Skip to content
1887
Volume 67, Issue 1
  • ISSN: 2056-5135

Abstract

This is Part II of a focused review of recent highlights in the literature in cathode development for low temperature electrochemical carbon dioxide and carbon monoxide reduction to multi-carbon (C) products. Part I (1) introduced the role of CO reduction in decarbonising the chemical industry and described the catalysts and modelling approaches. Part II describes characterisation to improve the understanding and development of catalysts, the catalyst layer and the gas diffusion layer.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16703459968311
2022-10-31
2024-11-09
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/1/Macpherson_pt2_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16703459968311&mimeType=html&fmt=ahah

References

  1. H. Macpherson, T. Hodges, M. H. Chuma, C. Sherwin, U. Podbevšek, K. Rigg, V. Celorrio, A. Russell, E. C. Corbos, Johnson Matthey Technol. Rev., 2023, 67, (1), 97 LINK https://technology.matthey.com/article/67/1/97-109/ [Google Scholar]
  2. Y. Hori, ‘Electrochemical CO2 Reduction on Metal Electrodes’, in “Modern Aspects of Electrochemistry 42”, eds. C. G. Vayenas, R. E. White, M. E. Gamboa-Aldeco, Springer-Verlag, New York, USA, 2008, pp. 89189 LINK https://doi.org/10.1007/978-0-387-49489-0_3 [Google Scholar]
  3. I. V. Chernyshova, P. Somasundaran, S. Ponnurangam, Proc. Natl. Acad. Sci. USA, 2018, 115, (40), E 9261 LINK https://doi.org/10.1073/pnas.1802256115 [Google Scholar]
  4. C. M. Gunathunge, V. J. Ovalle, Y. Li, M. J. Janik, M. M. Waegele, ACS Catal., 2018, 8, (8), 7507 LINK https://doi.org/10.1021/acscatal.8b01552 [Google Scholar]
  5. E. Pérez-Gallent, M. C. Figueiredo, F. Calle-Vallejo, M. T. M. Koper, Angew. Chem. Int. Ed., 2017, 56, (13), 3621 LINK https://doi.org/10.1002/anie.201700580 [Google Scholar]
  6. K. J. P. Schouten, E. Pérez Gallent, M. T. M. Koper, ACS Catal., 2013, 3, (6), 1292 LINK https://doi.org/10.1021/cs4002404 [Google Scholar]
  7. A. S. Malkani, M. Dunwell, B. Xu, ACS Catal., 2019, 9, (1), 474 LINK https://doi.org/10.1021/acscatal.8b04269 [Google Scholar]
  8. B. Beverskog, I. Puigdomenech, J. Electrochem. Soc., 1997, 144, (10), 3476 LINK https://doi.org/10.1149/1.1838036 [Google Scholar]
  9. S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Nørskov, T. F. Jaramillo, I. Chorkendorff, Chem. Rev., 2019, 119, (12), 7610 LINK https://doi.org/10.1021/acs.chemrev.8b00705 [Google Scholar]
  10. D. Ren, Y. Deng, A. D. Handoko, C. S. Chen, S. Malkhandi, B. S. Yeo, ACS Catal., 2015, 5, (5), 2814 LINK https://doi.org/10.1021/cs502128q [Google Scholar]
  11. T.-D. Nguyen-Phan, C. Wang, C. M. Marin, Y. Zhou, E. Stavitski, E. J. Popczun, Y. Yu, W. Xu, B. H. Howard, M. Y. Stuckman, I. Waluyo, P. R. Ohodnicki, D. R. Kauffman, J. Mater. Chem. A, 2019, 7, (48), 27576 LINK https://doi.org/10.1039/c9ta10135g [Google Scholar]
  12. L. Mandal, K. R. Yang, M. R. Motapothula, D. Ren, P. Lobaccaro, A. Patra, M. Sherburne, V. S. Batista, B. S. Yeo, J. W. Ager, J. Martin, T. Venkatesan, ACS Appl. Mater. Interfaces, 2018, 10, (10), 8574 LINK https://doi.org/10.1021/acsami.7b15418 [Google Scholar]
  13. H. Mistry, A. S. Varela, C. S. Bonifacio, I. Zegkinoglou, I. Sinev, Y.-W. Choi, K. Kisslinger, E. A. Stach, J. C. Yang, P. Strasser, B. R. Cuenya, Nat. Commun., 2016, 7, 12123 LINK https://doi.org/10.1038/ncomms12123 [Google Scholar]
  14. A. Eilert, F. S. Roberts, D. Friebel, A. Nilsson, J. Phys. Chem. Lett., 2016, 7, (8), 1466 LINK https://doi.org/10.1021/acs.jpclett.6b00367 [Google Scholar]
  15. A. Eilert, F. Cavalca, F. S. Roberts, J. Osterwalder, C. Liu, M. Favaro, E. J. Crumlin, H. Ogasawara, D. Friebel, L. G. M. Pettersson, A. Nilsson, J. Phys. Chem. Lett., 2017, 8, (1), 285, LINK https://doi.org/10.1021/acs.jpclett.6b02273 [Google Scholar]
  16. D. Gao, I. Zegkinoglou, N. J. Divins, F. Scholten, I. Sinev, P. Grosse, B. Roldan Cuenya, ACS Nano, 2017, 11, (5), 4825 LINK https://doi.org/10.1021/acsnano.7b01257 [Google Scholar]
  17. S. Ma, M. Sadakiyo, M. Heima, R. Luo, R. T. Haasch, J. I. Gold, M. Yamauchi, P. J. A. Kenis, J. Am. Chem. Soc., 2017, 139, (1), 47 LINK https://doi.org/10.1021/jacs.6b10740 [Google Scholar]
  18. P.-P. Yang, X.-L. Zhang, F.-Y. Gao, Y.-R. Zheng, Z.-Z. Niu, X. Yu, R. Liu, Z.-Z. Wu, S. Qin, L.-P. Chi, Y. Duan, T. Ma, X.-S. Zheng, J.-F. Zhu, H.-J. Wang, M.-R. Gao, S.-H. Yu, J. Am. Chem. Soc., 2020, 142, (13), 6400 LINK https://doi.org/10.1021/jacs.0c01699 [Google Scholar]
  19. P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M. B. Ross, O. S. Bushuyev, P. Todorović, T. Regier, S. O. Kelley, P. Yang, E. H. Sargent, Nat. Catal., 2018, 1, (2), 103 LINK https://doi.org/10.1038/s41929-017-0018-9 [Google Scholar]
  20. H.-R. “M.” Jhong, F. R. Brushett, P. J. A. Kenis, Adv. Energy Mater., 2013, 3, (5), 589 LINK https://doi.org/10.1002/aenm.201200759 [Google Scholar]
  21. C.-T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. P. García de Arquer, A. Kiani, J. P. Edwards, P. De Luna, O. S. Bushuyev, C. Zou, R. Quintero-Bermudez, Y. Pang, D. Sinton, E. H. Sargent, Science, 2018, 360, (6390), 783 LINK https://doi.org/10.1126/science.aas9100 [Google Scholar]
  22. M. Jouny, W. Luc, F. Jiao, Ind. Eng. Chem. Res., 2018, 57, (6), 2165 LINK https://doi.org/10.1021/acs.iecr.7b03514 [Google Scholar]
  23. K. Liu, W. A. Smith, T. Burdyny, ACS Energy Lett., 2019, 4, (3), 639 LINK https://doi.org/10.1021/acsenergylett.9b00137 [Google Scholar]
  24. M. E. Leonard, M. J. Orella, N. Aiello, Y. Román-Leshkov, A. Forner-Cuenca, F. R. Brushett, J. Electrochem. Soc., 2020, 167, (12), 124521 LINK https://doi.org/10.1149/1945-7111/abaa1a [Google Scholar]
  25. D. G. Wheeler, B. A. W. Mowbray, A. Reyes, F. Habibzadeh, J. He, C. P. Berlinguette, Energy Environ. Sci., 2020, 13, (12), 5126 LINK https://doi.org/10.1039/d0ee02219e [Google Scholar]
  26. K. J. Puring, D. Siegmund, J. Timm, F. Möllenbruck, S. Schemme, R. Marschall, U.-P. Apfel, Adv. Sustain. Syst., 2021, 5, (1), 2000088 LINK https://doi.org/10.1002/adsu.202000088 [Google Scholar]
  27. T. H. M. Pham, J. Zhang, M. Li, T.-H. Shen, Y. Ko, V. Tileli, W. Luo, A. Züttel, Adv. Energy Mater., 2022, 12, (9), 2103663 LINK https://doi.org/10.1002/aenm.202103663 [Google Scholar]
  28. P. An, L. Wei, H. Li, B. Yang, K. Liu, J. Fu, H. Li, H. Liu, J. Hu, Y.-R. Lu, H. Pan, T.-S. Chan, N. Zhang, M. Liu, J. Mater. Chem. A, 2020, 8, (31), 15936 LINK https://doi.org/10.1039/d0ta03645e [Google Scholar]
  29. M. Wang, L. Wan, J. Luo, Nanoscale, 2021, 13, (6), 3588 LINK https://doi.org/10.1039/d0nr08369k [Google Scholar]
  30. Q. Chang, J. H. Lee, Y. Liu, Z. Xie, S. Hwang, N. S. Marinkovic, A.-H. A. Park, S. Kattel, J. G. Chen, JACS Au, 2021, 2, (1), 214 LINK https://doi.org/10.1021/jacsau.1c00487 [Google Scholar]
  31. C. Kim, J. C. Bui, X. Luo, J. K. Cooper, A. Kusoglu, A. Z. Weber, A. T. Bell, Nat. Energy, 2021, 6, (11), 1026 LINK https://doi.org/10.1038/s41560-021-00920-8 [Google Scholar]
  32. B. A. W. Mowbray, D. J. Dvorak, N. Taherimakhsousi, C. P. Berlinguette, Energy Fuels, 2021, 35, (23), 19178 LINK https://doi.org/10.1021/acs.energyfuels.1c01731 [Google Scholar]
  33. T. Möller, T. N. Thanh, X. Wang, W. Ju, Z. Jovanov, P. Strasser, Energy Environ. Sci., 2021, 14, (11), 5995 LINK https://doi.org/10.1039/d1ee01696b [Google Scholar]
  34. S. Suter, S. Haussener, Energy Environ. Sci., 2019, 12, (5), 1668 LINK https://doi.org/10.1039/c9ee00656g [Google Scholar]
  35. J. Sisler, S. Khan, A. H. Ip, M. W. Schreiber, S. A. Jaffer, E. R. Bobicki, C.-T. Dinh, E. H. Sargent, ACS Energy Lett., 2021, 6, (3), 997 LINK https://doi.org/10.1021/acsenergylett.0c02633 [Google Scholar]
  36. D. A. Vermaas, S. Wiegman, T. Nagaki, W. A. Smith, Sustain. Energy Fuels, 2018, 2, (9), 2006 LINK https://doi.org/10.1039/c8se00118a [Google Scholar]
  37. X. Chen, J. Chen, N. M. Alghoraibi, D. A. Henckel, R. Zhang, U. O. Nwabara, K. E. Madsen, P. J. A. Kenis, S. C. Zimmerman, A. A. Gewirth, Nat. Catal., 2021, 4, (1), 20 LINK https://doi.org/10.1038/s41929-020-00547-0 [Google Scholar]
  38. S. Zulfiqar, M. I. Sarwar, D. Mecerreyes, Polym. Chem., 2015, 6, (36), 6435 LINK https://doi.org/10.1039/c5py00842e [Google Scholar]
  39. E. W. Lees, B. A. W. Mowbray, F. G. L. Parlane, C. P. Berlinguette, Nat. Rev. Mater., 2022, 7, (1), 55 LINK https://doi.org/10.1038/s41578-021-00356-2 [Google Scholar]
  40. D. Wakerley, S. Lamaison, J. Wicks, A. Clemens, J. Feaster, D. Corral, S. A. Jaffer, A. Sarkar, M. Fontecave, E. B. Duoss, S. Baker, E. H. Sargent, T. F. Jaramillo, C. Hahn, Nat. Energy, 2022, 7, (2), 130 LINK https://doi.org/10.1038/s41560-021-00973-9 [Google Scholar]
  41. D. Higgins, C. Hahn, C. Xiang, T. F. Jaramillo, A. Z. Weber, ACS Energy Lett., 2019, 4, (1), 317 LINK https://doi.org/10.1021/acsenergylett.8b02035 [Google Scholar]
  42. K. D. Yang, W. R. Ko, J. H. Lee, S. J. Kim, H. Lee, M. H. Lee, K. T. Nam, Angew. Chem. Int. Ed., 2017, 56, (3), 796 LINK https://doi.org/10.1002/anie.201610432 [Google Scholar]
  43. F. L. P. Veenstra, N. Ackerl, A. J. Martín, J. Pérez-Ramírez, Chem, 2020, 6, (7), 1707 LINK https://doi.org/10.1016/j.chempr.2020.04.001 [Google Scholar]
  44. Y. C. Tan, K. B. Lee, H. Song, J. Oh, Joule, 2020, 4, (5), 1104 LINK https://doi.org/10.1016/j.joule.2020.03.013 [Google Scholar]
  45. A. S. Varela, Curr. Opin. Green Sustain. Chem., 2020, 26, 100371 LINK https://doi.org/10.1016/j.cogsc.2020.100371 [Google Scholar]
  46. J. Wicks, M. L. Jue, V. A. Beck, J. S. Oakdale, N. A. Dudukovic, A. L. Clemens, S. Liang, M. E. Ellis, G. Lee, S. E. Baker, E. B. Duoss, E. H. Sargent, Adv. Mater., 2021, 33, (7), 2003855 LINK https://doi.org/10.1002/adma.202003855 [Google Scholar]
  47. M. E. Leonard, L. E. Clarke, A. Forner-Cuenca, S. M. Brown, F. R. Brushett, ChemSusChem, 2020, 13, (2), 400 LINK https://doi.org/10.1002/cssc.201902547 [Google Scholar]
  48. M. Li, M. N. Idros, Y. Wu, T. Burdyny, S. Garg, X. S. Zhao, G. Wang, T. E. Rufford, J. Mater. Chem. A, 2021, 9, (35), 19369 LINK https://doi.org/10.1039/d1ta03636j [Google Scholar]
  49. A. J. Martín, G. O. Larrazábal, J. Pérez-Ramírez, Green Chem., 2015, 17, (12), 5114 LINK https://doi.org/10.1039/c5gc01893e [Google Scholar]
  50. K. Yang, R. Kas, W. A. Smith, T. Burdyny, ACS Energy Lett., 2021, 6, (1), 33 LINK https://doi.org/10.1021/acsenergylett.0c02184 [Google Scholar]
  51. Z.-Z. Niu, F.-Y. Gao, X.-L. Zhang, P.-P. Yang, R. Liu, L.-P. Chi, Z.-Z. Wu, S. Qin, X. Yu, M.-R. Gao, J. Am. Chem. Soc., 2021, 143, (21), 8011 LINK https://doi.org/10.1021/jacs.1c01190 [Google Scholar]
  52. C. M. Gabardo, C. P. O’Brien, J. P. Edwards, C. McCallum, Y. Xu, C.-T. Dinh, J. Li, E. H. Sargent, D. Sinton, Joule, 2019, 3, (11), 2777 LINK https://doi.org/10.1016/j.joule.2019.07.021 [Google Scholar]
  53. M. K. Kovalev, H. Ren, M. Z. Muhamad, J. W. Ager, A. A. Lapkin, ACS Energy Lett., 2022, 7, (2), 599 LINK https://doi.org/10.1021/acsenergylett.1c02450 [Google Scholar]
/content/journals/10.1595/205651323X16703459968311
Loading
/content/journals/10.1595/205651323X16703459968311
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test