Skip to content
1887
Volume 68, Issue 1
  • ISSN: 2056-5135

Abstract

Coating surfaces with bioactive glass can be defined as depositing fine bioactive glasses on biomaterial substrates. Cobalt-chromium is a viable alternative to stainless steel for long-term applications with superior ductility. The mechanical properties of cobalt-chromium alloys are high strength with elastic modulus of 220–2300 GPa, more significant than the 30 GPa of bones. Combining metals and bioactive glass results in high biocompatibility and improved bioactivity of implant surfaces. In addition, it triggers new bone tissue to regenerate through osteogenesis and mineralisation. However, implantation failure still occurs and requires surgery revision due to a lack of adequate bone bonding and delamination at the coating surface of the implant. The current review summarises the adhesion between bioactive glass coatings and cobalt-chromium substrates applied through electrophoretic deposition (EPD).

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16685352825345
2022-11-15
2024-07-10
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/1/ElMabrouk1_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16685352825345&mimeType=html&fmt=ahah

References

  1. Oliver J. N., Su Y., Lu X., Kuo P.-H., Du J., and Zhu D. Bioact. Mater., 2019, 4, 261 LINK https://doi.org/10.1016/J.BIOACTMAT.2019.09.002 [Google Scholar]
  2. Cho J., Cannio M., and Boccaccini A. R. Int. J. Mater. Prod. Technol., 2009, 35, (3/4), 260 LINK https://doi.org/10.1504/ijmpt.2009.025680 [Google Scholar]
  3. Asri R. I. M., Harun W. S. W., Samykano M., Lah N. A. C., Ghani S. A. C., Tarlochan F., and Raza M. R. Mater. Sci. Eng.: C, 2017, 77, 1261 LINK https://doi.org/10.1016/J.MSEC.2017.04.102 [Google Scholar]
  4. Dehghanghadikolaei A., and Fotovvati B. Materials, 2019, 12, (11), 1795 LINK https://doi.org/10.3390/ma12111795 [Google Scholar]
  5. Nouri A., Hodgson P. D., Wen C., ‘Biomimetic Porous Titanium Scaffolds for Orthopedic and Dental Applications’, in “Biomimetics Learning from Nature”, ed. and Mukherjee A. InTech Open Ltd, London, UK, 2010, pp. 415450 LINK https://doi.org/10.5772/8787 [Google Scholar]
  6. Su Y., Cockerill I., Zheng Y., Tang L., Qin Y.-X., and Zhu D. Bioact. Mater., 2019, 4, 196 LINK https://doi.org/10.1016/J.BIOACTMAT.2019.05.001 [Google Scholar]
  7. Sola A., Bellucci D., Cannillo V., and Cattini A. Surf. Eng., 2011, 27, (8), 560 LINK https://doi.org/10.1179/1743294410Y.0000000008 [Google Scholar]
  8. Liu J., Rafiq N. B. M., Wong L. M., and Wang S. Front. Chem., 2021, 9, 768007 LINK https://doi.org/10.3389/fchem.2021.768007 [Google Scholar]
  9. Gittens R. A., Olivares-Navarrete R., Schwartz Z., and Boyan B. D. Acta Biomater., 2014, 10, (8), 3363 LINK https://doi.org/10.1016/j.actbio.2014.03.037 [Google Scholar]
  10. Priyadarshini B., Rama, Chetan M., and Vijayalakshmi U. J. Asian Ceram. Soc., 2019, 7, (4), 397 LINK https://doi.org/10.1080/21870764.2019.1669861 [Google Scholar]
  11. Nuss K. M. R., and von Rechenberg B. Open Orthop. J., 2008, 2, 66 LINK https://doi.org/10.2174/1874325000802010066 [Google Scholar]
  12. Haseeb M., Butt M. F., Altaf T., Muzaffar K., Gupta A., and Jallu A. Int. J. Health Sci. (Qassim), 2017, 11, (1), 1 LINK http://www.ncbi.nlm.nih.gov/pubmed/28293156 [Google Scholar]
  13. Chen Q., Jing J., Qi H., Ahmed I., Yang H., Liu X., Lu T. L., and Boccaccini A. R. ACS Appl. Mater. Interfaces, 2018, 10, (14), 11529 LINK https://doi.org/10.1021/acsami.8b01378 [Google Scholar]
  14. Ballo A. M., Omar O., Xia W., Palmquist A., ‘Dental Implant Surfaces –Physicochemical Properties, Biological Performance, and Trends’, in “Implant Dentistry – A Rapidly Evolving Practice”, ed. and Turkyilmaz I. InTech Open Ltd, London, UK, 2011, pp. 1956 LINK https://doi.org/10.5772/17512 [Google Scholar]
  15. Dorozhkin S. V. Acta Biomater., 2014, 10, (7), 2919 LINK https://doi.org/10.1016/j.actbio.2014.02.026 [Google Scholar]
  16. Besra L., and Liu M. Prog. Mater. Sci., 2007, 52, 1 LINK https://doi.org/10.1016/j.pmatsci.2006.07.001 [Google Scholar]
  17. Seuss S., Chavez A., Yoshioka T., Stein J., Boccaccini A. R., Bose S., and Bandyopadhyay A. ‘Electrophoretic Deposition of Soft Coatings for Orthopaedic Applications’, in “Biomaterials Science: Processing, Properties and Applications II: Ceramic Transactions”, eds. Narayan R., 237, John Wiley & Sons Inc, Hoboken, USA, 2012, pp. 145152 LINK https://doi.org/10.1002/9781118511466.ch15 [Google Scholar]
  18. Bekmurzayeva A., Duncanson W. J., Azevedo H. S., and Kanayeva D. Mater. Sci. Eng.: C, 2018, 93, 1073 LINK https://doi.org/10.1016/j.msec.2018.08.049 [Google Scholar]
  19. Chen Q., and Thouas G. A. Mater. Sci. Eng. R: Rep., 2015, 87, 1 LINK https://doi.org/10.1016/j.mser.2014.10.001 [Google Scholar]
  20. Zheng Y. F., Gu X. N., and Witte F. Mater. Sci. Eng. R: Reports, 2014, 77, 1 LINK https://doi.org/10.1016/j.mser.2014.01.001 [Google Scholar]
  21. Elias C. N., Fernandes D. J., de Souza F. M., dos Santos Monteiro E., and de Biasi R. S. J. Mater. Res. Technol., 2019, 8, (1), 1060 LINK https://doi.org/10.1016/j.jmrt.2018.07.016 [Google Scholar]
  22. Kuei-Haw-Wang K., Dumbleton J. H., and Gustavson L. J. Pfizer Hospital Products Group Inc, ‘Dispersion Strengthened Cobalt-Chromium-Molybdenum Alloy Produced by Gas Atomization’, European Patent 213,781; 1989 [Google Scholar]
  23. ‘Cobalt Chrome Chromium Precision Alloy With Good Price’, Alibaba Group, Hangzhou, China: https://www.alibaba.com/product-detail/cobalt-chrome-chromium-precision-alloy-with_1045843162.html (Accessed on 11th January 2022) [Google Scholar]
  24. del Corso D. J. CRS Holding Inc, ‘Co-Cr-Mo Powder Metallurgy Articles and Process for Their Manufacture’, US Patent 5,462,575; 1995 [Google Scholar]
  25. Mavrogenis A. F., Papagelopoulos P. J., and Babis G. C. J. Long-Term. Eff. Med. Implants, 2011, 21, (4), 349 LINK https://doi.org/10.1615/JLongTermEffMedImplants.v21.i4.80 [Google Scholar]
  26. Marti A. Injury, 2000, 31, (Suppl 4), D18 LINK https://doi.org/10.1016/S0020-1383(00)80018-2 [Google Scholar]
  27. Jacobs J., Skipor A., Doorn P., Campbell P., Schmalzried T., Black J., and Amstutz H. Clin. Orthop. Relat. Res., 1996, 329, S256 LINK https://doi.org/10.1097/00003086-199608001-00022 [Google Scholar]
  28. Lhotka C., Szekeres T., Steffan I., Zhuber K., and Zweymüller K. J. Orthop. Res., 2003, 21, (2), 189 LINK https://doi.org/10.1016/S0736-0266(02)00152-3 [Google Scholar]
  29. Schaffer A. W., Schaffer A., Pilger A., Engelhardt C., Zweymueller K., Ruediger H. W., and Schaffer A. J. Toxicol: Clin. Toxicol., 1999, 37, (7), 839 LINK https://doi.org/10.1081/clt-100102463 [Google Scholar]
  30. Haynes D. R., Rogers S. D., Hay S., Pearcy M. J., and Howie D. W. J. Bone Joint Surg., 1993, 75, (6), 825 LINK https://doi.org/10.2106/00004623-199306000-00004 [Google Scholar]
  31. Okazaki Y., and Gotoh E. Biomaterials, 2005, 26, (1), 11 LINK https://doi.org/10.1016/j.biomaterials.2004.02.005 [Google Scholar]
  32. Navarro M., Michiardi A., Castaño O., and Planell J. A. J. R. Soc. Interface, 2008, 5, (27), 1137 LINK https://doi.org/10.1098/rsif.2008.0151 [Google Scholar]
  33. Rani Bijukumar D., Segu A., Mou Y., Ghodsi R., Shokufhar T., Barba M., Li X.-J., and Thoppil Mathew M. Nanotoxicology, 2018, 12, (9), 941 LINK https://doi.org/10.1080/17435390.2018.1498929 [Google Scholar]
  34. Bijukumar D., Segu A., Chastain P., and Mathew M. T. Cell Biol. Toxicol., 2021, 37, (6), 833 LINK https://doi.org/10.1007/s10565-020-09577-7 [Google Scholar]
  35. Bijukumar D. R., Segu A., Souza J. C. M., Li X. J., Barba M., Mercuri L. G., Jacobs J. J., and Mathew M. T. Nanomed.: Nanotechnol. Biol. Med., 2018, 14, (3), 951 LINK https://doi.org/10.1016/j.nano.2018.01.001 [Google Scholar]
  36. Green B., Griffiths E., and Almond S. BMC Psychiatry, 2017, 17, 33 LINK https://doi.org/10.1186/S12888-016-1174-1 [Google Scholar]
  37. Holy C. E., Zhang S., Perkins L. E., Hasgall P., Katz L. B., Brown J. R., Orlandini L., Fessel G., Nasseri-Aghbosh B., Eichenbaum G., Egnot N. S., Marcello S., and Coplan P. M. Regul. Toxicol. Pharmacol., 2022, 129, 105096 LINK https://doi.org/10.1016/J.YRTPH.2021.105096 [Google Scholar]
  38. Fujino S., Tokunaga H., Saiz E., and Tomsia A. P. Mater. Trans., 2004, 45, (4), 1147 LINK https://doi.org/10.2320/matertrans.45.1147 [Google Scholar]
  39. Genchi G., Carocci A., Lauria G., Sinicropi M. S., and Catalano A. Int. J. Environ. Res. Public Health, 2020, 17, (3), 679 LINK https://doi.org/10.3390/IJERPH17030679 [Google Scholar]
  40. Guo Z., Pang X., Yan Y., Gao K., Volinsky A. A., and Zhang T.-Y. Appl. Surf. Sci., 2015, 347, 23 LINK https://doi.org/10.1016/J.APSUSC.2015.04.054 [Google Scholar]
  41. Bellucci D., Cannillo V., and Sola A. Ceram. Int., 2011, 37, (8), 2963 LINK https://doi.org/10.1016/j.ceramint.2011.05.048 [Google Scholar]
  42. Garrido B., Dosta S., and Cano I. G. Bol. Soc. Esp. Ceram. Vidr., 2021, 61, (5), 516 LINK https://doi.org/10.1016/J.BSECV.2021.04.001 [Google Scholar]
  43. Kirsten A., Hausmann A., Weber M., Fischer J., and Fischer H. J. Dent. Res., 2015, 94, (2), 297 LINK https://doi.org/10.1177/0022034514559250 [Google Scholar]
  44. Fischer J., Stawarczyk B., Tomic M., Strub J. R., and Hämmerle C. H. F. Dent. Mater. J., 2007, 26, (6), 766 LINK https://doi.org/10.4012/DMJ.26.766 [Google Scholar]
  45. Evans A. G., Crumley G. B., and Demaray R. E. Oxid. Met., 1983, 20, (5–6), 193 LINK https://doi.org/10.1007/bf00656841 [Google Scholar]
  46. “Biomedical Materials”, ed. Narayan R. Springer Science and Business Media LLC, New York, USA, 2009, 566 pp LINK https://doi.org/10.1007/978-0-387-84872-3 [Google Scholar]
  47. Babu M. M., Prasad P. S., Bindu S. H., Prasad A., Rao P. V., Govindan N. P., Veeraiah N., and Özcan M. J. Compos. Sci., 2020, 4, (3), 129 LINK https://doi.org/10.3390/jcs4030129 [Google Scholar]
  48. Anigrahawati P., Sahar M. R., and Ghoshal S. K. Mater. Chem. Phys., 2015, 155, 155 LINK https://doi.org/10.1016/j.matchemphys.2015.02.014 [Google Scholar]
  49. Kapoor S., Goel A., Correia A. F., Pascual M. J., Lee H.-Y., Kim H.-W., and Ferreira J. M. F. Mater. Sci. Eng.: C, 2015, 53, 252 LINK https://doi.org/10.1016/j.msec.2015.04.023 [Google Scholar]
  50. Zhang L., and Liu S. J. Non-Cryst. Solids, 2017, 473, 108 LINK https://doi.org/10.1016/J.JNONCRYSOL.2017.08.003 [Google Scholar]
  51. Jackson M. J., and Mills B. J. Mater. Sci. Lett., 1997, 16, (15), 1264 LINK https://doi.org/10.1023/A:1018566606548 [Google Scholar]
  52. Fluegel A. Glass Technol. – Eur. J. Glass Sci. Technol. Part A, 2010, 51, (5), 191 LINK https://www.ingentaconnect.com/contentone/sgt/gta/2010/00000051/00000005/art00002 [Google Scholar]
  53. O’Donnell M. D. Acta Biomater., 2011, 7, (5), 2264 LINK https://doi.org/10.1016/J.ACTBIO.2011.01.021 [Google Scholar]
  54. Hench L. L. J. Mater. Sci.: Mater. Med., 2006, 17, (11), 967 LINK https://doi.org/10.1007/s10856-006-0432-z [Google Scholar]
  55. Parry T., and Fitzsimons B. ‘Coating Failures and Defects: A Comprehensive Field Guide’, Corrosionpedia, Janalta Interactive Inc, Edmonton, Canada, 46 pp: https://www.corrosionpedia.com/14/5351/coatings-and-lining/coating-failures-and-defects-guide (Accessed on 3rd January 2022) [Google Scholar]
  56. Schoff C. K. ‘Automotive Coatings: Application Defects’, American Coatings Association, Washington, DC, USA:https://www.paint.org/coatingstech-magazine/articles/automotive-coatings-application-defects/ (Accessed on 3rd January 2022) [Google Scholar]
  57. Talbert R. ‘Porosity Causes on Powder – Coated Surfaces’, Products Finishing, Cincinnati, USA:https://www.pfonline.com/articles/cause-of-porosity (Accessed on 3rd January 2022) [Google Scholar]
  58. Lacefleld W. R., and Hench L. L. Biomaterials, 1986, 7, (2), 104 LINK https://doi.org/10.1016/0142-9612(86)90064-5 [Google Scholar]
  59. Farrokhi-Rad M., Loghmani S. K., Shahrabi T., and Khanmohammadi S. J. Eur. Ceram. Soc., 2014, 34, (1), 97 LINK https://doi.org/10.1016/j.jeurceramsoc.2013.07.022 [Google Scholar]
  60. Henriques B., Gasik M., Souza J. C. M., Nascimento R. M., Soares D., and Silva F. S. J. Mech. Behav. Biomed. Mater., 2014, 30, 103 LINK https://doi.org/10.1016/j.jmbbm.2013.10.023 [Google Scholar]
  61. Li Y., Jahr H., Zhou J., and Zadpoor A. A. Acta Biomater., 2020, 115, 29 LINK https://doi.org/10.1016/j.actbio.2020.08.018 [Google Scholar]
  62. Singh S., Singh G., and Bala N. Mater. Today: Proc., 2018, 5, (9), Part 3, 20160 LINK https://doi.org/10.1016/j.matpr.2018.06.385 [Google Scholar]
  63. Tabia Z., Bricha M., El Mabrouk K., and Vaudreuil S. J. Mater. Sci., 2021, 56, (2), 1658 LINK https://doi.org/10.1007/s10853-020-05370-3 [Google Scholar]
  64. Hench L. L., and Paschall H. A. J. Biomed. Mater. Res., 1973, 7, (3), 25 LINK https://doi.org/10.1002/jbm.820070304 [Google Scholar]
  65. Rahaman M. N., Day D. E., Bal B. S., Fu Q., Jung S. B., Bonewald L. F., and Tomsia A. P. Acta Biomater., 2011, 7, (6), 2355 LINK https://doi.org/10.1016/j.actbio.2011.03.016 [Google Scholar]
  66. de Greñu B. D., de los Reyes R., Costero A. M., Amorós P., and Ros-Lis J. V. Nanomaterials, 2020, 10, (6), 1092 LINK https://doi.org/10.3390/nano10061092 [Google Scholar]
  67. Azzouz I., Faure J., Khlifi K., Larbi A. C., and Benhayoune H. Coatings, 2020, 10, (12), 1192 LINK https://doi.org/10.3390/coatings10121192 [Google Scholar]
  68. Kuo P.-H., Joshi S. S., Lu X., Ho Y.-H., Xiang Y., Dahotre N. B., and Du J. Int. J. Appl. Glass Sci., 2019, 10, (3), 307 LINK https://doi.org/10.1111/IJAG.12642 [Google Scholar]
  69. Krause D., Thomas B., Leinenbach C., Eifler D., Minay E. J., and Boccaccini A. R. Surf. Coatings Technol., 2006, 200, (16–17), 4835 LINK https://doi.org/10.1016/j.surfcoat.2005.04.029 [Google Scholar]
  70. Pishbin F., Mouriño V., Flor S., Kreppel S., Salih V., Ryan M. P., and Boccaccini A. R. ACS Appl. Mater. Interfaces, 2014, 6, (11), 8796 LINK https://doi.org/10.1021/am5014166 [Google Scholar]
  71. Batool S. A., Wadood A., Hussain S. W., Yasir M., and Ur Rehman M. A. Surfaces, 2021, 4, (3), 205 LINK https://doi.org/10.3390/surfaces4030018 [Google Scholar]
  72. Fathi M. H., and Doostmohammadi A. J. Mater. Process. Technol., 2009, 209, (3), 1385 LINK https://doi.org/10.1016/j.jmatprotec.2008.03.051 [Google Scholar]
  73. Cattini A., Bellucci D., Sola A., Pawłowski L., and Cannillo V. J. Biomed. Mater. Res.: B.: Appl. Biomater., 2014, 102, (3), 551 LINK https://doi.org/10.1002/jbm.b.33034 [Google Scholar]
  74. Miola M., Verné E., Ciraldo F. E., Cordero-Arias L., and Boccaccini A. R. Front. Bioeng. Biotechnol., 2015, 3, 1 LINK https://doi.org/10.3389/fbioe.2015.00159 [Google Scholar]
  75. Distler T., Fournier N., Grünewald A., Polley C., Seitz H., Detsch R., and Boccaccini A. R. Front. Bioeng. Biotechnol., 2020, 8, 552 LINK https://doi.org/10.3389/fbioe.2020.00552 [Google Scholar]
  76. Bagherpour I., Naghib S. M., and Yaghtin A. H. IET Nanobiotechnol., 2018, 12, (7), 895 LINK https://doi.org/10.1049/iet-nbt.2017.0275 [Google Scholar]
  77. Joung Y. S., and Buie C. R. Massachusetts Institute of Technology, ‘Electrophoretic-Deposited Surfaces’, US Patent 9,096,942; 2015 [Google Scholar]
  78. Cordero-Arias L., Cabanas-Polo S., Gilabert J., Goudouri O. M., Sanchez E., Virtanen S., and Boccaccini A. R. Adv. Appl. Ceram., 2014, 113, (1), 42 LINK https://doi.org/10.1179/1743676113Y.0000000096 [Google Scholar]
  79. Kollath V. O., Chen Q., Mullens S., Luyten J., Traina K., Boccaccini A. R., and Cloots R. J. Mater. Sci., 2016, 51, (5), 2338 LINK https://doi.org/10.1007/s10853-015-9543-6 [Google Scholar]
  80. Farhadian M., Raeissi K., Golozar M. A., Labbaf S., Hajilou T., and Barnoush A. Surf. Coat. Technol., 2019, 380, 125015 LINK https://doi.org/10.1016/j.surfcoat.2019.125015 [Google Scholar]
  81. Shirdar M. R., Izman S., Ahmad H. M. K. N., and Ma’aram A. Surf. Innov., 2017, 5, (2), 90 LINK https://doi.org/10.1680/jsuin.16.00028 [Google Scholar]
  82. Han C., Yao Y., Cheng X., Luo J., Luo P., Wang Q., Yang F., Wei Q., and Zhang Z. Biomacromolecules, 2017, 18, (11), 3776 LINK https://doi.org/10.1021/acs.biomac.7b01091 [Google Scholar]
  83. Seuss S., Lehmann M., and Boccaccini A. R. Int. J. Mol. Sci., 2014, 15, (7), 12231 LINK https://doi.org/10.3390/ijms150712231 [Google Scholar]
  84. Hanaor D., Michelazzi M., Veronesi P., Leonelli C., Romagnoli M., and Sorrell C. J. Eur. Ceram. Soc., 2011, 31, (6), 1041 LINK https://doi.org/10.1016/j.jeurceramsoc.2010.12.017 [Google Scholar]
  85. Su Y., and Zhitomirsky I. J. Colloid Inteface Sci., 2013, 399, 46 LINK https://doi.org/10.1016/j.jcis.2013.02.038 [Google Scholar]
  86. ‘An Introduction to Zeta Potential in 30 Minutes’, Zetasizer Nano Series Technical Note MRK 654-01, Malvern Panalytical Ltd, Malvern, UK, 2011 [Google Scholar]
  87. Ma K., Huang D., Cai J., Cai X., Gong L., Huang P., Wang Y., and Jiang T. Colloids Surf. B: Biointerfaces, 2016, 146, 97 LINK https://doi.org/10.1016/j.colsurfb.2016.05.036 [Google Scholar]
  88. Diba M., Fam D. W. H., Boccaccini A. R., and Shaffer M. S. P. Prog. Mater. Sci., 2016, 82, 83 LINK https://doi.org/10.1016/j.pmatsci.2016.03.002 [Google Scholar]
  89. Ahmed Y., Nawaz A., Virk R. S., Wadood A., and Rehman M. A. U. Int. J. Ceram. Eng. Sci., 2020, 2, (5), 254 LINK https://doi.org/10.1002/CES2.10066 [Google Scholar]
  90. Safavi M. S., Walsh F. C., Surmeneva M. A., Surmenev R. A., and Allafi J. K.- Coatings, 2021, 11, (1), 110 LINK https://doi.org/10.3390/coatings11010110 [Google Scholar]
  91. Sari M., Kristianto, Chotimah N. A., Ana I. D., and Yusuf Y. Coatings, 2021, 11, (8), 941 LINK https://doi.org/10.3390/coatings11080941 [Google Scholar]
  92. Boccaccini A. R., Chicatun F., Cho J., Bretcanu O., Roether J. A., Novak S., and Chen Q. Z. Adv. Funct. Mater., 2007, 17, (15), 2815 LINK https://doi.org/10.1002/adfm.200600887 [Google Scholar]
  93. Boccaccini A. R., Keim S., Ma R., Li Y., and Zhitomirsky I. J. R. Soc. Interface, 2010, 7, (5), S 581 LINK https://doi.org/10.1098/rsif.2010.0156.focus [Google Scholar]
  94. ‘Adhesion in Paint and Coatings’, SpecialChem, Paris, France:https://coatings.specialchem.com/coatings-properties/adhesion (Accessed on 1st November 2022) [Google Scholar]
  95. Owate I. O., Ezi C. W. I., and Avwiri G. J. Appl. Sci. Environ. Manag., 2002, 6, (2), 79 LINK http://www.bioline.org.br/request?ja02034 [Google Scholar]
  96. Moghadas H., Saidi M. S., Kashaninejad N., Kiyoumarsioskouei A., and Nguyen N.-T. Biomed. Microdevices, 2017, 19, (4), 74 LINK https://doi.org/10.1007/s10544-017-0215-y [Google Scholar]
  97. Abbass M. K., Khadhim M. J., Jasim A. N., and Issa M. J. J. Phys.: Conf. Ser., 2021, 1773, 012035 LINK https://doi.org/10.1088/1742-6596/1773/1/012035 [Google Scholar]
  98. Hong J.-Y., Ko S.-Y., Lee W., Chang Y.-Y., Kim S.-H., and Yun J.-H. Materials, 2020, 13, (14), 3061 LINK https://doi.org/10.3390/ma13143061 [Google Scholar]
  99. Van Tassel J. J., and Randall C. A. Key Eng. Mater., 2006, 314, 167 LINK https://doi.org/10.4028/www.scientific.net/KEM.314.167 [Google Scholar]
  100. Dorozhkin S. V. Adv. Nano-Bio-Mater. Dev., 2019, 3, (4), 422 LINK https://sciedtech.eu/download/sergey-v-dorozhkin-nanometric-calcium-orthophosphates-capo4-preparation-properties-and-biomedical-applications-advanced-nano-bio-materials-and-devices-201934422-512/ [Google Scholar]
  101. Kawaguchi K., Iijima M., Endo K., and Mizoguchi I. Coatings, 2017, 7, (11), 199 LINK https://doi.org/10.3390/COATINGS7110199 [Google Scholar]
  102. Miola M., Cordero-Arias L., Ferlenda G., Cochis A., Virtanen S., Rimondini L., Verné E., and Boccaccini A. R. Surf. Coatings Technol., 2021, 418, 127183 LINK https://doi.org/10.1016/j.surfcoat.2021.127183 [Google Scholar]
  103. Xin A., Zhang R., Yu K., and Wang Q. J. Mech. Phys. Solids, 2019, 125, 1 LINK https://doi.org/10.1016/j.jmps.2018.12.007 [Google Scholar]
  104. Nawaz A., and Ur Rehman M. A. J. Appl. Polym. Sci., 2021, 138, (15), 50220 LINK https://doi.org/10.1002/app.50220 [Google Scholar]
  105. Folgado J., and Fernandes P. R. ‘Bone Tissue Mechanics’, Biomecânica dos Tecidos, Instituto Superior Tecnico, Lisbon, Portugal, 2015 LINK http://www.dem.ist.utl.pt/jfolgado/BioTecidos_1516/Lesson_2016.03.07 [Google Scholar]
  106. ‘Bone Density Scan’, MedlinePlus, National Library of Medicine, Bethesda, USA, 2020: https://medlineplus.gov/lab-tests/bone-density-scan/ (Accessed on 26th March 2021) [Google Scholar]
  107. Chlebus E., Kuźnicka B., Kurzynowski T., and Dybała B. Mater. Charact., 2011, 62, (5), 488 LINK https://doi.org/10.1016/j.matchar.2011.03.006 [Google Scholar]
  108. Li Y., Jahr H., Lietaert K., Pavanram P., Yilmaz A., Fockaert L. I., Leeflang M. A., Pouran B., Gonzalez-Garcia Y., Weinans H., Mol J. M. C., Zhou J., and Zadpoor A. A. Acta Biomater., 2018, 77, 380 LINK https://doi.org/10.1016/j.actbio.2018.07.011 [Google Scholar]
  109. Liverani E., Rogati G., Pagani S., Brogini S., Fortunato A., and Caravaggi P. J. Mech. Behav. Biomed. Mater., 2021, 121, 104608 LINK https://doi.org/10.1016/j.jmbbm.2021.104608 [Google Scholar]
  110. Adhikari J., Saha P., Sinha A., Sreekala M. S., and Thomas S. ‘Surface Modification of metallic bone implants –Polymer and Polymer-Assisted Coating for Bone In-Growth’, in “Fundemental Biomaterials: Metals”, eds. Balakrishnan P., Elsevier Ltd, Duxford, UK, 2018, pp. 299321 LINK https://doi.org/10.1016/B978-0-08-102205-4.00014-3 [Google Scholar]
  111. Kahla R. B., and Barkaoui A. ‘Bone Multiscale Mechanics’, in “Bone Remodelling Process: Mechanics, Biology, and Numerical Modeling”, Elsevier Inc, San Diego, USA, 2021, pp. 147 LINK https://doi.org/10.1016/B978-0-323-88467-9.00005-9 [Google Scholar]
  112. Sahoo P., Das S. K., Paulo Davim J., ‘Tribiology of Materials for Biomedical Applications’, in “Mechanical Behaviour of Biomaterials”, ed. and Davim J. P. Woodhead Pulishing Series in Biomaterials, Ch. 1, Elsevier Ltd, Duxford, UK, 2019, pp. 145 LINK https://doi.org/10.1016/B978-0-08-102174-3.00001-2 [Google Scholar]
  113. Singh B., Singh G., and Sidhu B. S. J. Therm. Spray Technol., 2018, 27, (8), 1401 LINK https://doi.org/10.1007/s11666-018-0786-z [Google Scholar]
  114. Djošić M., Janković A., and Mišković-Stanković V. Materials, 2021, 14, (18), 5391 LINK https://doi.org/10.3390/MA14185391 [Google Scholar]
  115. Lacefield W. R. Ann. N. Y. Acad. Sci., 1988, 523, (1), 72 LINK https://doi.org/10.1111/J.1749-6632.1988.TB38501.X [Google Scholar]
  116. Hazlehurst K. B., Jiang C. J., and Stanford M. Mater. Des., 2014, 60, 177 LINK https://doi.org/10.1016/j.matdes.2014.03.068 [Google Scholar]
  117. Hazlehurst K., Wang C. J., and Stanford M. Mater. Des., 2013, 51, 949 LINK https://doi.org/10.1016/j.matdes.2013.05.009 [Google Scholar]
  118. Baino F., Hamzehlou S., and Kargozar S. J. Funct. Biomater., 2018, 9, (1), 25 LINK https://doi.org/10.3390/jfb9010025 [Google Scholar]
  119. van der Biest O., Put S., Anné G., and Vleugels J. J. Mater. Sci., 2004, 39, (3), 779 LINK https://doi.org/10.1023/B:JMSC.0000012905.62256.39 [Google Scholar]
  120. Zhou J., He H., Shi Z., Liu G., and Nan C.-W. J. Appl. Phys., 2006, 100, (9), 094106 LINK https://doi.org/10.1063/1.2358191 [Google Scholar]
/content/journals/10.1595/205651323X16685352825345
Loading
/content/journals/10.1595/205651323X16685352825345
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error