Oliver, Y. Su, X. Lu, P.-H. Kuo, J. Du, D. Zhu, Bioact. Mater., 2019, 4, 261 LINK https://doi.org/10.1016/J.BIOACTMAT.2019.09.002 [Google Scholar]
  2. J. Cho, M. Cannio, A. R. Boccaccini, Int. J. Mater. Prod. Technol., 2009, 35, (3/4), 260 LINK https://doi.org/10.1504/ijmpt.2009.025680 [Google Scholar]
  3. R. I. M. Asri, W. S. W. Harun, M. Samykano, N. A. C. Lah, S. A. C. Ghani, F. Tarlochan, M. R. Raza, Mater. Sci. Eng.: C, 2017, 77, 1261 LINK https://doi.org/10.1016/J.MSEC.2017.04.102 [Google Scholar]
  4. A. Dehghanghadikolaei, B. Fotovvati, Materials, 2019, 12, (11), 1795 LINK https://doi.org/10.3390/ma12111795 [Google Scholar]
  5. A. Nouri, P. D. Hodgson, C. Wen, ‘Biomimetic Porous Titanium Scaffolds for Orthopedic and Dental Applications’, in “Biomimetics Learning from Nature”, ed. A. Mukherjee, InTech Open Ltd, London, UK, 2010, pp. 415450 LINK https://doi.org/10.5772/8787 [Google Scholar]
  6. Y. Su, I. Cockerill, Y. Zheng, L. Tang, Y.-X. Qin, D. Zhu, Bioact. Mater., 2019, 4, 196 LINK https://doi.org/10.1016/J.BIOACTMAT.2019.05.001 [Google Scholar]
  7. A. Sola, D. Bellucci, V. Cannillo, A. Cattini, Surf. Eng., 2011, 27, (8), 560 LINK https://doi.org/10.1179/1743294410Y.0000000008 [Google Scholar]
  8. J. Liu, N. B. M. Rafiq, L. M. Wong, S. Wang, Front. Chem., 2021, 9, 768007 LINK https://doi.org/10.3389/fchem.2021.768007 [Google Scholar]
  9. R. A. Gittens, R. Olivares-Navarrete, Z. Schwartz, B. D. Boyan, Acta Biomater., 2014, 10, (8), 3363 LINK https://doi.org/10.1016/j.actbio.2014.03.037 [Google Scholar]
  10. B. Priyadarshini, M. Rama, Chetan, U. Vijayalakshmi, J. Asian Ceram. Soc., 2019, 7, (4), 397 LINK https://doi.org/10.1080/21870764.2019.1669861 [Google Scholar]
  11. K. M. R. Nuss, B. von Rechenberg, Open Orthop. J., 2008, 2, 66 LINK https://doi.org/10.2174/1874325000802010066 [Google Scholar]
  12. M. Haseeb, M. F. Butt, T. Altaf, K. Muzaffar, A. Gupta, A. Jallu, Int. J. Health Sci. (Qassim), 2017, 11, (1), 1 LINK http://www.ncbi.nlm.nih.gov/pubmed/28293156 [Google Scholar]
  13. Q. Chen, J. Jing, H. Qi, I. Ahmed, H. Yang, X. Liu, T. L. Lu, A. R. Boccaccini, ACS Appl. Mater. Interfaces, 2018, 10, (14), 11529 LINK https://doi.org/10.1021/acsami.8b01378 [Google Scholar]
  14. A. M. Ballo, O. Omar, W. Xia, A. Palmquist, ‘Dental Implant Surfaces –Physicochemical Properties, Biological Performance, and Trends’, in “Implant Dentistry – A Rapidly Evolving Practice”, ed. I. Turkyilmaz, InTech Open Ltd, London, UK, 2011, pp. 1956 LINK https://doi.org/10.5772/17512 [Google Scholar]
  15. S. V. Dorozhkin, Acta Biomater., 2014, 10, (7), 2919 LINK https://doi.org/10.1016/j.actbio.2014.02.026 [Google Scholar]
  16. L. Besra, M. Liu, Prog. Mater. Sci., 2007, 52, 1 LINK https://doi.org/10.1016/j.pmatsci.2006.07.001 [Google Scholar]
  17. S. Seuss, A. Chavez, T. Yoshioka, J. Stein, A. R. Boccaccini, S. Bose, A. Bandyopadhyay, ‘Electrophoretic Deposition of Soft Coatings for Orthopaedic Applications’, in “Biomaterials Science: Processing, Properties and Applications II: Ceramic Transactions”, eds. R. Narayan, 237, John Wiley & Sons Inc, Hoboken, USA, 2012, pp. 145152 LINK https://doi.org/10.1002/9781118511466.ch15 [Google Scholar]
  18. A. Bekmurzayeva, W. J. Duncanson, H. S. Azevedo, D. Kanayeva, Mater. Sci. Eng.: C, 2018, 93, 1073 LINK https://doi.org/10.1016/j.msec.2018.08.049 [Google Scholar]
  19. Q. Chen, G. A. Thouas, Mater. Sci. Eng. R: Rep., 2015, 87, 1 LINK https://doi.org/10.1016/j.mser.2014.10.001 [Google Scholar]
  20. Y. F. Zheng, X. N. Gu, F. Witte, Mater. Sci. Eng. R: Reports, 2014, 77, 1 LINK https://doi.org/10.1016/j.mser.2014.01.001 [Google Scholar]
  21. C. N. Elias, D. J. Fernandes, F. M. de Souza, E. dos Santos Monteiro, R. S. de Biasi, J. Mater. Res. Technol., 2019, 8, (1), 1060 LINK https://doi.org/10.1016/j.jmrt.2018.07.016 [Google Scholar]
  22. K. Kuei-Haw-Wang, J. H. Dumbleton, L. J. Gustavson, Pfizer Hospital Products Group Inc,, ‘Dispersion Strengthened Cobalt-Chromium-Molybdenum Alloy Produced by Gas Atomization’, European Patent 213,781; 1989 [Google Scholar]
  23. ‘Cobalt Chrome Chromium Precision Alloy With Good Price’, Alibaba Group, Hangzhou, China: https://www.alibaba.com/product-detail/cobalt-chrome-chromium-precision-alloy-with_1045843162.html (Accessed on 11th January 2022) [Google Scholar]
  24. D. J. del Corso, CRS Holding Inc, ‘Co-Cr-Mo Powder Metallurgy Articles and Process for Their Manufacture’, US Patent 5,462,575; 1995 [Google Scholar]
  25. A. F. Mavrogenis, P. J. Papagelopoulos, G. C. Babis, J. Long-Term. Eff. Med. Implants, 2011, 21, (4), 349 LINK https://doi.org/10.1615/JLongTermEffMedImplants.v21.i4.80 [Google Scholar]
  26. A. Marti, Injury, 2000, 31, (Suppl 4), D18 LINK https://doi.org/10.1016/S0020-1383(00)80018-2 [Google Scholar]
  27. J. Jacobs, A. Skipor, P. Doorn, P. Campbell, T. Schmalzried, J. Black, H. Amstutz, Clin. Orthop. Relat. Res., 1996, 329, S256 LINK https://doi.org/10.1097/00003086-199608001-00022 [Google Scholar]
  28. C. Lhotka, T. Szekeres, I. Steffan, K. Zhuber, K. Zweymüller, J. Orthop. Res., 2003, 21, (2), 189 LINK https://doi.org/10.1016/S0736-0266(02)00152-3 [Google Scholar]
  29. A. W. Schaffer, A. Schaffer, A. Pilger, C. Engelhardt, K. Zweymueller, H. W. Ruediger, A. Schaffer, J. Toxicol: Clin. Toxicol., 1999, 37, (7), 839 LINK https://doi.org/10.1081/clt-100102463 [Google Scholar]
  30. D. R. Haynes, S. D. Rogers, S. Hay, M. J. Pearcy, D. W. Howie, J. Bone Joint Surg., 1993, 75, (6), 825 LINK https://doi.org/10.2106/00004623-199306000-00004 [Google Scholar]
  31. Y. Okazaki, E. Gotoh, Biomaterials, 2005, 26, (1), 11 LINK https://doi.org/10.1016/j.biomaterials.2004.02.005 [Google Scholar]
  32. M. Navarro, A. Michiardi, O. Castaño, J. A. Planell, J. R. Soc. Interface, 2008, 5, (27), 1137 LINK https://doi.org/10.1098/rsif.2008.0151 [Google Scholar]
  33. D. Rani Bijukumar, A. Segu, Y. Mou, R. Ghodsi, T. Shokufhar, M. Barba, X.-J. Li, M. Thoppil Mathew, Nanotoxicology, 2018, 12, (9), 941 LINK https://doi.org/10.1080/17435390.2018.1498929 [Google Scholar]
  34. D. Bijukumar, A. Segu, P. Chastain, M. T. Mathew, Cell Biol. Toxicol., 2021, 37, (6), 833 LINK https://doi.org/10.1007/s10565-020-09577-7 [Google Scholar]
  35. D. R. Bijukumar, A. Segu, J. C. M. Souza, X. J. Li, M. Barba, L. G. Mercuri, J. J. Jacobs, M. T. Mathew, Nanomed.: Nanotechnol. Biol. Med., 2018, 14, (3), 951 LINK https://doi.org/10.1016/j.nano.2018.01.001 [Google Scholar]
  36. B. Green, E. Griffiths, S. Almond, BMC Psychiatry, 2017, 17, 33 LINK https://doi.org/10.1186/S12888-016-1174-1 [Google Scholar]
  37. C. E. Holy, S. Zhang, L. E. Perkins, P. Hasgall, L. B. Katz, J. R. Brown, L. Orlandini, G. Fessel, B. Nasseri-Aghbosh, G. Eichenbaum, N. S. Egnot, S. Marcello, P. M. Coplan, Regul. Toxicol. Pharmacol., 2022, 129, 105096 LINK https://doi.org/10.1016/J.YRTPH.2021.105096 [Google Scholar]
  38. S. Fujino, H. Tokunaga, E. Saiz, A. P. Tomsia, Mater. Trans., 2004, 45, (4), 1147 LINK https://doi.org/10.2320/matertrans.45.1147 [Google Scholar]
  39. G. Genchi, A. Carocci, G. Lauria, M. S. Sinicropi, A. Catalano, Int. J. Environ. Res. Public Health, 2020, 17, (3), 679 LINK https://doi.org/10.3390/IJERPH17030679 [Google Scholar]
  40. Z. Guo, X. Pang, Y. Yan, K. Gao, A. A. Volinsky, T.-Y. Zhang, Appl. Surf. Sci., 2015, 347, 23 LINK https://doi.org/10.1016/J.APSUSC.2015.04.054 [Google Scholar]
  41. D. Bellucci, V. Cannillo, A. Sola, Ceram. Int., 2011, 37, (8), 2963 LINK https://doi.org/10.1016/j.ceramint.2011.05.048 [Google Scholar]
  42. B. Garrido, S. Dosta, I. G. Cano, Bol. Soc. Esp. Ceram. Vidr., 2021, 61, (5), 516 LINK https://doi.org/10.1016/J.BSECV.2021.04.001 [Google Scholar]
  43. A. Kirsten, A. Hausmann, M. Weber, J. Fischer, H. Fischer, J. Dent. Res., 2015, 94, (2), 297 LINK https://doi.org/10.1177/0022034514559250 [Google Scholar]
  44. J. Fischer, B. Stawarczyk, M. Tomic, J. R. Strub, C. H. F. Hämmerle, Dent. Mater. J., 2007, 26, (6), 766 LINK https://doi.org/10.4012/DMJ.26.766 [Google Scholar]
  45. A. G. Evans, G. B. Crumley, R. E. Demaray, Oxid. Met., 1983, 20, (5–6), 193 LINK https://doi.org/10.1007/bf00656841 [Google Scholar]
  46. “Biomedical Materials”, ed. R. Narayan, Springer Science and Business Media LLC, New York, USA, 2009, 566 pp LINK https://doi.org/10.1007/978-0-387-84872-3 [Google Scholar]
  47. M. M. Babu, P. S. Prasad, S. H. Bindu, A. Prasad, P. V. Rao, N. P. Govindan, N. Veeraiah, M. Özcan, J. Compos. Sci., 2020, 4, (3), 129 LINK https://doi.org/10.3390/jcs4030129 [Google Scholar]
  48. P. Anigrahawati, M. R. Sahar, S. K. Ghoshal, Mater. Chem. Phys., 2015, 155, 155 LINK https://doi.org/10.1016/j.matchemphys.2015.02.014 [Google Scholar]
  49. S. Kapoor, A. Goel, A. F. Correia, M. J. Pascual, H.-Y. Lee, H.-W. Kim, J. M. F. Ferreira, Mater. Sci. Eng.: C, 2015, 53, 252 LINK https://doi.org/10.1016/j.msec.2015.04.023 [Google Scholar]
  50. L. Zhang, S. Liu, J. Non-Cryst. Solids, 2017, 473, 108 LINK https://doi.org/10.1016/J.JNONCRYSOL.2017.08.003 [Google Scholar]
  51. M. J. Jackson, B. Mills, J. Mater. Sci. Lett., 1997, 16, (15), 1264 LINK https://doi.org/10.1023/A:1018566606548 [Google Scholar]
  52. A. Fluegel, Glass Technol. – Eur. J. Glass Sci. Technol. Part A, 2010, 51, (5), 191 LINK https://www.ingentaconnect.com/contentone/sgt/gta/2010/00000051/00000005/art00002 [Google Scholar]
  53. M. D. O’Donnell, Acta Biomater., 2011, 7, (5), 2264 LINK https://doi.org/10.1016/J.ACTBIO.2011.01.021 [Google Scholar]
  54. L. L. Hench, J. Mater. Sci.: Mater. Med., 2006, 17, (11), 967 LINK https://doi.org/10.1007/s10856-006-0432-z [Google Scholar]
  55. T. Parry, B. Fitzsimons, ‘Coating Failures and Defects: A Comprehensive Field Guide’, Corrosionpedia, Janalta Interactive Inc, Edmonton, Canada, 46 pp: https://www.corrosionpedia.com/14/5351/coatings-and-lining/coating-failures-and-defects-guide (Accessed on 3rd January 2022) [Google Scholar]
  56. C. K. Schoff, ‘Automotive Coatings: Application Defects’, American Coatings Association, Washington, DC, USA:https://www.paint.org/coatingstech-magazine/articles/automotive-coatings-application-defects/ (Accessed on 3rd January 2022) [Google Scholar]
  57. R. Talbert, ‘Porosity Causes on Powder – Coated Surfaces’, Products Finishing, Cincinnati, USA:https://www.pfonline.com/articles/cause-of-porosity (Accessed on 3rd January 2022) [Google Scholar]
  58. W. R. Lacefleld, L. L. Hench, Biomaterials, 1986, 7, (2), 104 LINK https://doi.org/10.1016/0142-9612(86)90064-5 [Google Scholar]
  59. M. Farrokhi-Rad, S. K. Loghmani, T. Shahrabi, S. Khanmohammadi, J. Eur. Ceram. Soc., 2014, 34, (1), 97 LINK https://doi.org/10.1016/j.jeurceramsoc.2013.07.022 [Google Scholar]
  60. B. Henriques, M. Gasik, J. C. M. Souza, R. M. Nascimento, D. Soares, F. S. Silva, J. Mech. Behav. Biomed. Mater., 2014, 30, 103 LINK https://doi.org/10.1016/j.jmbbm.2013.10.023 [Google Scholar]
  61. Y. Li, H. Jahr, J. Zhou, A. A. Zadpoor, Acta Biomater., 2020, 115, 29 LINK https://doi.org/10.1016/j.actbio.2020.08.018 [Google Scholar]
  62. S. Singh, G. Singh, N. Bala, Mater. Today: Proc., 2018, 5, (9), Part 3, 20160 LINK https://doi.org/10.1016/j.matpr.2018.06.385 [Google Scholar]
  63. Z. Tabia, M. Bricha, K. El Mabrouk, S. Vaudreuil, J. Mater. Sci., 2021, 56, (2), 1658 LINK https://doi.org/10.1007/s10853-020-05370-3 [Google Scholar]
  64. L. L. Hench, H. A. Paschall, J. Biomed. Mater. Res., 1973, 7, (3), 25 LINK https://doi.org/10.1002/jbm.820070304 [Google Scholar]
  65. M. N. Rahaman, D. E. Day, B. S. Bal, Q. Fu, S. B. Jung, L. F. Bonewald, A. P. Tomsia, Acta Biomater., 2011, 7, (6), 2355 LINK https://doi.org/10.1016/j.actbio.2011.03.016 [Google Scholar]
  66. B. D. de Greñu, R. de los Reyes, A. M. Costero, P. Amorós, J. V. Ros-Lis, Nanomaterials, 2020, 10, (6), 1092 LINK https://doi.org/10.3390/nano10061092 [Google Scholar]
  67. I. Azzouz, J. Faure, K. Khlifi, A. C. Larbi, H. Benhayoune, Coatings, 2020, 10, (12), 1192 LINK https://doi.org/10.3390/coatings10121192 [Google Scholar]
  68. P.-H. Kuo, S. S. Joshi, X. Lu, Y.-H. Ho, Y. Xiang, N. B. Dahotre, J. Du, Int. J. Appl. Glass Sci., 2019, 10, (3), 307 LINK https://doi.org/10.1111/IJAG.12642 [Google Scholar]
  69. D. Krause, B. Thomas, C. Leinenbach, D. Eifler, E. J. Minay, A. R. Boccaccini, Surf. Coatings Technol., 2006, 200, (16–17), 4835 LINK https://doi.org/10.1016/j.surfcoat.2005.04.029 [Google Scholar]
  70. F. Pishbin, V. Mouriño, S. Flor, S. Kreppel, V. Salih, M. P. Ryan, A. R. Boccaccini, ACS Appl. Mater. Interfaces, 2014, 6, (11), 8796 LINK https://doi.org/10.1021/am5014166 [Google Scholar]
  71. S. A. Batool, A. Wadood, S. W. Hussain, M. Yasir, M. A. Ur Rehman, Surfaces, 2021, 4, (3), 205 LINK https://doi.org/10.3390/surfaces4030018 [Google Scholar]
  72. M. H. Fathi, A. Doostmohammadi, J. Mater. Process. Technol., 2009, 209, (3), 1385 LINK https://doi.org/10.1016/j.jmatprotec.2008.03.051 [Google Scholar]
  73. A. Cattini, D. Bellucci, A. Sola, L. Pawłowski, V. Cannillo, J. Biomed. Mater. Res.: B.: Appl. Biomater., 2014, 102, (3), 551 LINK https://doi.org/10.1002/jbm.b.33034 [Google Scholar]
  74. M. Miola, E. Verné, F. E. Ciraldo, L. Cordero-Arias, A. R. Boccaccini, Front. Bioeng. Biotechnol., 2015, 3, 1 LINK https://doi.org/10.3389/fbioe.2015.00159 [Google Scholar]
  75. T. Distler, N. Fournier, A. Grünewald, C. Polley, H. Seitz, R. Detsch, A. R. Boccaccini, Front. Bioeng. Biotechnol., 2020, 8, 552 LINK https://doi.org/10.3389/fbioe.2020.00552 [Google Scholar]
  76. I. Bagherpour, S. M. Naghib, A. H. Yaghtin, IET Nanobiotechnol., 2018, 12, (7), 895 LINK https://doi.org/10.1049/iet-nbt.2017.0275 [Google Scholar]
  77. Y. S. Joung, C. R. Buie, Massachusetts Institute of Technology,, ‘Electrophoretic-Deposited Surfaces’, US Patent 9,096,942; 2015 [Google Scholar]
  78. L. Cordero-Arias, S. Cabanas-Polo, J. Gilabert, O. M. Goudouri, E. Sanchez, S. Virtanen, A. R. Boccaccini, Adv. Appl. Ceram., 2014, 113, (1), 42 LINK https://doi.org/10.1179/1743676113Y.0000000096 [Google Scholar]
  79. V. O. Kollath, Q. Chen, S. Mullens, J. Luyten, K. Traina, A. R. Boccaccini, R. Cloots, J. Mater. Sci., 2016, 51, (5), 2338 LINK https://doi.org/10.1007/s10853-015-9543-6 [Google Scholar]
  80. M. Farhadian, K. Raeissi, M. A. Golozar, S. Labbaf, T. Hajilou, A. Barnoush, Surf. Coat. Technol., 2019, 380, 125015 LINK https://doi.org/10.1016/j.surfcoat.2019.125015 [Google Scholar]
  81. M. R. Shirdar, S. Izman, H. M. K. N. Ahmad, A. Ma’aram, Surf. Innov., 2017, 5, (2), 90 LINK https://doi.org/10.1680/jsuin.16.00028 [Google Scholar]
  82. C. Han, Y. Yao, X. Cheng, J. Luo, P. Luo, Q. Wang, F. Yang, Q. Wei, Z. Zhang, Biomacromolecules, 2017, 18, (11), 3776 LINK https://doi.org/10.1021/acs.biomac.7b01091 [Google Scholar]
  83. S. Seuss, M. Lehmann, A. R. Boccaccini, Int. J. Mol. Sci., 2014, 15, (7), 12231 LINK https://doi.org/10.3390/ijms150712231 [Google Scholar]
  84. D. Hanaor, M. Michelazzi, P. Veronesi, C. Leonelli, M. Romagnoli, C. Sorrell, J. Eur. Ceram. Soc., 2011, 31, (6), 1041 LINK https://doi.org/10.1016/j.jeurceramsoc.2010.12.017 [Google Scholar]
  85. Y. Su, I. Zhitomirsky, J. Colloid Inteface Sci., 2013, 399, 46 LINK https://doi.org/10.1016/j.jcis.2013.02.038 [Google Scholar]
  86. ‘An Introduction to Zeta Potential in 30 Minutes’, Zetasizer Nano Series Technical Note MRK 654-01, Malvern Panalytical Ltd, Malvern, UK, 2011 [Google Scholar]
  87. K. Ma, D. Huang, J. Cai, X. Cai, L. Gong, P. Huang, Y. Wang, T. Jiang, Colloids Surf. B: Biointerfaces, 2016, 146, 97 LINK https://doi.org/10.1016/j.colsurfb.2016.05.036 [Google Scholar]
  88. M. Diba, D. W. H. Fam, A. R. Boccaccini, M. S. P. Shaffer, Prog. Mater. Sci., 2016, 82, 83 LINK https://doi.org/10.1016/j.pmatsci.2016.03.002 [Google Scholar]
  89. Y. Ahmed, A. Nawaz, R. S. Virk, A. Wadood, M. A. U. Rehman, Int. J. Ceram. Eng. Sci., 2020, 2, (5), 254 LINK https://doi.org/10.1002/CES2.10066 [Google Scholar]
  90. M. S. Safavi, F. C. Walsh, M. A. Surmeneva, R. A. Surmenev, J. K.- Allafi, Coatings, 2021, 11, (1), 110 LINK https://doi.org/10.3390/coatings11010110 [Google Scholar]
  91. M. Sari, N. A. Kristianto, Chotimah, I. D. Ana, Y. Yusuf, Coatings, 2021, 11, (8), 941 LINK https://doi.org/10.3390/coatings11080941 [Google Scholar]
  92. A. R. Boccaccini, F. Chicatun, J. Cho, O. Bretcanu, J. A. Roether, S. Novak, Q. Z. Chen, Adv. Funct. Mater., 2007, 17, (15), 2815 LINK https://doi.org/10.1002/adfm.200600887 [Google Scholar]
  93. A. R. Boccaccini, S. Keim, R. Ma, Y. Li, I. Zhitomirsky, J. R. Soc. Interface, 2010, 7, (5), S 581 LINK https://doi.org/10.1098/rsif.2010.0156.focus [Google Scholar]
  94. ‘Adhesion in Paint and Coatings’, SpecialChem, Paris, France:https://coatings.specialchem.com/coatings-properties/adhesion (Accessed on 1st November 2022) [Google Scholar]
  95. I. O. Owate, C. W. I. Ezi, G. Avwiri, J. Appl. Sci. Environ. Manag., 2002, 6, (2), 79 LINK http://www.bioline.org.br/request?ja02034 [Google Scholar]
  96. H. Moghadas, M. S. Saidi, N. Kashaninejad, A. Kiyoumarsioskouei, N.-T. Nguyen, Biomed. Microdevices, 2017, 19, (4), 74 LINK https://doi.org/10.1007/s10544-017-0215-y [Google Scholar]
  97. M. K. Abbass, M. J. Khadhim, A. N. Jasim, M. J. Issa, J. Phys.: Conf. Ser., 2021, 1773, 012035 LINK https://doi.org/10.1088/1742-6596/1773/1/012035 [Google Scholar]
  98. J.-Y. Hong, S.-Y. Ko, W. Lee, Y.-Y. Chang, S.-H. Kim, J.-H. Yun, Materials, 2020, 13, (14), 3061 LINK https://doi.org/10.3390/ma13143061 [Google Scholar]
  99. J. J. Van Tassel, C. A. Randall, Key Eng. Mater., 2006, 314, 167 LINK https://doi.org/10.4028/www.scientific.net/KEM.314.167 [Google Scholar]
  100. S. V. Dorozhkin, Adv. Nano-Bio-Mater. Dev., 2019, 3, (4), 422 LINK https://sciedtech.eu/download/sergey-v-dorozhkin-nanometric-calcium-orthophosphates-capo4-preparation-properties-and-biomedical-applications-advanced-nano-bio-materials-and-devices-201934422-512/ [Google Scholar]
  101. K. Kawaguchi, M. Iijima, K. Endo, I. Mizoguchi, Coatings, 2017, 7, (11), 199 LINK https://doi.org/10.3390/COATINGS7110199 [Google Scholar]
  102. M. Miola, L. Cordero-Arias, G. Ferlenda, A. Cochis, S. Virtanen, L. Rimondini, E. Verné, A. R. Boccaccini, Surf. Coatings Technol., 2021, 418, 127183 LINK https://doi.org/10.1016/j.surfcoat.2021.127183 [Google Scholar]
  103. A. Xin, R. Zhang, K. Yu, Q. Wang, J. Mech. Phys. Solids, 2019, 125, 1 LINK https://doi.org/10.1016/j.jmps.2018.12.007 [Google Scholar]
  104. A. Nawaz, M. A. Ur Rehman, J. Appl. Polym. Sci., 2021, 138, (15), 50220 LINK https://doi.org/10.1002/app.50220 [Google Scholar]
  105. J. Folgado, P. R. Fernandes, ‘Bone Tissue Mechanics’, Biomecânica dos Tecidos, Instituto Superior Tecnico, Lisbon, Portugal, 2015 LINK http://www.dem.ist.utl.pt/jfolgado/BioTecidos_1516/Lesson_2016.03.07 [Google Scholar]
  106. ‘Bone Density Scan’, MedlinePlus, National Library of Medicine, Bethesda, USA, 2020: https://medlineplus.gov/lab-tests/bone-density-scan/ (Accessed on 26th March 2021) [Google Scholar]
  107. E. Chlebus, B. Kuźnicka, T. Kurzynowski, B. Dybała, Mater. Charact., 2011, 62, (5), 488 LINK https://doi.org/10.1016/j.matchar.2011.03.006 [Google Scholar]
  108. Y. Li, H. Jahr, K. Lietaert, P. Pavanram, A. Yilmaz, L. I. Fockaert, M. A. Leeflang, B. Pouran, Y. Gonzalez-Garcia, H. Weinans, J. M. C. Mol, J. Zhou, A. A. Zadpoor, Acta Biomater., 2018, 77, 380 LINK https://doi.org/10.1016/j.actbio.2018.07.011 [Google Scholar]
  109. E. Liverani, G. Rogati, S. Pagani, S. Brogini, A. Fortunato, P. Caravaggi, J. Mech. Behav. Biomed. Mater., 2021, 121, 104608 LINK https://doi.org/10.1016/j.jmbbm.2021.104608 [Google Scholar]
  110. J. Adhikari, P. Saha, A. Sinha, M. S. Sreekala, S. Thomas, ‘Surface Modification of metallic bone implants –Polymer and Polymer-Assisted Coating for Bone In-Growth’, in “Fundemental Biomaterials: Metals”, eds. P. Balakrishnan, Elsevier Ltd, Duxford, UK, 2018, pp. 299321 LINK https://doi.org/10.1016/B978-0-08-102205-4.00014-3 [Google Scholar]
  111. R. B. Kahla, A. Barkaoui, ‘Bone Multiscale Mechanics’, in “Bone Remodelling Process: Mechanics, Biology, and Numerical Modeling”, Elsevier Inc, San Diego, USA, 2021, pp. 147 LINK https://doi.org/10.1016/B978-0-323-88467-9.00005-9 [Google Scholar]
  112. P. Sahoo, S. K. Das, J. Paulo Davim, ‘Tribiology of Materials for Biomedical Applications’, in “Mechanical Behaviour of Biomaterials”, ed. J. P. Davim, Woodhead Pulishing Series in Biomaterials, Ch. 1, Elsevier Ltd, Duxford, UK, 2019, pp. 145 LINK https://doi.org/10.1016/B978-0-08-102174-3.00001-2 [Google Scholar]
  113. B. Singh, G. Singh, B. S. Sidhu, J. Therm. Spray Technol., 2018, 27, (8), 1401 LINK https://doi.org/10.1007/s11666-018-0786-z [Google Scholar]
  114. M. Djošić, A. Janković, V. Mišković-Stanković, Materials, 2021, 14, (18), 5391 LINK https://doi.org/10.3390/MA14185391 [Google Scholar]
  115. W. R. Lacefield, Ann. N. Y. Acad. Sci., 1988, 523, (1), 72 LINK https://doi.org/10.1111/J.1749-6632.1988.TB38501.X [Google Scholar]
  116. K. B. Hazlehurst, C. J. Jiang, M. Stanford, Mater. Des., 2014, 60, 177 LINK https://doi.org/10.1016/j.matdes.2014.03.068 [Google Scholar]
  117. K. Hazlehurst, C. J. Wang, M. Stanford, Mater. Des., 2013, 51, 949 LINK https://doi.org/10.1016/j.matdes.2013.05.009 [Google Scholar]
  118. F. Baino, S. Hamzehlou, S. Kargozar, J. Funct. Biomater., 2018, 9, (1), 25 LINK https://doi.org/10.3390/jfb9010025 [Google Scholar]
  119. O. van der Biest, S. Put, G. Anné, J. Vleugels, J. Mater. Sci., 2004, 39, (3), 779 LINK https://doi.org/10.1023/B:JMSC.0000012905.62256.39 [Google Scholar]
  120. J. Zhou, H. He, Z. Shi, G. Liu, C.-W. Nan, J. Appl. Phys., 2006, 100, (9), 094106 LINK https://doi.org/10.1063/1.2358191 [Google Scholar]
/content/journals/10.1595/205651323X16685352825345
Loading
/content/journals/10.1595/205651323X16685352825345
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test