Skip to content
Volume 67, Issue 1
  • ISSN: 2056-5135


This is Part II of a focused review of recent highlights in the literature in cathode development for low temperature electrochemical carbon dioxide and carbon monoxide reduction to multi-carbon (C) products. Part I (1) introduced the role of CO reduction in decarbonising the chemical industry and described the catalysts and modelling approaches. Part II describes characterisation to improve the understanding and development of catalysts, the catalyst layer and the gas diffusion layer.


Article metrics loading...

Loading full text...

Full text loading...



  1. Macpherson H., Hodges T., Chuma M. H., Sherwin C., Podbevšek U., Rigg K., Celorrio V., Russell A., and Corbos E. C. Johnson Matthey Technol. Rev., 2023, 67, (1), 97 LINK [Google Scholar]
  2. Hori Y., ‘Electrochemical CO2 Reduction on Metal Electrodes’, in “Modern Aspects of Electrochemistry 42”, eds. Vayenas C. G., White R. E., and Gamboa-Aldeco M. E. Springer-Verlag, New York, USA, 2008, pp. 89189 LINK [Google Scholar]
  3. Chernyshova I. V., Somasundaran P., and Ponnurangam S. Proc. Natl. Acad. Sci. USA, 2018, 115, (40), E 9261 LINK [Google Scholar]
  4. Gunathunge C. M., Ovalle V. J., Li Y., Janik M. J., and Waegele M. M. ACS Catal., 2018, 8, (8), 7507 LINK [Google Scholar]
  5. Pérez-Gallent E., Figueiredo M. C., Calle-Vallejo F., and Koper M. T. M. Angew. Chem. Int. Ed., 2017, 56, (13), 3621 LINK [Google Scholar]
  6. Schouten K. J. P., Pérez Gallent E., and Koper M. T. M. ACS Catal., 2013, 3, (6), 1292 LINK [Google Scholar]
  7. Malkani A. S., Dunwell M., and Xu B. ACS Catal., 2019, 9, (1), 474 LINK [Google Scholar]
  8. Beverskog B., and Puigdomenech I. J. Electrochem. Soc., 1997, 144, (10), 3476 LINK [Google Scholar]
  9. Nitopi S., Bertheussen E., Scott S. B., Liu X., Engstfeld A. K., Horch S., Seger B., Stephens I. E. L., Chan K., Hahn C., Nørskov J. K., Jaramillo T. F., and Chorkendorff I. Chem. Rev., 2019, 119, (12), 7610 LINK [Google Scholar]
  10. Ren D., Deng Y., Handoko A. D., Chen C. S., Malkhandi S., and Yeo B. S. ACS Catal., 2015, 5, (5), 2814 LINK [Google Scholar]
  11. Nguyen-Phan T.-D., Wang C., Marin C. M., Zhou Y., Stavitski E., Popczun E. J., Yu Y., Xu W., Howard B. H., Stuckman M. Y., Waluyo I., Ohodnicki P. R., and Kauffman D. R. J. Mater. Chem. A, 2019, 7, (48), 27576 LINK [Google Scholar]
  12. Mandal L., Yang K. R., Motapothula M. R., Ren D., Lobaccaro P., Patra A., Sherburne M., Batista V. S., Yeo B. S., Ager J. W., Martin J., and Venkatesan T. ACS Appl. Mater. Interfaces, 2018, 10, (10), 8574 LINK [Google Scholar]
  13. Mistry H., Varela A. S., Bonifacio C. S., Zegkinoglou I., Sinev I., Choi Y.-W., Kisslinger K., Stach E. A., Yang J. C., Strasser P., and Cuenya B. R. Nat. Commun., 2016, 7, 12123 LINK [Google Scholar]
  14. Eilert A., Roberts F. S., Friebel D., and Nilsson A. J. Phys. Chem. Lett., 2016, 7, (8), 1466 LINK [Google Scholar]
  15. Eilert A., Cavalca F., Roberts F. S., Osterwalder J., Liu C., Favaro M., Crumlin E. J., Ogasawara H., Friebel D., Pettersson L. G. M., and Nilsson A. J. Phys. Chem. Lett., 2017, 8, (1), 285, LINK [Google Scholar]
  16. Gao D., Zegkinoglou I., Divins N. J., Scholten F., Sinev I., Grosse P., and Roldan Cuenya B. ACS Nano, 2017, 11, (5), 4825 LINK [Google Scholar]
  17. Ma S., Sadakiyo M., Heima M., Luo R., Haasch R. T., Gold J. I., Yamauchi M., and Kenis P. J. A. J. Am. Chem. Soc., 2017, 139, (1), 47 LINK [Google Scholar]
  18. Yang P.-P., Zhang X.-L., Gao F.-Y., Zheng Y.-R., Niu Z.-Z., Yu X., Liu R., Wu Z.-Z., Qin S., Chi L.-P., Duan Y., Ma T., Zheng X.-S., Zhu J.-F., Wang H.-J., Gao M.-R., and Yu S.-H. J. Am. Chem. Soc., 2020, 142, (13), 6400 LINK [Google Scholar]
  19. De Luna P., Quintero-Bermudez R., Dinh C.-T., Ross M. B., Bushuyev O. S., Todorović P., Regier T., Kelley S. O., Yang P., and Sargent E. H. Nat. Catal., 2018, 1, (2), 103 LINK [Google Scholar]
  20. Jhong H.-R. “M.”, Brushett F. R., and Kenis P. J. A. Adv. Energy Mater., 2013, 3, (5), 589 LINK [Google Scholar]
  21. Dinh C.-T., Burdyny T., Kibria M. G., Seifitokaldani A., Gabardo C. M., García de Arquer F. P., Kiani A., Edwards J. P., De Luna P., Bushuyev O. S., Zou C., Quintero-Bermudez R., Pang Y., Sinton D., and Sargent E. H. Science, 2018, 360, (6390), 783 LINK [Google Scholar]
  22. Jouny M., Luc W., and Jiao F. Ind. Eng. Chem. Res., 2018, 57, (6), 2165 LINK [Google Scholar]
  23. Liu K., Smith W. A., and Burdyny T. ACS Energy Lett., 2019, 4, (3), 639 LINK [Google Scholar]
  24. Leonard M. E., Orella M. J., Aiello N., Román-Leshkov Y., Forner-Cuenca A., and Brushett F. R. J. Electrochem. Soc., 2020, 167, (12), 124521 LINK [Google Scholar]
  25. Wheeler D. G., Mowbray B. A. W., Reyes A., Habibzadeh F., He J., and Berlinguette C. P. Energy Environ. Sci., 2020, 13, (12), 5126 LINK [Google Scholar]
  26. Puring K. J., Siegmund D., Timm J., Möllenbruck F., Schemme S., Marschall R., and Apfel U.-P. Adv. Sustain. Syst., 2021, 5, (1), 2000088 LINK [Google Scholar]
  27. Pham T. H. M., Zhang J., Li M., Shen T.-H., Ko Y., Tileli V., Luo W., and Züttel A. Adv. Energy Mater., 2022, 12, (9), 2103663 LINK [Google Scholar]
  28. An P., Wei L., Li H., Yang B., Liu K., Fu J., Li H., Liu H., Hu J., Lu Y.-R., Pan H., Chan T.-S., Zhang N., and Liu M. J. Mater. Chem. A, 2020, 8, (31), 15936 LINK [Google Scholar]
  29. Wang M., Wan L., and Luo J. Nanoscale, 2021, 13, (6), 3588 LINK [Google Scholar]
  30. Chang Q., Lee J. H., Liu Y., Xie Z., Hwang S., Marinkovic N. S., Park A.-H. A., Kattel S., and Chen J. G. JACS Au, 2021, 2, (1), 214 LINK [Google Scholar]
  31. Kim C., Bui J. C., Luo X., Cooper J. K., Kusoglu A., Weber A. Z., and Bell A. T. Nat. Energy, 2021, 6, (11), 1026 LINK [Google Scholar]
  32. Mowbray B. A. W., Dvorak D. J., Taherimakhsousi N., and Berlinguette C. P. Energy Fuels, 2021, 35, (23), 19178 LINK [Google Scholar]
  33. Möller T., Thanh T. N., Wang X., Ju W., Jovanov Z., and Strasser P. Energy Environ. Sci., 2021, 14, (11), 5995 LINK [Google Scholar]
  34. Suter S., and Haussener S. Energy Environ. Sci., 2019, 12, (5), 1668 LINK [Google Scholar]
  35. Sisler J., Khan S., Ip A. H., Schreiber M. W., Jaffer S. A., Bobicki E. R., Dinh C.-T., and Sargent E. H. ACS Energy Lett., 2021, 6, (3), 997 LINK [Google Scholar]
  36. Vermaas D. A., Wiegman S., Nagaki T., and Smith W. A. Sustain. Energy Fuels, 2018, 2, (9), 2006 LINK [Google Scholar]
  37. Chen X., Chen J., Alghoraibi N. M., Henckel D. A., Zhang R., Nwabara U. O., Madsen K. E., Kenis P. J. A., Zimmerman S. C., and Gewirth A. A. Nat. Catal., 2021, 4, (1), 20 LINK [Google Scholar]
  38. Zulfiqar S., Sarwar M. I., and Mecerreyes D. Polym. Chem., 2015, 6, (36), 6435 LINK [Google Scholar]
  39. Lees E. W., Mowbray B. A. W., Parlane F. G. L., and Berlinguette C. P. Nat. Rev. Mater., 2022, 7, (1), 55 LINK [Google Scholar]
  40. Wakerley D., Lamaison S., Wicks J., Clemens A., Feaster J., Corral D., Jaffer S. A., Sarkar A., Fontecave M., Duoss E. B., Baker S., Sargent E. H., Jaramillo T. F., and Hahn C. Nat. Energy, 2022, 7, (2), 130 LINK [Google Scholar]
  41. Higgins D., Hahn C., Xiang C., Jaramillo T. F., and Weber A. Z. ACS Energy Lett., 2019, 4, (1), 317 LINK [Google Scholar]
  42. Yang K. D., Ko W. R., Lee J. H., Kim S. J., Lee H., Lee M. H., and Nam K. T. Angew. Chem. Int. Ed., 2017, 56, (3), 796 LINK [Google Scholar]
  43. Veenstra F. L. P., Ackerl N., Martín A. J., and Pérez-Ramírez J. Chem, 2020, 6, (7), 1707 LINK [Google Scholar]
  44. Tan Y. C., Lee K. B., Song H., and Oh J. Joule, 2020, 4, (5), 1104 LINK [Google Scholar]
  45. Varela A. S. Curr. Opin. Green Sustain. Chem., 2020, 26, 100371 LINK [Google Scholar]
  46. Wicks J., Jue M. L., Beck V. A., Oakdale J. S., Dudukovic N. A., Clemens A. L., Liang S., Ellis M. E., Lee G., Baker S. E., Duoss E. B., and Sargent E. H. Adv. Mater., 2021, 33, (7), 2003855 LINK [Google Scholar]
  47. Leonard M. E., Clarke L. E., Forner-Cuenca A., Brown S. M., and Brushett F. R. ChemSusChem, 2020, 13, (2), 400 LINK [Google Scholar]
  48. Li M., Idros M. N., Wu Y., Burdyny T., Garg S., Zhao X. S., Wang G., and Rufford T. E. J. Mater. Chem. A, 2021, 9, (35), 19369 LINK [Google Scholar]
  49. Martín A. J., Larrazábal G. O., and Pérez-Ramírez J. Green Chem., 2015, 17, (12), 5114 LINK [Google Scholar]
  50. Yang K., Kas R., Smith W. A., and Burdyny T. ACS Energy Lett., 2021, 6, (1), 33 LINK [Google Scholar]
  51. Niu Z.-Z., Gao F.-Y., Zhang X.-L., Yang P.-P., Liu R., Chi L.-P., Wu Z.-Z., Qin S., Yu X., and Gao M.-R. J. Am. Chem. Soc., 2021, 143, (21), 8011 LINK [Google Scholar]
  52. Gabardo C. M., O’Brien C. P., Edwards J. P., McCallum C., Xu Y., Dinh C.-T., Li J., Sargent E. H., and Sinton D. Joule, 2019, 3, (11), 2777 LINK [Google Scholar]
  53. Kovalev M. K., Ren H., Muhamad M. Z., Ager J. W., and Lapkin A. A. ACS Energy Lett., 2022, 7, (2), 599 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error