Skip to content
Volume 67 Number 4
  • ISSN: 2056-5135


Sustainability has been one of the main issues in the world in recent years. The decrease of resources in the world, along with the growing world population and the resulting environmental waste, present a fairly significant problem. As an alternative solution to this problem, insects are put forward as an ideal resource. Due to the enzymes and microorganisms in their intestinal microbiota, the biotransformation processes of insects are capable of converting wastes, organic materials and residues into valuable products that can be used for various industrial applications such as pharmaceuticals, cosmetics and functional foods. Some species of insects are in an advantageous position because of the simplicity of their lifecycle, the ease of their production and their ability to feed on organic materials to make valuable products. From a sustainability perspective, utilisation of the microorganisms or enzymes isolated from these microorganisms available in the microbiota of insects may allow novel insect-based biotransformation processes that promise a more sustainable world and novel green technologies.


Article metrics loading...

Loading full text...

Full text loading...



  1. de Sousa I. P., Sousa Teixeira M. V., and Furtado N. J. C. Molecules, 2018, 23, (6), 1387 LINK [Google Scholar]
  2. Zhang Y., Lou J.-W., Kang A., Zhang Q., Zhou S.-K., Bao B.-H., Cao Y.-D., Yao W.-F., Tang Y.-P., and Zhang L. J. Ethnopharmacol., 2020, 249, 112423 LINK [Google Scholar]
  3. Almeida C., Rijo P., and Rosado C. Biomolecules, 2020, 10, (7), 976 LINK [Google Scholar]
  4. Yang Z., Wei T., Huang H., Yang H., Zhou Y., and Xu D. Phys. Chem. Chem. Phys., 2019, 21, (22), 11589 LINK [Google Scholar]
  5. Engel P., and Moran N. A. FEMS Microbiol. Rev., 2013, 37, (5), 699 LINK [Google Scholar]
  6. Rumpold B. A., Klocke M., and Schlüter O. Reg. Environ. Chang., 2016, 17, (5), 1445 LINK [Google Scholar]
  7. Moruzzo R., Riccioli F., Diaz S. E., Secci C., Poli G., and Mancini S. Animals, 2021, 11, (9), 2568 LINK [Google Scholar]
  8. Gupta A., and Nair S. Front. Microbiol., 2020, 11, 1357 LINK [Google Scholar]
  9. Krishnan M., Bharathiraja C., Pandiarajan J., Prasanna V. A., Rajendhran J., and Gunasekaran P. Asian Pac. J. Trop. Biomed., 2014, 4, (S1), S16 LINK [Google Scholar]
  10. Muñoz-Benavent M., Pérez-Cobas A. E., García-Ferris C., Moya A., and Latorre A. J. Pharm. Biomed. Anal., 2021, 194, 113787 LINK [Google Scholar]
  11. Zhang F., and Yang R. Int. J. Parasitol., 2019, 49, (9), 715 LINK [Google Scholar]
  12. Dey P. Pharmacol. Res., 2019, 147, 104367 LINK [Google Scholar]
  13. Jiang C.-L., Jin W.-Z., Tao X.-H., Zhang Q., Zhu J., Feng S.-Y., Xu X.-H., Li H.-Y., Wang Z.-H., and Zhang Z.-J. Microb. Biotechnol., 2019, 12, (3), 528 LINK [Google Scholar]
  14. Oonincx D. G. A. B., van Itterbeeck J., Heetkamp M. J. W., van den Brand H., van Loon J. J. A., and van Huis A. PLoS One, 2010, 5, (12), e14445 LINK [Google Scholar]
  15. Surendra K. C., Tomberlin J. K., van Huis A., Cammack J. A., Heckmann L.-H. L., and Khanal S. K. Waste Manag., 2020, 117, 58 LINK [Google Scholar]
  16. Chapman R. F., ‘The Insects : Structure and Function’, 5th Edn., eds. Simpson S. J., and Douglas A. E. Cambridge University Press, Cambridge, UK, 2013, 929 pp [Google Scholar]
  17. Appel H. M., ‘The Chewing Herbivore Gut Lumen: Physicochemical Conditions and their Impact on Plant Nutrients, Allelochemicals, and Insect Pathogens’, in ‘Insect-Plant Interactions’, eds. and Bernays E. A. 5, Taylor and Francis, Boca Raton, USA, 2017, pp. 209224 [Google Scholar]
  18. Shao L., Devenport M., and Jacobs-Lorena M. Arch. Insect Biochem. Physiol., 2001, 47, (2), 119 LINK [Google Scholar]
  19. Danks H. V. Eur. J. Entomol., 2000, 97, (3), 285 LINK [Google Scholar]
  20. Dillon R. J., Vennard C. T., Buckling A., and Charnley A. K. Ecol. Lett., 2005, 8, (12), 1291 LINK [Google Scholar]
  21. Moll R. M., Romoser W. S., Modrakowski M. C., Moncayo A. C., and Lerdthusnee K. J. Med. Entomol., 2001, 38, (1), 29 LINK [Google Scholar]
  22. Coon K. L., Vogel K. J., Brown M. R., and Strand M. R. Mol. Ecol., 2014, 23, (11), 2727 LINK [Google Scholar]
  23. Douglas A. E. Annu. Rev. Entomol., 2015, 60, (1), 17 LINK [Google Scholar]
  24. Douglas A. E. Funct. Ecol., 2009, 23, (1), 38 LINK [Google Scholar]
  25. Yang Y., Yang J., Wu W.-M., Zhao J., Song Y., Gao L., Yang R., and Jiang L. Environ. Sci. Technol., 2015, 49, (20), 12080 LINK [Google Scholar]
  26. Palmer K. J., Lauder K., Christopher K., Guerra F., Welch R., and Bertuccio A. J. Environ. Process., 2022, 9, (1), 3 LINK [Google Scholar]
  27. Luo C., Li Y., Chen Y., Fu C., Long W., Xiao X., Liao H., and Yang Y. Biotechnol. Biofuels, 2019, 12, 70 LINK [Google Scholar]
  28. Yang Y., Yang J., Wu W.-M., Zhao J., Song Y., Gao L., Yang R., and Jiang L. Environ. Sci. Technol., 2015, 49, (20), 12087 LINK [Google Scholar]
  29. Liang X., Sun C., Chen B., Du K., Yu T., Luang-In V., Lu X., and Shao Y. Appl. Microbiol. Biotechnol., 2018, 102, (11), 4951 LINK [Google Scholar]
  30. Unban K., Kanpiengjai A., Takata G., Uechi K., Lee W.-C., and Khanongnuch C. Appl. Biochem. Biotechnol., 2017, 183, (1), 155 LINK [Google Scholar]
  31. Fowles T. M., Nansen C., ‘Part IV: Innovating Practical Solutions: Insect-Based Bioconversion: Value from Food Waste’, in “Food Waste Management: Solving the Wicked Problem”, eds. Närvänen E., Mesiranta N., Mattila M., and Heikkinen A. Springer Nature Switzerland AG, Cham, Switzerland, 2020, pp. 321346 LINK [Google Scholar]
  32. Chen B., Du K., Sun C., Vimalanathan A., Liang X., Li Y., Wang B., Lu X., Li L., and Shao Y. ISME J., 2018, 12, (9), 2252 LINK [Google Scholar]
  33. Surendra K. C., Olivier R., Tomberlin J. K., Jha R., and Khanal S. K. Renew. Energy, 2016, 98, 197 LINK [Google Scholar]
  34. Salomone R., Saija G., Mondello G., Giannetto A., Fasulo S., and Savastano D. J. Clean. Prod., 2017, 140, (2), 890 LINK [Google Scholar]
  35. Singh A., and Kumari K. J. Environ. Manage., 2019, 251, 109569 LINK [Google Scholar]
  36. Gao Z., Wang W., Lu X., Zhu F., Liu W., Wang X., and Lei C. J. Clean. Prod., 2019, 230, 974 LINK [Google Scholar]
  37. Liu X., Chen X., Wang H., Yang Q., ur Rehman K., Li W., Cai M., Li Q., Mazza L., Zhang J., Yu Z., and Zheng L. PLoS One, 2017, 12, (8), e0182601 LINK [Google Scholar]
  38. Purnamasari L., and Khasanah H. ASEAN J. Sci. Technol. Dev., 2022, 39, (2), 69 LINK [Google Scholar]
  39. Tegtmeier D., Hurka S., Klüber P., Brinkrolf K., Heise P., and Vilcinskas A. Front. Microbiol., 2021, 12, 634503 LINK [Google Scholar]
  40. Cai M., Ma S., Hu R., Tomberlin J. K., Yu C., Huang Y., Zhan S., Li W., Zheng L., and Yu Z. Environ. Pollut., 2018, 242, (A), 634 LINK [Google Scholar]
  41. Čičková H., Newton G. L., Lacy R. C., and Kozánek M. Waste Manag., 2015, 35, 68 LINK [Google Scholar]
  42. Niu Y., Zheng D., Yao B., Cai Z., Zhao Z., Wu S., Cong P., and Yang D. Waste Manag., 2017, 61, 455 LINK [Google Scholar]
  43. Cheng Z., Yu L., Li H., Xu X., and Yang Z. Environ. Sci. Pollut. Res., 2021, 28, (35), 48921 LINK [Google Scholar]
  44. Brar S. K., Verma M., Tyagi R. D., Valéro J. R., and Surampalli R. Y. World J. Microbiol. Biotechnol., 2008, 24, (12), 2849 LINK [Google Scholar]
  45. Miech P., Berggren Å., Lindberg J. E., Chhay T., Khieu B., and Jansson A. J. Insects Food Feed, 2016, 2, (4), 285 LINK [Google Scholar]
  46. Peng B.-Y., Chen Z., Chen J., Zhou X., Wu W.-M., and Zhang Y. J. Hazard. Mater., 2021, 416, 125803 LINK [Google Scholar]
  47. Yang J., Yang Y., Wu W.-M., Zhao J., and Jiang L. Environ. Sci. Technol., 2014, 48, (23), 13776 LINK [Google Scholar]
  48. Yang S.-S., Chen Y., Zhang Y., Zhou H.-M., Ji X.-Y., He L., Xing D.-F., Ren N.-Q., Ho S.-H., and Wu W.-M. Environ. Pollut., 2019, 252, (B), 1142 LINK [Google Scholar]
  49. Ceja-Navarro J. A., Karaoz U., Bill M., Hao Z., White R. A., Arellano A., Ramanculova L., Filley T. R., Berry T. D., Conrad M. E., Blackwell M., Nicora C. D., Kim Y.-M., Reardon P. N., Lipton M. S., Adkins J. N., Pett-Ridge J., and Brodie E. L. Nat. Microbiol., 2019, 4, (5), 864 LINK [Google Scholar]
  50. Li W., Li Q., Zheng L., Wang Y., Zhang J., Yu Z., and Zhang Y. Bioresour. Technol., 2015, 194, 276 LINK [Google Scholar]
  51. Elsayed M., Ran Y., Ai P., Azab M., Mansour A., Jin K., Zhang Y., and Abomohra A. E.-F. J. Clean. Prod., 2020, 263, 121495 LINK [Google Scholar]
  52. Li Q., Zheng L., Qiu N., Cai H., Tomberlin J. K., and Yu Z. Waste Manag., 2011, 31, (6), 1316 LINK [Google Scholar]
  53. Abduh M. Y., Jamilah M., Istiandari P., and Manurung R. J. Entomol. Zool. Stud., 2017, 5, (4), 591 LINK [Google Scholar]
  54. Supriyatna A., Manurung R., and Esyanti R. R. J. Entomol. Zool., 2016, 4, (6), 161 LINK [Google Scholar]
  55. Yang S., and Liu Z. Appl. Energy, 2014, 113, 385 LINK [Google Scholar]
  56. Chen J., Liu X., Xu X., Lee F. S.-C., and Wang X. J. Pharm. Biomed. Anal., 2007, 43, (3), 879 LINK [Google Scholar]
  57. Reddy R. M. Int. J. Ind. Entomol., 2008, 17, (1), 109 LINK [Google Scholar]
  58. Reddy R. M. Sericologia, 2010, 50, (1), 1 [Google Scholar]
  59. Patil R. R., Mulla J. A., Ankad G., Kusugal S., and Rayar S. G. ‘“Silkworm Excreta” A Potential Animal Source Poultry Feed Supplement’, International Workshop on Silk Handcrafts Cottage Industries and Silk Enterprises Development in Africa, Europe, Central Asia and the Near East and Second Executive Meeting of Black, Caspian Seas and Central Asia Silk Association (BACSA), Bursa, Turkey, 6th–10th March, 2006, Kozabirlik Sericultural Cooperative, Bursa, Turkey, 2006, pp. 566571 [Google Scholar]
  60. Makkar H. P. S., Tran G., Heuzé V., and Ankers P. Anim. Feed Sci. Technol., 2014, 197, 1 LINK [Google Scholar]
  61. Veldkamp T., Van Duinkerken G., van Huis A., Lakemond C. M. M., Ottevanger E., Bosch G., and van Boekel T. “Insects as a Sustainable Feed Ingredient in Pig and Poultry Diets: A Feasibility Study”, Report 638, Wageningen UR Livestock Research, The Netherlands, 2012, 62 pp LINK [Google Scholar]
  62. Barroso F. G., de Haro C., Sánchez-Muros M.-J., Venegas E., Martínez-Sánchez A., and Pérez-Bañón C. Aquaculture, 2014, 422–423, 193 LINK [Google Scholar]
  63. Nguyen H. C., Liang S.-H., Chen S.-S., Su C.-H., Lin J.-H., and Chien C.-C. Energy Convers. Manag., 2018, 158, 168 LINK [Google Scholar]
  64. Nakagaki M., Takei R., Nagashima E., and Yaginuma T. Roux’s Arch. Dev. Biol., 1991, 200, (4), 223 LINK [Google Scholar]
  65. Singh K. P., and Jayasomu R. S. Pharm. Biol., 2002, 40, (1), 28 LINK [Google Scholar]
  66. Bay V., Gür S., and Bayraktar O. Sci. Rep., 2022, 12, 13005 LINK [Google Scholar]
  67. Kannan M., Mubarakali D., Thiyonila B., Krishnan M., Padmanaban B., and Shantkriti S. Biocatal. Agric. Biotechnol., 2019, 18, 101010 LINK [Google Scholar]
  68. Wang S., Wang L., Fan X., Yu C., Feng L., and Yi L. Curr. Microbiol., 2020, 77, (9), 1976 LINK [Google Scholar]
  69. Saha S., Khatun F., Nahiduzzaman M., Mahmud M. P., Rahman M. M., and Yasmin S. Bioresour. Technol. Rep., 2022, 18, 101021 LINK [Google Scholar]
  70. Pöppel A.-K., Koch A., Kogel K.-H., Vogel H., Kollewe C., Wiesner J., and Vilcinskas A. Biol. Chem., 2014, 395, (6), 649 LINK [Google Scholar]
  71. Hull R., Katete R., and Ntwasa M. Biotechnol. Mol. Biol. Rev., 2012, 7, (2), 31 LINK [Google Scholar]
  72. Galvis C. E. P., Méndez L. Y. V., and Kouznetsov V. V. Chem. Biol. Drug Des., 2013, 82, (5), 477 LINK [Google Scholar]
  73. Anwar A., and Saleemuddin M. Biotechnol. Appl. Biochem., 2000, 31, (2), 85 LINK [Google Scholar]
  74. Kannan M., Ramya T., Anbalagan S., Suriya J., and Krishnan M. Biocatal. Agric. Biotechnol., 2017, 12, 159 LINK [Google Scholar]
  75. Akbar S. M., and Sharma H. C. Arch. Insect Biochem. Physiol., 2017, 94, (1), e21367 LINK [Google Scholar]
  76. Sanatan P. T., Lomate P. R., Giri A. P., and Hivrale V. K. BMC Biochem., 2013, 14, 32 LINK [Google Scholar]
  77. de Lourdes Moreno M., Segura V., Ruiz-Carnicer Á., Nájar A. M., Comino I., and Sousa C. ‘Oral Enzyme Strategy in Celiac Disease’, in “Biotechnol. Strategies for the Treatment of Gluten Intolerance”, ed. Rossi, ch. 10, Elsevier Inc, San Diego, USA, 2021, pp. 201220 LINK [Google Scholar]
  78. Garino C., Mielke H., Knüppel S., Selhorst T., Broll H., and Braeuning A. Food Chem. Toxicol., 2020, 142, 111460 LINK [Google Scholar]
  79. Mancini S., Fratini F., Tuccinardi T., Degl’Innocenti C., and Paci G. Food Control, 2020, 110, 107014 LINK [Google Scholar]
  80. Elpidina E. N., and Goptar I. A. Entomol. Res., 2007, 37, (3), 139 LINK [Google Scholar]
  81. Cerda A., Artola A., Font X., Barrena R., Gea T., and Sánchez A. Bioresour. Technol., 2018, 248, (A), 57 LINK [Google Scholar]
  82. Yang N., Zhang H., Chen M., Shao L.-M., and He P.-J. Waste Manag., 2012, 32, (12), 2552 LINK [Google Scholar]
  83. Yang N., Zhang H., Shao L.-M., F., and He P.-J. J. Environ. Manage., 2013, 129, 510 LINK [Google Scholar]
  84. Liu Y., Xing P., and Liu J. Resour. Conserv. Recycl., 2017, 125, 98 LINK [Google Scholar]
  85. Franco A., Scieuzo C., Salvia R., Petrone A. M., Tafi E., Moretta A., Schmitt E., and Falabella P. Sustainability, 2021, 13, (18), 10198 LINK [Google Scholar]
  86. ur Rehman K., Ur Rehman R., Somroo A. A., Cai M., Zheng L., Xiao X., Ur Rehman A., Rehman A., Tomberlin J. K., Yu Z., and Zhang J. J. Environ. Manage., 2019, 237, 75 LINK [Google Scholar]
  87. ur Rehman K., Liu X., Wang H., Zheng L., ur Rehman R., Cheng X., Li Q., Li W., Cai M., Zhang J., and Yu Z. Energy Convers. Manag., 2018, 173, 489 LINK [Google Scholar]
  88. Zheng L., Hou Y., Li W., Yang S., Li Q., and Yu Z. Appl. Energy, 2013, 101, 618 LINK [Google Scholar]
  89. Yang S., Li Q., Gao Y., Zheng L., and Liu Z. Renew. Energy, 2014, 66, 222 LINK [Google Scholar]
  90. Lai E. P. C. J. Pet. Environ. Biotechnol., 2014, 5, (1), 1000e 122 LINK [Google Scholar]
  91. Putro J. N., Soetaredjo F. E., Lin S.-Y., Ju Y.-H., and Ismadji S. RSC Adv., 2016, 6, (52), 46834 LINK [Google Scholar]
  92. Singh N., Devi A., Bishnoi M. B., Jaryal R., Dahiya A., Tashyrev O., Hovorukha V., ‘Overview of the Process of Enzymatic Transformation of Biomass’, in “Elements of Bioeconomy”, ed. and Biernat K. IntechOpen Ltd, London, UK, 2019, 30 pp LINK [Google Scholar]
  93. Nelson K., Muge E., and Wamalwa B. Sci. African, 2021, 11, e00665 LINK [Google Scholar]
  94. Maki M., Leung K. T., and Qin W. Int. J. Biol. Sci., 2009, 5, (5), 500 LINK [Google Scholar]
  95. Su L.-J., Liu H., Li Y., Zhang H.-F., Chen M., Gao X.-H., Wang F.-Q., and Song A.-D. Genet. Mol. Res., 2014, 13, (3), 7926 LINK [Google Scholar]
  96. Mukherjee K., Tribedi P., Chowdhury A., Ray T., Joardar A., Giri S., and Sil A. K. Biodegradation, 2011, 22, (2), 377 LINK [Google Scholar]
  97. Amobonye A., Bhagwat P., Singh S., and Pillai S. Sci. Total Environ., 2021, 759, 143536 LINK [Google Scholar]
  98. Kim J.-H., Choi S. H., Park M. G., Park D. H., Son K.-H., and Park H.-Y. Environ. Technol. Innov., 2022, 28, 102822 LINK [Google Scholar]
  99. Tsochatzis E., Berggreen I. E., Tedeschi F., Ntrallou K., Gika H., and Corredig M. Molecules, 2021, 26, (24), 7568 LINK [Google Scholar]
  100. del M., Salazar-Sánchez R., Rodríguez-Herrera R., Flores-Gallegos A. C., Villada-Castillo H. S., and Solanilla-Duque J. F. Environ. Qual. Manag., 2022, 32, (1), 413 LINK [Google Scholar]
  101. Jang S., and Kikuchi Y. Curr. Opin. Insect Sci., 2020, 41, 33 LINK [Google Scholar]
  102. Lee H. M., Kim H. R., Jeon E., Yu H. C., Lee S., Li J., and Kim D.-H. Microorganisms, 2020, 8, (9), 1341 LINK [Google Scholar]
  103. Sangiorgio P., Verardi A., Dimatteo S., Spagnoletta A., Moliterni S., and Errico S. Environ. Sci. Pollut. Res., 2021, 28, 52689 LINK [Google Scholar]
  104. Murugan P., Han L., Gan C.-Y., Maurer F. H. J., and Sudesh K. J. Biotechnol., 2016, 239, 98 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error