Skip to content
1887
Volume 67 Number 4
  • ISSN: 2056-5135

Abstract

Chiral amines are important building blocks in the pharmaceutical, agrochemical and chemical industries. There is a drive to augment traditional transition metal catalysts with ‘green’ alternatives such as biocatalysts. Transaminase (TA) biocatalysts can be used in combination with ‘smart’ sacrificial amine donors to synthesise a variety of aliphatic and aromatic amines from the corresponding aldehydes and ketones. Despite their enormous potential, the unfavourable reaction equilibrium often limits the widespread application of TAs for industrial synthesis. Recently we disclosed a new biomimetic amine donor -phenyl putrescine (NPP), which was inspired by the biosynthesis of the dipyrroloquinoline alkaloids. NPP was demonstrated to have good activity with a library of commercial and wild-type TAs (total 25 TAs). This work focused on exploring the use of NPP with the Johnson Matthey TA kit (17 biocatalysts; eight -selective and nine -selective) and three different amine acceptors (vanillin, benzaldehyde and acetophenone). NPP worked well with all 17 TAs and gave the corresponding amine products vanillylamine, benzylamine and methylbenzylamine (MBA) in up to 85% high-performance liquid chromatography (HPLC) yield. From the screen, STA-14 was identified as a good biocatalyst for further analysis and used in a comparative screen of NPP the commonly used donor PrNH. It was found that NPP was the best amine donor and used to prepare -methylbenzylamine in >99.5% enantiomeric excess (e.e.). This work, combined with our previous study, highlights the potential of NPP in the biocatalytic synthesis of amines.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16843361771150
2023-05-17
2024-02-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/4/Campopiano_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16843361771150&mimeType=html&fmt=ahah

References

  1. Bornscheuer U. T., Huisman G. W., Kazlauskas R. J., Lutz S., Moore J. C., and Robins K. Nature, 2012, 485, (7397), 185 LINK https://doi.org/10.1038/nature11117 [Google Scholar]
  2. Chen K., and Arnold F. H. Nat. Catal., 2020, 3, (3), 203 LINK https://doi.org/10.1038/s41929-019-0385-5 [Google Scholar]
  3. Devine P. N., Howard R. M., Kumar R., Thompson M. P., Truppo M. D., and Turner N. J. Nat. Rev. Chem., 2018, 2, (12), 409 LINK https://doi.org/10.1038/s41570-018-0055-1 [Google Scholar]
  4. Pyser J. B., Chakrabarty S., Romero E. O., and Narayan A. R. H. ACS Cent. Sci., 2021, 7, (7), 1105 LINK https://doi.org/10.1021/acscentsci.1c00273 [Google Scholar]
  5. Kelly S. A., Mix S., Moody T. S., and Gilmore B. F. Appl. Microbiol. Biotechnol., 2020, 104, (11), 4781 LINK https://doi.org/10.1007/s00253-020-10585-0 [Google Scholar]
  6. Guo F., and Berglund P. Green Chem., 2017, 19, (2), 333 LINK https://doi.org/10.1039/c6gc02328b [Google Scholar]
  7. Slabu I., Galman J. L., Lloyd R. C., and Turner N. J. ACS Catal., 2017, 7, (12), 8263 LINK https://doi.org/10.1021/acscatal.7b02686 [Google Scholar]
  8. Savile C. K., Janey J. M., Mundorff E. C., Moore J. C., Tam S., Jarvis W. R., Colbeck J. C., Krebber A., Fleitz F. J., Brands J., Devine P. N., Huisman G. W., and Hughes G. J. Science, 2010, 329, (5989), 305 LINK https://doi.org/10.1126/science.1188934 [Google Scholar]
  9. Feng Y., Luo Z., Sun G., Chen M., Lai J., Lin W., Goldmann S., Zhang L., and Wang Z. Org. Process Res. Dev., 2017, 21, (4), 648 LINK https://doi.org/10.1021/acs.oprd.7b00074 [Google Scholar]
  10. Peng Z., Wong J. W., Hansen E. C., Puchlopek-Dermenci A. L. A., and Clarke H. J. Org. Lett., 2014, 16, (3), 860 LINK https://doi.org/10.1021/ol403630g [Google Scholar]
  11. Frodsham L., Golden M., Hard S., Kenworthy M. N., Klauber D. J., Leslie K., Macleod C., Meadows R. E., Mulholland K. R., Reilly J., Squire C., Tomasi S., Watt D., and Wells A. S. Org. Process Res. Dev., 2013, 17, (9), 1123 LINK https://doi.org/10.1021/op400133d [Google Scholar]
  12. Fuchs M., Farnberger J. E., and Kroutil W. Eur. J. Org. Chem., 2015, (32), 6965 LINK https://doi.org/10.1002/ejoc.201500852 [Google Scholar]
  13. Kelly S. A., Pohle S., Wharry S., Mix S., Allen C. C. R., Moody T. S., and Gilmore B. F. Chem. Rev., 2017, 118, (1), 349 LINK https://doi.org/10.1021/acs.chemrev.7b00437 [Google Scholar]
  14. Leipold L., Dobrijevic D., Jeffries J. W. E., Bawn M., Moody T. S., Ward J. M., and Hailes H. C. Green Chem., 2019, 21, (1), 75 LINK https://doi.org/10.1039/c8gc02986e [Google Scholar]
  15. Busto E., Simon R. C., Grischek B., Gotor-Fernández V., and Kroutil W. Adv. Synth. Catal., 2014, 356, (9), 1937 LINK https://doi.org/10.1002/adsc.201300993 [Google Scholar]
  16. Green A. P., Turner N. J., and O’Reilly E. Angew. Chem. Int. Ed., 2014, 53, (40), 10714 LINK https://doi.org/10.1002/anie.201406571 [Google Scholar]
  17. Baud D., Ladkau N., Moody T. S., Ward J. M., and Hailes H. C. Chem. Commun., 2015, 51, (97), 17225 LINK https://doi.org/10.1039/c5cc06817g [Google Scholar]
  18. Gomm A., Lewis W., Green A. P., and O’Reilly E. Chem. Eur. J., 2016, 22, (36), 12692 LINK https://doi.org/10.1002/chem.201603188 [Google Scholar]
  19. Gomm A., Grigoriou S., Peel C., Ryan J., Mujtaba N., Clarke T., Kulcinskaja E., and O’Reilly E. Eur. J. Org. Chem., 2018, (38), 5282 LINK https://doi.org/10.1002/ejoc.201800799 [Google Scholar]
  20. Slabu I., Galman J. L., Iglesias C., Weise N. J., Lloyd R. C., and Turner N. J. Catal. Today, 2018, 306, 96 LINK https://doi.org/10.1016/j.cattod.2017.01.025 [Google Scholar]
  21. Cairns R., Gomm A., Peel C., Sharkey M., and O’Reilly E. ChemCatChem, 2019, 11, (19), 4738 LINK https://doi.org/10.1002/cctc.201901430 [Google Scholar]
  22. McKenna C. A., Štiblariková M., De Silvestro I., Campopiano D. J., and Lawrence A. L. Green Chem., 2022, 24, (5), 2010 LINK https://doi.org/10.1039/d1gc02387j [Google Scholar]
  23. Brown P. D., Willis A. C., Sherburn M. S., and Lawrence A. L. Angew. Chem. Int. Ed., 2013, 52, (50), 13273 LINK https://doi.org/10.1002/anie.201307875 [Google Scholar]
  24. Kaulmann U., Smithies K., Smith M. E. B., Hailes H. C., and Ward J. M. Enzyme Microb. Technol., 2007, 41, (5), 628 LINK https://doi.org/10.1016/j.enzmictec.2007.05.011 [Google Scholar]
  25. Cerioli L., Planchestainer M., Cassidy J., Tessaro D., and Paradisi F. J. Mol. Catal. B: Enzym., 2015, 120, 141 LINK https://doi.org/10.1016/j.molcatb.2015.07.009 [Google Scholar]
  26. Roddan R., Carter E. M., Thair B., and Hailes H. C. Nat. Prod. Rep., 2022, 39, (7), 1375 LINK https://doi.org/10.1039/d2np00008c [Google Scholar]
  27. Fryszkowska A., and Devine P. N. Curr. Opin. Chem. Biol., 2020, 55, 151 LINK https://doi.org/10.1016/j.cbpa.2020.01.012 [Google Scholar]
  28. Huffman M. A., Fryszkowska A., Alvizo O., Borra-Garske M., Campos K. R., Canada K. A., Devine P. N., Duan D., Forstater J. H., Grosser S. T., Halsey H. M., Hughes G. J., Jo J., Joyce L. A., Kolev J. N., Liang J., Maloney K. M., Mann B. F., Marshall N. M., McLaughlin M., Moore J. C., Murphy G. S., Nawrat C. C., Nazor J., Novick S., Patel N. R., Rodriguez-Granillo A., Robaire S. A., Sherer E. C., Truppo M. D., Whittaker A. M., Verma D., Xiao L., Xu Y., and Yang H. Science, 2019, 366, (6470), 1255 LINK https://doi.org/10.1126/science.aay8484 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651323X16843361771150
Loading
/content/journals/10.1595/205651323X16843361771150
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error