Skip to content
1887
Volume 68, Issue 1
  • ISSN: 2056-5135
  • oa Benchmarking Stability of Iridium Oxide in Acidic Media under Oxygen Evolution Conditions: A Review: Part II

    Investigation of catalyst activity and stability short term testing

  • Authors: James Murawski1, Soren B. Scott1, Reshma Rao1, Katie Rigg2, Chris Zalitis2, James Stevens2, Jonathan Sharman2, Gareth Hinds3 and Ifan E. L. Stephens1
  • Affiliations: 1 Department of Materials, Imperial College LondonExhibition Road, London, SW7 2AZUK 2 Johnson MattheyBlount’s Court, Sonning Common, Reading, RG4 9NHUK 3 National Physical LaboratoryTeddington, Middlesex, TW11 0LWUK
  • Source: Johnson Matthey Technology Review, Volume 68, Issue 1, Jan 2024, p. 147 - 160
  • DOI: https://doi.org/10.1595/205651324X17055018154113
    • Received: 10 Feb 2023
    • Accepted: 22 May 2023
    • Published online: 23 May 2023

Abstract

Part I (1) introduced state-of-the-art proton exchange membrane (PEM) electrolysers with iridium-based catalysts for oxygen evolution at the anode in green hydrogen applications. Aqueous model systems and full cell testing were discussed along with proton exchange membrane water electrolyser (PEMWE) catalyst degradation mechanisms, types of iridium oxide, mechanisms of iridium dissolution and stability studies. In Part II, we highlight considerations and best practices for the investigation of activity and stability of oxygen evolution catalysts short term testing.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X17055018154113
2023-05-23
2024-12-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/1/Murawski_16a_Imp-pt2.html?itemId=/content/journals/10.1595/205651324X17055018154113&mimeType=html&fmt=ahah

References

  1. J. Murawski, S. B. Scott, R. Rao, K. Rigg, C. Zalitis, J. Stevens, J. Sharman, G. Hinds, I. E. L. Stephens, Johnson Matthey Technol. Rev., 2024, 68, (1), 117 LINK https://doi.org/10.1595/205651323X16848455435118 [Google Scholar]
  2. R. Chen, C. Yang, W. Cai, H.-Y. Wang, J. Miao, L. Zhang, S. Chen, B. Liu, ACS Energy Lett., 2017, 2, (5), 1070 LINK https://doi.org/10.1021/acsenergylett.7b00219 [Google Scholar]
  3. M. A. Bird, S. E. Goodwin, D. A. Walsh, ACS Appl. Mater. Interfaces, 2020, 12, (18), 20500 LINK https://doi.org/10.1021/acsami.0c03307 [Google Scholar]
  4. H. Yu, L. Bonville, J. Jankovic, R. Maric, Appl. Catal. B: Environ., 2020, 260, 118194 LINK https://doi.org/10.1016/j.apcatb.2019.118194 [Google Scholar]
  5. S. M. Alia, N. Danilovic, Front. Energy Res., 2022, 10, 857663 LINK https://doi.org/10.3389/fenrg.2022.857663 [Google Scholar]
  6. O. Kasian, J.-P. Grote, S. Geiger, S. Cherevko, K. J. J. Mayrhofer, Angew. Chem. Int. Ed., 2018, 57, (9), 2488 LINK https://doi.org/10.1002/anie.201709652 [Google Scholar]
  7. S. M. Alia, G. C. Anderson, J. Electrochem. Soc., 2019, 166, (4), F 282 LINK https://doi.org/10.1149/2.0731904jes [Google Scholar]
  8. P. J. Petzoldt, J. T. H. Kwan, A. Bonakdarpour, D. P. Wilkinson, J. Electrochem. Soc., 2021, 168, (2), 026507 LINK https://doi.org/10.1149/1945-7111/abde7d [Google Scholar]
  9. C. Spöri, C. Brand, M. Kroschel, P. Strasser, J. Electrochem. Soc., 2021, 168, (3), 034508 LINK https://doi.org/10.1149/1945-7111/abeb61 [Google Scholar]
  10. C. Wei, R. R. Rao, J. Peng, B. Huang, I. E. L. Stephens, M. Risch, Z. J. Xu, Y. Shao-Horn, Adv. Mater., 2019, 31, (31), 1806296 LINK https://doi.org/10.1002/adma.201806296 [Google Scholar]
  11. B. Seger, K. Vinodgopal, P. V. Kamat, Langmuir, 2007, 23, (10), 5471 LINK https://doi.org/10.1021/la0636816 [Google Scholar]
  12. K. D. Kreuer, M. Ise, A. Fuchs, J. Maier, Le J. Phys. IV France, 2000, 10, (7), 279 LINK https://doi.org/10.1051/jp4:2000756 [Google Scholar]
  13. J. A. Arminio-Ravelo, A. W. Jensen, K. D. Jensen, J. Quinson, M. Escudero-Escribano, ChemPhysChem, 2019, 20, (22), 2956 LINK https://doi.org/10.1002/cphc.201900902 [Google Scholar]
  14. J. Knöppel, M. Möckl, D. Escalera-López, K. Stojanovski, M. Bierling, T. Böhm, S. Thiele, M. Rzepka, S. Cherevko, Nat. Commun., 2021, 12, 2231 LINK https://doi.org/10.1038/s41467-021-22296-9 [Google Scholar]
  15. S. Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A. M. Mingers, W. T. Fu, O. Diaz-Morales, Z. Li, T. Oellers, L. Fruchter, A. Ludwig, K. J. J. Mayrhofer, M. T. M. Koper, S. Cherevko, Nat. Catal., 2018, 1, (7), 508 LINK https://doi.org/10.1038/s41929-018-0085-6 [Google Scholar]
  16. M. F. Tovini, A. Hartig-Weiß, H. A. Gasteiger, H. A. El-Sayed, J. Electrochem. Soc., 2021, 168, (1), 014512 LINK https://doi.org/10.1149/1945-7111/abdcc9 [Google Scholar]
  17. M. J. N. Pourbaix, J. Van Muylde, N. de Zoubov, Platinum Metals Rev., 1959, 3, (3), 100 LINK https://technology.matthey.com/article/3/3/100-106/ [Google Scholar]
  18. X. Peng, P. Satjaritanun, Z. Taie, L. Wiles, A. Keane, C. Capuano, I. V. Zenyuk, N. Danilovic, Adv. Sci., 2021, 8, (21), 2102950 LINK https://doi.org/10.1002/advs.202102950 [Google Scholar]
  19. S. B. Scott, R. R. Rao, C. Moon, J. E. Sørensen, J. Kibsgaard, Y. Shao-Horn, I. Chorkendorff, Energy Environ. Sci., 2022, 15, (5), 1977 LINK https://doi.org/10.1039/d1ee03914h [Google Scholar]
  20. A. C. Garcia, M. T. M. Koper, ACS Catal., 2018, 8, (10), 9359 LINK https://doi.org/10.1021/acscatal.8b01447 [Google Scholar]
  21. A. Hartig-Weiss, M. F. Tovini, H. A. Gasteiger, H. A. El-Sayed, ACS Appl. Energy Mater., 2020, 3, (11), 10323 LINK https://doi.org/10.1021/acsaem.0c01944 [Google Scholar]
  22. G. Papakonstantinou, I. Spanos, A. P. Dam, R. Schlögl, K. Sundmacher, Phys. Chem. Chem. Phys., 2022, 24, (23), 14579 LINK https://doi.org/10.1039/d2cp00828a [Google Scholar]
  23. H. A. El-Sayed, A. Weiß, L. F. Olbrich, G. P. Putro, H. A. Gasteiger, J. Electrochem. Soc., 2019, 166, (8), F458 LINK https://doi.org/10.1149/2.0301908jes [Google Scholar]
  24. T. Ioroi, T. Nagai, Z. Siroma, K. Yasuda, Int. J. Hydrogen Energy, 2022, 47, (91), 38506 LINK https://doi.org/10.1016/j.ijhydene.2022.09.059 [Google Scholar]
  25. S. Czioska, K. Ehelebe, J. Geppert, D. Escalera-López, A. Boubnov, E. Saraçi, B. Mayerhöfer, U. Krewer, S. Cherevko, J.-D. Grunwaldt, ChemElectroChem, 2022, 9, (19), e202200514 LINK https://doi.org/10.1002/celc.202200514 [Google Scholar]
  26. S. Czioska, A. Boubnov, D. Escalera-López, J. Geppert, A. Zagalskaya, P. Röse, E. Saraçi, V. Alexandrov, U. Krewer, S. Cherevko, J.-D. Grunwaldt, ACS Catal., 2021, 11, (15), 10043 LINK https://doi.org/10.1021/acscatal.1c02074 [Google Scholar]
  27. S. Geiger, O. Kasian, A. M. Mingers, S. S. Nicley, K. Haenen, K. J. J. Mayrhofer, S. Cherevko, ChemSusChem, 2017, 10, (21), 4140 LINK https://doi.org/10.1002/cssc.201701523 [Google Scholar]
  28. J. Edgington, A. Deberghes, L. C. Seitz, ACS Appl. Energy Mater., 2022, 5, (10), 12206 LINK https://doi.org/10.1021/acsaem.2c01690 [Google Scholar]
  29. Y. Yi, G. Weinberg, M. Prenzel, M. Greiner, S. Heumann, S. Becker, R. Schlögl, Catal. Today, 2017, 295, 32 LINK https://doi.org/10.1016/j.cattod.2017.07.013 [Google Scholar]
  30. Y.-R. Zheng, J. Vernieres, Z. Wang, K. Zhang, D. Hochfilzer, K. Krempl, T.-W. Liao, F. Presel, T. Altantzis, J. Fatermans, S. B. Scott, N. M. Secher, C. Moon, P. Liu, S. Bals, S. Van Aert, A. Cao, M. Anand, J. K. Nørskov, J. Kibsgaard, I. Chorkendorff, Nat. Energy, 2022, 7, (1), 55 LINK https://doi.org/10.1038/s41560-021-00948-w [Google Scholar]
  31. N. Trogisch, M. Koch, E. N. El Sawy, H. A. El-Sayed, ACS Catal., 2022, 12, (21), 13715 LINK https://doi.org/10.1021/acscatal.2c03881 [Google Scholar]
  32. C. Wei, S. Sun, D. Mandler, X. Wang, S. Z. Qiao, Z. J. Xu, Chem. Soc. Rev., 2019, 48, (9), 2518 LINK https://doi.org/10.1039/c8cs00848e [Google Scholar]
  33. S. Jung, C. C. L. McCrory, I. M. Ferrer, J. C. Peters, T. F. Jaramillo, J. Mater. Chem. A, 2016, 4, (8), 3068 LINK https://doi.org/10.1039/c5ta07586f [Google Scholar]
  34. T. Reier, M. Oezaslan, P. Strasser, ACS Catal., 2012, 2, (8), 1765 LINK https://doi.org/10.1021/cs3003098 [Google Scholar]
  35. R. Woods, J. Electroanal. Chem. Interfacial Electrochem., 1974, 49, (2), 217 LINK https://doi.org/10.1016/s0022-0728(74)80229-9 [Google Scholar]
  36. S. M. Alia, K. E. Hurst, S. S. Kocha, B. S. Pivovar, J. Electrochem. Soc., 2016, 163, (11), F 3051 LINK https://doi.org/10.1149/2.0071611jes [Google Scholar]
  37. W. Q. Zaman, W. Sun, M. Tariq, Z. Zhou, U. Farooq, Z. Abbas, L. Cao, J. Yang, Appl. Catal. B: Environ., 2019, 244, 295 LINK https://doi.org/10.1016/j.apcatb.2018.10.041 [Google Scholar]
  38. M. E. G. Lyons, S. Floquet, Phys. Chem. Chem. Phys., 2011, 13, (12), 5314 LINK https://doi.org/10.1039/c0cp02875d [Google Scholar]
  39. K. A. Stoerzinger, L. Qiao, M. D. Biegalski, Y. Shao-Horn, J. Phys. Chem. Lett., 2014, 5, (10), 1636 LINK https://doi.org/10.1021/jz500610u [Google Scholar]
  40. S. Watzele, A. S. Bandarenka, Electroanalysis, 2016, 28, (10), 2394 LINK https://doi.org/10.1002/elan.201600178 [Google Scholar]
  41. S. Watzele, P. Hauenstein, Y. Liang, S. Xue, J. Fichtner, B. Garlyyev, D. Scieszka, F. Claudel, F. Maillard, A. S. Bandarenka, ACS Catal., 2019, 9, (10), 9222 LINK https://doi.org/10.1021/acscatal.9b02006 [Google Scholar]
  42. A. Lončar, P. Jovanovič, N. Hodnik, M. Gaberšček, J. Electrochem. Soc., 2023, 170, (4), 044504 LINK https://doi.org/10.1149/1945-7111/accaad [Google Scholar]
  43. S. P. Kounaves, J. Buffle, J. Electrochem. Soc., 1986, 133, (12), 2495 LINK https://doi.org/10.1149/1.2108457 [Google Scholar]
  44. C. M. Zalitis, D. Kramer, A. R. Kucernak, Phys. Chem. Chem. Phys., 2013, 15, (12), 4329 LINK https://doi.org/10.1039/c3cp44431g [Google Scholar]
  45. M. Inaba, A. W. Jensen, G. W. Sievers, M. Escudero-Escribano, A. Zana, M. Arenz, Energy Environ. Sci., 2018, 11, (4), 988 LINK https://doi.org/10.1039/c8ee00019k [Google Scholar]
  46. A. Hrnjić, F. Ruiz-Zepeda, M. Gaberšček, M. Bele, L. Suhadolnik, N. Hodnik, P. Jovanovič, J. Electrochem. Soc., 2020, 167, (16), 166501 LINK https://doi.org/10.1149/1945-7111/abc9de [Google Scholar]
  47. S. Watzele, Y. Liang, A. S. Bandarenka, ACS Appl. Energy Mater., 2018, 1, (8), 4196 LINK https://doi.org/10.1021/acsaem.8b00852 [Google Scholar]
  48. C. Locatelli, A. Minguzzi, A. Vertova, P. Cava, S. Rondinini, Anal. Chem., 2011, 83, (7), 2819 LINK https://doi.org/10.1021/ac200286q [Google Scholar]
  49. A. Minguzzi, C. Locatelli, O. Lugaresi, A. Vertova, S. Rondinini, Electrochim. Acta, 2013, 114, 637 LINK https://doi.org/10.1016/j.electacta.2013.10.054 [Google Scholar]
  50. R. A. Rincón, A. Battistel, E. Ventosa, X. Chen, M. Nebel, W. Schuhmann, ChemSusChem, 2015, 8, (3), 560 LINK https://doi.org/10.1002/cssc.201402855 [Google Scholar]
  51. M. Kroschel, A. Bonakdarpour, J. T. H. Kwan, P. Strasser, D. P. Wilkinson, Electrochim. Acta, 2019, 317, 722 LINK https://doi.org/10.1016/j.electacta.2019.05.011 [Google Scholar]
  52. D. Siegmund, S. Metz, V. Peinecke, T. E. Warner, C. Cremers, A. Grevé, T. Smolinka, D. Segets, U.-P. Apfel, JACS Au, 2021, 1, (5), 527 LINK https://doi.org/10.1021/jacsau.1c00092 [Google Scholar]
  53. M. Bernt, H. A. Gasteiger, J. Electrochem. Soc., 2016, 163, (11), F3179 LINK https://doi.org/10.1149/2.0231611jes [Google Scholar]
  54. M. Möckl, M. F. Ernst, M. Kornherr, F. Allebrod, M. Bernt, J. Byrknes, C. Eickes, C. Gebauer, A. Moskovtseva, H. A. Gasteiger, J. Electrochem. Soc., 2022, 169, (6), 064505 LINK https://doi.org/10.1149/1945-7111/ac6d14 [Google Scholar]
  55. M. P. Browne, J. Dodwell, F. Novotny, S. Jaśkaniec, P. R. Shearing, V. Nicolosi, D. J. L. Brett, M. Pumera, J. Mater. Chem. A, 2021, 9, (14), 9113 LINK https://doi.org/10.1039/d1ta00633a [Google Scholar]
  56. G. Tsotridis, A. Pilenga, “EU Harmonized Protocols for Testing of Low Temperature Water Electrolysis”, JRC Technical Report No. JRC122565, European Commission, Petten, The Netherlands, 2021, 171 pp LINK https://doi.org/10.2760/58880 [Google Scholar]
  57. S. M. Alia, K. S. Reeves, H. Yu, J. Park, N. Kariuki, A. J. Kropf, D. J. Myers, D. A. Cullen, J. Electrochem. Soc., 2022, 169, (5), 054517 LINK https://doi.org/10.1149/1945-7111/ac697e [Google Scholar]
  58. M. Clapp, C. M. Zalitis, M. Ryan, Catal. Today, 2023, 420, 114140 LINK https://doi.org/10.1016/j.cattod.2023.114140 [Google Scholar]
  59. M. Bernt, A. Siebel, H. A. Gasteiger, J. Electrochem. Soc., 2018, 165, (5), F305 LINK https://doi.org/10.1149/2.0641805jes [Google Scholar]
  60. A. Nilsson, I. Stephens, A. Latimer, C. F. Dickens, ‘Sustainable N2 Reduction’, in “Research Needs Towards Sustainable Production of Fuels and Chemicals”, eds. San Juan, Puerto Rico, 2019, pp. 4959 [Google Scholar]
  61. S. B. Scott, J. E. Sørensen, R. R. Rao, C. Moon, J. Kibsgaard, Y. Shao-Horn, I. Chorkendorff, Energy Environ. Sci., 2022, 15, (5), 1988 LINK https://doi.org/10.1039/d1ee03915f [Google Scholar]
/content/journals/10.1595/205651324X17055018154113
Loading
/content/journals/10.1595/205651324X17055018154113
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test