Skip to content
1887
Volume 68, Issue 1
  • ISSN: 2056-5135

Abstract

Part I (1) introduced state-of-the-art proton exchange membrane (PEM) electrolysers with iridium-based catalysts for oxygen evolution at the anode in green hydrogen applications. Aqueous model systems and full cell testing were discussed along with proton exchange membrane water electrolyser (PEMWE) catalyst degradation mechanisms, types of iridium oxide, mechanisms of iridium dissolution and stability studies. In Part II, we highlight considerations and best practices for the investigation of activity and stability of oxygen evolution catalysts short term testing.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X17055018154113
2023-05-23
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/1/Murawski_16a_Imp-pt2.html?itemId=/content/journals/10.1595/205651324X17055018154113&mimeType=html&fmt=ahah

References

  1. Murawski J., Scott S. B., Rao R., Rigg K., Zalitis C., Stevens J., Sharman J., Hinds G., and Stephens I. E. L. Johnson Matthey Technol. Rev., 2024, 68, (1), 117 LINK https://doi.org/10.1595/205651323X16848455435118 [Google Scholar]
  2. Chen R., Yang C., Cai W., Wang H.-Y., Miao J., Zhang L., Chen S., and Liu B. ACS Energy Lett., 2017, 2, (5), 1070 LINK https://doi.org/10.1021/acsenergylett.7b00219 [Google Scholar]
  3. Bird M. A., Goodwin S. E., and Walsh D. A. ACS Appl. Mater. Interfaces, 2020, 12, (18), 20500 LINK https://doi.org/10.1021/acsami.0c03307 [Google Scholar]
  4. Yu H., Bonville L., Jankovic J., and Maric R. Appl. Catal. B: Environ., 2020, 260, 118194 LINK https://doi.org/10.1016/j.apcatb.2019.118194 [Google Scholar]
  5. Alia S. M., and Danilovic N. Front. Energy Res., 2022, 10, 857663 LINK https://doi.org/10.3389/fenrg.2022.857663 [Google Scholar]
  6. Kasian O., Grote J.-P., Geiger S., Cherevko S., and Mayrhofer K. J. J. Angew. Chem. Int. Ed., 2018, 57, (9), 2488 LINK https://doi.org/10.1002/anie.201709652 [Google Scholar]
  7. Alia S. M., and Anderson G. C. J. Electrochem. Soc., 2019, 166, (4), F 282 LINK https://doi.org/10.1149/2.0731904jes [Google Scholar]
  8. Petzoldt P. J., Kwan J. T. H., Bonakdarpour A., and Wilkinson D. P. J. Electrochem. Soc., 2021, 168, (2), 026507 LINK https://doi.org/10.1149/1945-7111/abde7d [Google Scholar]
  9. Spöri C., Brand C., Kroschel M., and Strasser P. J. Electrochem. Soc., 2021, 168, (3), 034508 LINK https://doi.org/10.1149/1945-7111/abeb61 [Google Scholar]
  10. Wei C., Rao R. R., Peng J., Huang B., Stephens I. E. L., Risch M., Xu Z. J., and Shao-Horn Y. Adv. Mater., 2019, 31, (31), 1806296 LINK https://doi.org/10.1002/adma.201806296 [Google Scholar]
  11. Seger B., Vinodgopal K., and Kamat P. V. Langmuir, 2007, 23, (10), 5471 LINK https://doi.org/10.1021/la0636816 [Google Scholar]
  12. Kreuer K. D., Ise M., Fuchs A., and Maier J. Le J. Phys. IV France, 2000, 10, (7), 279 LINK https://doi.org/10.1051/jp4:2000756 [Google Scholar]
  13. Arminio-Ravelo J. A., Jensen A. W., Jensen K. D., Quinson J., and Escudero-Escribano M. ChemPhysChem, 2019, 20, (22), 2956 LINK https://doi.org/10.1002/cphc.201900902 [Google Scholar]
  14. Knöppel J., Möckl M., Escalera-López D., Stojanovski K., Bierling M., Böhm T., Thiele S., Rzepka M., and Cherevko S. Nat. Commun., 2021, 12, 2231 LINK https://doi.org/10.1038/s41467-021-22296-9 [Google Scholar]
  15. Geiger S., Kasian O., Ledendecker M., Pizzutilo E., Mingers A. M., Fu W. T., Diaz-Morales O., Li Z., Oellers T., Fruchter L., Ludwig A., Mayrhofer K. J. J., Koper M. T. M., and Cherevko S. Nat. Catal., 2018, 1, (7), 508 LINK https://doi.org/10.1038/s41929-018-0085-6 [Google Scholar]
  16. Tovini M. F., Hartig-Weiß A., Gasteiger H. A., and El-Sayed H. A. J. Electrochem. Soc., 2021, 168, (1), 014512 LINK https://doi.org/10.1149/1945-7111/abdcc9 [Google Scholar]
  17. Pourbaix M. J. N., Van Muylde J., and de Zoubov N. Platinum Metals Rev., 1959, 3, (3), 100 LINK https://technology.matthey.com/article/3/3/100-106/ [Google Scholar]
  18. Peng X., Satjaritanun P., Taie Z., Wiles L., Keane A., Capuano C., Zenyuk I. V., and Danilovic N. Adv. Sci., 2021, 8, (21), 2102950 LINK https://doi.org/10.1002/advs.202102950 [Google Scholar]
  19. Scott S. B., Rao R. R., Moon C., Sørensen J. E., Kibsgaard J., Shao-Horn Y., and Chorkendorff I. Energy Environ. Sci., 2022, 15, (5), 1977 LINK https://doi.org/10.1039/d1ee03914h [Google Scholar]
  20. Garcia A. C., and Koper M. T. M. ACS Catal., 2018, 8, (10), 9359 LINK https://doi.org/10.1021/acscatal.8b01447 [Google Scholar]
  21. Hartig-Weiss A., Tovini M. F., Gasteiger H. A., and El-Sayed H. A. ACS Appl. Energy Mater., 2020, 3, (11), 10323 LINK https://doi.org/10.1021/acsaem.0c01944 [Google Scholar]
  22. Papakonstantinou G., Spanos I., Dam A. P., Schlögl R., and Sundmacher K. Phys. Chem. Chem. Phys., 2022, 24, (23), 14579 LINK https://doi.org/10.1039/d2cp00828a [Google Scholar]
  23. El-Sayed H. A., Weiß A., Olbrich L. F., Putro G. P., and Gasteiger H. A. J. Electrochem. Soc., 2019, 166, (8), F458 LINK https://doi.org/10.1149/2.0301908jes [Google Scholar]
  24. Ioroi T., Nagai T., Siroma Z., and Yasuda K. Int. J. Hydrogen Energy, 2022, 47, (91), 38506 LINK https://doi.org/10.1016/j.ijhydene.2022.09.059 [Google Scholar]
  25. Czioska S., Ehelebe K., Geppert J., Escalera-López D., Boubnov A., Saraçi E., Mayerhöfer B., Krewer U., Cherevko S., and Grunwaldt J.-D. ChemElectroChem, 2022, 9, (19), e202200514 LINK https://doi.org/10.1002/celc.202200514 [Google Scholar]
  26. Czioska S., Boubnov A., Escalera-López D., Geppert J., Zagalskaya A., Röse P., Saraçi E., Alexandrov V., Krewer U., Cherevko S., and Grunwaldt J.-D. ACS Catal., 2021, 11, (15), 10043 LINK https://doi.org/10.1021/acscatal.1c02074 [Google Scholar]
  27. Geiger S., Kasian O., Mingers A. M., Nicley S. S., Haenen K., Mayrhofer K. J. J., and Cherevko S. ChemSusChem, 2017, 10, (21), 4140 LINK https://doi.org/10.1002/cssc.201701523 [Google Scholar]
  28. Edgington J., Deberghes A., and Seitz L. C. ACS Appl. Energy Mater., 2022, 5, (10), 12206 LINK https://doi.org/10.1021/acsaem.2c01690 [Google Scholar]
  29. Yi Y., Weinberg G., Prenzel M., Greiner M., Heumann S., Becker S., and Schlögl R. Catal. Today, 2017, 295, 32 LINK https://doi.org/10.1016/j.cattod.2017.07.013 [Google Scholar]
  30. Zheng Y.-R., Vernieres J., Wang Z., Zhang K., Hochfilzer D., Krempl K., Liao T.-W., Presel F., Altantzis T., Fatermans J., Scott S. B., Secher N. M., Moon C., Liu P., Bals S., Van Aert S., Cao A., Anand M., Nørskov J. K., Kibsgaard J., and Chorkendorff I. Nat. Energy, 2022, 7, (1), 55 LINK https://doi.org/10.1038/s41560-021-00948-w [Google Scholar]
  31. Trogisch N., Koch M., El Sawy E. N., and El-Sayed H. A. ACS Catal., 2022, 12, (21), 13715 LINK https://doi.org/10.1021/acscatal.2c03881 [Google Scholar]
  32. Wei C., Sun S., Mandler D., Wang X., Qiao S. Z., and Xu Z. J. Chem. Soc. Rev., 2019, 48, (9), 2518 LINK https://doi.org/10.1039/c8cs00848e [Google Scholar]
  33. Jung S., McCrory C. C. L., Ferrer I. M., Peters J. C., and Jaramillo T. F. J. Mater. Chem. A, 2016, 4, (8), 3068 LINK https://doi.org/10.1039/c5ta07586f [Google Scholar]
  34. Reier T., Oezaslan M., and Strasser P. ACS Catal., 2012, 2, (8), 1765 LINK https://doi.org/10.1021/cs3003098 [Google Scholar]
  35. Woods R. J. Electroanal. Chem. Interfacial Electrochem., 1974, 49, (2), 217 LINK https://doi.org/10.1016/s0022-0728(74)80229-9 [Google Scholar]
  36. Alia S. M., Hurst K. E., Kocha S. S., and Pivovar B. S. J. Electrochem. Soc., 2016, 163, (11), F 3051 LINK https://doi.org/10.1149/2.0071611jes [Google Scholar]
  37. Zaman W. Q., Sun W., Tariq M., Zhou Z., Farooq U., Abbas Z., Cao L., and Yang J. Appl. Catal. B: Environ., 2019, 244, 295 LINK https://doi.org/10.1016/j.apcatb.2018.10.041 [Google Scholar]
  38. Lyons M. E. G., and Floquet S. Phys. Chem. Chem. Phys., 2011, 13, (12), 5314 LINK https://doi.org/10.1039/c0cp02875d [Google Scholar]
  39. Stoerzinger K. A., Qiao L., Biegalski M. D., and Shao-Horn Y. J. Phys. Chem. Lett., 2014, 5, (10), 1636 LINK https://doi.org/10.1021/jz500610u [Google Scholar]
  40. Watzele S., and Bandarenka A. S. Electroanalysis, 2016, 28, (10), 2394 LINK https://doi.org/10.1002/elan.201600178 [Google Scholar]
  41. Watzele S., Hauenstein P., Liang Y., Xue S., Fichtner J., Garlyyev B., Scieszka D., Claudel F., Maillard F., and Bandarenka A. S. ACS Catal., 2019, 9, (10), 9222 LINK https://doi.org/10.1021/acscatal.9b02006 [Google Scholar]
  42. Lončar A., Jovanovič P., Hodnik N., and Gaberšček M. J. Electrochem. Soc., 2023, 170, (4), 044504 LINK https://doi.org/10.1149/1945-7111/accaad [Google Scholar]
  43. Kounaves S. P., and Buffle J. J. Electrochem. Soc., 1986, 133, (12), 2495 LINK https://doi.org/10.1149/1.2108457 [Google Scholar]
  44. Zalitis C. M., Kramer D., and Kucernak A. R. Phys. Chem. Chem. Phys., 2013, 15, (12), 4329 LINK https://doi.org/10.1039/c3cp44431g [Google Scholar]
  45. Inaba M., Jensen A. W., Sievers G. W., Escudero-Escribano M., Zana A., and Arenz M. Energy Environ. Sci., 2018, 11, (4), 988 LINK https://doi.org/10.1039/c8ee00019k [Google Scholar]
  46. Hrnjić A., Ruiz-Zepeda F., Gaberšček M., Bele M., Suhadolnik L., Hodnik N., and Jovanovič P. J. Electrochem. Soc., 2020, 167, (16), 166501 LINK https://doi.org/10.1149/1945-7111/abc9de [Google Scholar]
  47. Watzele S., Liang Y., and Bandarenka A. S. ACS Appl. Energy Mater., 2018, 1, (8), 4196 LINK https://doi.org/10.1021/acsaem.8b00852 [Google Scholar]
  48. Locatelli C., Minguzzi A., Vertova A., Cava P., and Rondinini S. Anal. Chem., 2011, 83, (7), 2819 LINK https://doi.org/10.1021/ac200286q [Google Scholar]
  49. Minguzzi A., Locatelli C., Lugaresi O., Vertova A., and Rondinini S. Electrochim. Acta, 2013, 114, 637 LINK https://doi.org/10.1016/j.electacta.2013.10.054 [Google Scholar]
  50. Rincón R. A., Battistel A., Ventosa E., Chen X., Nebel M., and Schuhmann W. ChemSusChem, 2015, 8, (3), 560 LINK https://doi.org/10.1002/cssc.201402855 [Google Scholar]
  51. Kroschel M., Bonakdarpour A., Kwan J. T. H., Strasser P., and Wilkinson D. P. Electrochim. Acta, 2019, 317, 722 LINK https://doi.org/10.1016/j.electacta.2019.05.011 [Google Scholar]
  52. Siegmund D., Metz S., Peinecke V., Warner T. E., Cremers C., Grevé A., Smolinka T., Segets D., and Apfel U.-P. JACS Au, 2021, 1, (5), 527 LINK https://doi.org/10.1021/jacsau.1c00092 [Google Scholar]
  53. Bernt M., and Gasteiger H. A. J. Electrochem. Soc., 2016, 163, (11), F3179 LINK https://doi.org/10.1149/2.0231611jes [Google Scholar]
  54. Möckl M., Ernst M. F., Kornherr M., Allebrod F., Bernt M., Byrknes J., Eickes C., Gebauer C., Moskovtseva A., and Gasteiger H. A. J. Electrochem. Soc., 2022, 169, (6), 064505 LINK https://doi.org/10.1149/1945-7111/ac6d14 [Google Scholar]
  55. Browne M. P., Dodwell J., Novotny F., Jaśkaniec S., Shearing P. R., Nicolosi V., Brett D. J. L., and Pumera M. J. Mater. Chem. A, 2021, 9, (14), 9113 LINK https://doi.org/10.1039/d1ta00633a [Google Scholar]
  56. Tsotridis G., and Pilenga A. “EU Harmonized Protocols for Testing of Low Temperature Water Electrolysis”, JRC Technical Report No. JRC122565, European Commission, Petten, The Netherlands, 2021, 171 pp LINK https://doi.org/10.2760/58880 [Google Scholar]
  57. Alia S. M., Reeves K. S., Yu H., Park J., Kariuki N., Kropf A. J., Myers D. J., and Cullen D. A. J. Electrochem. Soc., 2022, 169, (5), 054517 LINK https://doi.org/10.1149/1945-7111/ac697e [Google Scholar]
  58. Clapp M., Zalitis C. M., and Ryan M. Catal. Today, 2023, 420, 114140 LINK https://doi.org/10.1016/j.cattod.2023.114140 [Google Scholar]
  59. Bernt M., Siebel A., and Gasteiger H. A. J. Electrochem. Soc., 2018, 165, (5), F305 LINK https://doi.org/10.1149/2.0641805jes [Google Scholar]
  60. Nilsson A., Stephens I., Latimer A., and Dickens C. F. ‘Sustainable N2 Reduction’, in “Research Needs Towards Sustainable Production of Fuels and Chemicals”, eds. San Juan, Puerto Rico, 2019, pp. 4959 [Google Scholar]
  61. Scott S. B., Sørensen J. E., Rao R. R., Moon C., Kibsgaard J., Shao-Horn Y., and Chorkendorff I. Energy Environ. Sci., 2022, 15, (5), 1988 LINK https://doi.org/10.1039/d1ee03915f [Google Scholar]
/content/journals/10.1595/205651324X17055018154113
Loading
/content/journals/10.1595/205651324X17055018154113
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error