Skip to content
1887
Volume 67, Issue 3
  • ISSN: 2056-5135

Abstract

Carbon-hydrogen bond activations and their subsequent functionalisation have long been an important target in chemistry because C–H bonds are ubiquitous throughout nature, making C–H derivatisation reactions highly desirable. The selective and efficient functionalisation of this bond into many more useful carbon-element bonds (for example, C–B, C–Si, C–O and C–S bonds) would have many uses in pharmaceutical and bulk chemical synthesis. Activation of the C–H bond is, however, challenging due to the high strength and low bond-polarity of this bond rendering its cleavage unfavourable. With the correct choice of reagents and systems, especially those utilising directing groups, kinetically and thermodynamically favourable catalytic processes have been developed. However, a key remaining challenge is the development of undirected, intermolecular reactions using catalysts that are both selective and active enough to make useful processes. In this review, the progress towards optimising Group 9 C–H activation catalysts is discussed, particularly focusing on undirected reactions that are kinetically more difficult, starting with a brief history of C–H activation, identifying the importance of auxiliary ligands including the nature of anionic ligand (for example, cyclopentadienyl, indenyl, fluorenyl and trispyrazolylborate) and neutral ligands (such as phosphines, carbonyl, alkenes and -heterocyclic carbenes (NHCs)) that contribute towards the stability and reactivity of these metal complexes. The tethering of the anionic ligand to strong σ-donating ligands is also briefly discussed. The focus of this review is primarily on the Group 9 metals rhodium and iridium, however, C–H activation using Group 8 and 10 metals are compared where useful. The most recent advances in this field include the development of C–H borylation of many small hydrocarbon substrates such as arenes, heterocycles and -alkanes as well as the more challenging substrate methane.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16765646706676
2023-02-17
2024-05-17
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/3/Mansell_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16765646706676&mimeType=html&fmt=ahah

References

  1. Gensch T., James M. J., Dalton T., and Glorius F. Angew. Chem. Int. Ed., 2018, 57, (9), 2296 LINK https://doi.org/10.1002/anie.201710377 [Google Scholar]
  2. Hartwig J. F. J. Am. Chem. Soc., 2016, 138, (1), 2 LINK https://doi.org/10.1021/jacs.5b08707 [Google Scholar]
  3. Zeman F. S., and Keith D. W. Philos. Trans. A Math. Phys. Eng. Sci., 2008, 366, (1882), 3901 LINK https://doi.org/10.1098/rsta.2008.0143 [Google Scholar]
  4. Davis S. J., Lewis N. S., Shaner M., Aggarwal S., Arent D., Azevedo I. L., Benson S. M., Bradley T., Brouwer J., Chiang Y.-M., Clack C. T. M., Cohen A., Doig S., Edmonds J., Fennell P., Field C. B., Hannegan B., Hodge B.-M., Hoffert M. I., Ingersoll E., Jaramillo P., Lackner K. S., Mach K. J., Mastrandrea M., Ogden J., Peterson P. F., Sanchez D. L., Sperling D., Stagner J., Trancik J. E., Yang C.-J., and Caldeira K. Science, 2018, 360, (6396), eaas9793 LINK https://doi.org/10.1126/science.aas9793 [Google Scholar]
  5. Hartwig J. F., and Larsen M. A. ACS Cent. Sci., 2016, 2, (5), 281 LINK https://doi.org/10.1021/acscentsci.6b00032 [Google Scholar]
  6. Snieckus V. Chem. Rev., 1990, 90, (6), 879 LINK https://doi.org/10.1021/cr00104a001 [Google Scholar]
  7. Mulvey R. E., Mongin F., Uchiyama M., and Kondo Y. Angew. Chem. Int. Ed., 2007, 46, (21), 3802 LINK https://doi.org/10.1002/anie.200604369 [Google Scholar]
  8. Perutz R. N., and Sabo-Etienne S. Angew. Chem. Int. Ed., 2007, 46, (15), 2578 LINK https://doi.org/10.1002/anie.200603224 [Google Scholar]
  9. Perutz R. N., Sabo-Etienne S., and Weller A. S. Angew. Chem. Int. Ed., 2022, 61, (5), e202111462 LINK https://doi.org/10.1002/anie.202111462 [Google Scholar]
  10. Dalton T., Faber T., and Glorius F. ACS Cent. Sci., 2021, 7, (2), 245 LINK https://doi.org/10.1021/acscentsci.0c01413 [Google Scholar]
  11. Rogge T., Kaplaneris N., Chatani N., Kim J., Chang S., Punji B., Schafer L. L., Musaev D. G., Wencel-Delord J., Roberts C. A., Sarpong R., Wilson Z. E., Brimble M. A., Johansson M. J., and Ackermann L. Nat. Rev. Methods Prim., 2021, 1, 43 LINK https://doi.org/10.1038/s43586-021-00041-2 [Google Scholar]
  12. Baudoin O. Angew. Chem. Int. Ed., 2020, 59, (41), 17798 LINK https://doi.org/10.1002/anie.202001224 [Google Scholar]
  13. Guillemard L., and Wencel-Delord J. Beilstein J. Org. Chem., 2020, 16, 1754 LINK https://doi.org/10.3762/bjoc.16.147 [Google Scholar]
  14. Kharasch M. S., and Isbell H. S. J. Am. Chem. Soc., 1931, 53, (8), 3053 LINK https://doi.org/10.1021/ja01359a030 [Google Scholar]
  15. Trofimenko S. Inorg. Chem., 1973, 12, (6), 1215 LINK https://doi.org/10.1021/ic50124a001 [Google Scholar]
  16. Crabtree R. H. J. Organomet. Chem., 2015, 793, 41 LINK https://doi.org/10.1016/j.jorganchem.2015.02.031 [Google Scholar]
  17. Crabtree R. H. J. Chem. Soc. Dalton Trans., 2001, (17), 2437 LINK https://doi.org/10.1039/b103147n [Google Scholar]
  18. Albrecht M. Chem. Rev., 2010, 110, (2), 576 LINK https://doi.org/10.1021/cr900279a [Google Scholar]
  19. Chatt J., and Davidson J. M. J. Chem. Soc., 1965, 843 LINK https://doi.org/10.1039/jr9650000843 [Google Scholar]
  20. Crabtree R. H. “The Organometallic Chemistry of the Transition Metals”, 5th Edn., John Wiley & Sons Inc, Hoboken, USA, 2009 [Google Scholar]
  21. van Leeuwen P. W. N. M. “Homogeneous Catalysis: Understanding the Art”, Kluwer Academic Publishers, Dondrecht, The Netherlands, 2004 LINK https://doi.org/10.1007/1-4020-2000-7 [Google Scholar]
  22. Labinger J. A. Chem. Rev., 2016, 117, (13), 8483 LINK https://doi.org/10.1021/acs.chemrev.6b00583 [Google Scholar]
  23. Hashiguchi B. G., Bischof S. M., Konnick M. M., and Periana R. A. Acc. Chem. Res., 2012, 45, (6), 885 LINK https://doi.org/10.1021/ar200250r [Google Scholar]
  24. Shilov A. E., and Shul’pin G. B. Chem. Rev., 1997, 97, (8), 2879 LINK https://doi.org/10.1021/cr9411886 [Google Scholar]
  25. Labinger J. A., and Bercaw J. E. J. Organomet. Chem., 2015, 793, 47 LINK https://doi.org/10.1016/j.jorganchem.2015.01.027 [Google Scholar]
  26. Zimmermann T., Soorholtz M., Bilke M., and Schüth F. J. Am. Chem. Soc., 2016, 138, (38), 12395 LINK https://doi.org/10.1021/jacs.6b05167 [Google Scholar]
  27. He J., Wasa M., Chan K. S. L., Shao Q., and Yu J.-Q. Chem. Rev., 2016, 117, (13), 8754 LINK https://doi.org/10.1021/acs.chemrev.6b00622 [Google Scholar]
  28. Zhang Y.-F., Zhao H.-W., Wang H., Wei J.-B., and Shi Z.-J. Angew. Chem. Int. Ed., 2015, 54, (46), 13686 LINK https://doi.org/10.1002/anie.201505932 [Google Scholar]
  29. Kuhl N., Hopkinson M. N., Wencel-Delord J., and Glorius F. Angew. Chem. Int. Ed., 2012, 51, (41), 10236 LINK https://doi.org/10.1002/anie.201203269 [Google Scholar]
  30. Arockiam P. B., Bruneau C., and Dixneuf P. H. Chem. Rev., 2012, 112, (11), 5879 LINK https://doi.org/10.1021/cr300153j [Google Scholar]
  31. Leitch J. A., and Frost C. G. Chem. Soc. Rev., 2017, 46, (23), 7145 LINK https://doi.org/10.1039/c7cs00496f [Google Scholar]
  32. Warratz S., Burns D. J., Zhu C., Korvorapun K., Rogge T., Scholz J., Jooss C., Gelman D., and Ackermann L. Angew. Chem. Int. Ed., 2017, 56, (6), 1557 LINK https://doi.org/10.1002/anie.201609014 [Google Scholar]
  33. Thongpaen J., Manguin R., Kittikool T., Camy A., Roisnel T., Dorcet V., Yotphan S., Canac Y., Mauduit M., and Baslé O. Chem. Commun., 2022, 58, (86), 12082 LINK https://doi.org/10.1039/d2cc03909e [Google Scholar]
  34. Piou T., Romanov-Michailidis F., Romanova-Michaelides M., Jackson K. E., Semakul N., Taggart T. D., Newell B. S., Rithner C. D., Paton R. S., and Rovis T. J. Am. Chem. Soc., 2020, 142, (16), 7709 LINK https://doi.org/10.1021/jacs.0c00951 [Google Scholar]
  35. Colby D. A., Tsai A. S., Bergman R. G., and Ellman J. A. Acc. Chem. Res., 2012, 45, (6), 814 LINK https://doi.org/10.1021/ar200190g [Google Scholar]
  36. Colby D. A., Bergman R. G., and Ellman J. A. Chem. Rev., 2010, 110, (2), 624 LINK https://doi.org/10.1021/cr900005n [Google Scholar]
  37. Walsh A. P., and Jones W. D. Organometallics, 2015, 34, (13), 3400 LINK https://doi.org/10.1021/acs.organomet.5b00369 [Google Scholar]
  38. Lewis J. C., Bergman R. G., and Ellman J. A. Acc. Chem. Res., 2008, 41, (8), 1013 LINK https://doi.org/10.1021/ar800042p [Google Scholar]
  39. Hesp K. D., Bergman R. G., and Ellman J. A. Org. Lett., 2012, 14, (9), 2304 LINK https://doi.org/10.1021/ol300723x [Google Scholar]
  40. Crabtree R. H., Mihelcic J. M., and Quirk J. M. J. Am. Chem. Soc., 1979, 101, (26), 7738 LINK https://doi.org/10.1021/ja00520a030 [Google Scholar]
  41. Crabtree R. H., Mellea M. F., Mihelcic J. M., and Quirk J. M. J. Am. Chem. Soc., 1982, 104, (1), 107 LINK https://doi.org/10.1021/ja00365a021 [Google Scholar]
  42. Baudry D., Ephritikhine M., and Felkin H. J. Chem. Soc., Chem. Commun., 1980, (24), 1243 LINK https://doi.org/10.1039/c39800001243 [Google Scholar]
  43. Felkin H., Fillebeen-khan T., Holmes-Smith R., and Yingrui L. Tetrahedron Lett., 1985, 26, (16), 1999 LINK https://doi.org/10.1016/s0040-4039(00)98363-1 [Google Scholar]
  44. Goldman A. S., Goldberg K. I., ‘Organometallic C–H Bond Activation: An Introduction’, in “Activation and Functionalization of C–H Bonds”, eds. Goldberg K. I., and Goldman A. S. 885, American Chemical Society, Washington, DC, USA, 2004, pp. 143 LINK https://doi.org/10.1021/bk-2004-0885.ch001 [Google Scholar]
  45. Burk M. J., and Crabtree R. H. J. Am. Chem. Soc., 1987, 109, (26), 8025 LINK https://doi.org/10.1021/ja00260a013 [Google Scholar]
  46. Nomura K., and Saito Y. J. Chem. Soc., Chem. Commun., 1988, (3), 161 LINK https://doi.org/10.1039/c39880000161 [Google Scholar]
  47. Maguire J. A., and Goldman A. S. J. Am. Chem. Soc., 1991, 113, (17), 6706 LINK https://doi.org/10.1021/ja00017a071 [Google Scholar]
  48. Goldberg K. I., and Goldman A. S. Acc. Chem. Res., 2017, 50, (3), 620 LINK https://doi.org/10.1021/acs.accounts.6b00621 [Google Scholar]
  49. Liu F., Pak E. B., Singh B., Jensen C. M., and Goldman A. S. J. Am. Chem. Soc., 1999, 121, (16), 4086 LINK https://doi.org/10.1021/ja983460p [Google Scholar]
  50. Kumar A., Bhatti T. M., and Goldman A. S. Chem. Rev., 2017, 117, (19), 12357 LINK https://doi.org/10.1021/acs.chemrev.7b00247 [Google Scholar]
  51. Goldman A. S., Roy A. H., Huang Z., Ahuja R., Schinski W., and Brookhart M. Science, 2006, 312, (5771), 257 LINK https://doi.org/10.1126/science.1123787 [Google Scholar]
  52. Hoyano J. K., and Graham W. A. G. J. Am. Chem. Soc., 1982, 104, (13), 3723 LINK https://doi.org/10.1021/ja00377a032 [Google Scholar]
  53. Janowicz A. H., and Bergman R. G. J. Am. Chem. Soc., 1982, 104, (1), 352 LINK https://doi.org/10.1021/ja00365a091 [Google Scholar]
  54. Watson P. L. J. Chem. Soc., Chem. Commun., 1983, (6), 276 LINK https://doi.org/10.1039/c39830000276 [Google Scholar]
  55. Jones W. D., and Feher F. J. J. Am. Chem. Soc., 1984, 106, (6), 1650 LINK https://doi.org/10.1021/ja00318a018 [Google Scholar]
  56. Jones W. D., and Feher F. J. Acc. Chem. Res., 1989, 22, (3), 91 LINK https://doi.org/10.1021/ar00159a002 [Google Scholar]
  57. Haddleton D. M., and Perutz R. N. J. Chem. Soc., Chem. Commun., 1986, (23), 1734 LINK https://doi.org/10.1039/c39860001734 [Google Scholar]
  58. Haddleton D. M., and Perutz R. N. J. Chem. Soc., Chem. Commun., 1985, (20), 1372 LINK https://doi.org/10.1039/c39850001372 [Google Scholar]
  59. Partridge M. G., McCamley A., and Perutz R. N. J. Chem. Soc., Dalt. Trans., 1994, (24), 3519 LINK https://doi.org/10.1039/dt9940003519 [Google Scholar]
  60. Blacquiere J. M. ACS Catal., 2021, 11, (9), 5416 LINK https://doi.org/10.1021/acscatal.1c00613 [Google Scholar]
  61. Hart-Davis A. J., and Mawby R. J. J. Chem. Soc. A, 1969, 2403 LINK https://doi.org/10.1039/j19690002403 [Google Scholar]
  62. Foo T., and Bergman R. G. Organometallics, 1992, 11, (5), 1801 LINK https://doi.org/10.1021/om00041a013 [Google Scholar]
  63. Kharitonov V. B., Muratov D. V., and Loginov D. A. Coord. Chem. Rev., 2019, 399, 213027 LINK https://doi.org/10.1016/j.ccr.2019.213027 [Google Scholar]
  64. Semakul N., Jackson K. E., Paton R. S., and Rovis T. Chem. Sci., 2017, 8, (2), 1015 LINK https://doi.org/10.1039/c6sc02587k [Google Scholar]
  65. Butenschön H. Chem. Rev., 2000, 100, (4), 1527 LINK https://doi.org/10.1021/cr940265u [Google Scholar]
  66. Royo B., and Peris E. Eur. J. Inorg. Chem., 2012, (9), 1309 LINK https://doi.org/10.1002/ejic.201100990 [Google Scholar]
  67. Hanasaka F., Tanabe Y., Fujita K., and Yamaguchi R. Organometallics, 2006, 25, (4), 826 LINK https://doi.org/10.1021/om050723x [Google Scholar]
  68. Mansell S. M. Dalton Trans., 2017, 46, (44), 15157 LINK https://doi.org/10.1039/c7dt03395h [Google Scholar]
  69. Klei S. R., Tilley T. D., and Bergman R. G. Organometallics, 2002, 21, (23), 4905 LINK https://doi.org/10.1021/om020375o [Google Scholar]
  70. Klei S. R., Golden J. T., Tilley T. D., and Bergman R. G. J. Am. Chem. Soc., 2002, 124, (10), 2092 LINK https://doi.org/10.1021/ja017219d [Google Scholar]
  71. Lefort L., Crane T. W., Farwell M. D., Baruch D. M., Kaeuper J. A., Lachicotte R. J., and Jones W. D. Organometallics, 1998, 17, (18), 3889 LINK https://doi.org/10.1021/om980263q [Google Scholar]
  72. Pontes da Costa A., Viciano M., Sanaú M., Merino S., Tejeda J., Peris E., and Royo B. Organometallics, 2008, 27, (6), 1305 LINK https://doi.org/10.1021/om701186u [Google Scholar]
  73. Downing S. P., and Danopoulos A. A. Organometallics, 2006, 25, (6), 1337 LINK https://doi.org/10.1021/om051017z [Google Scholar]
  74. Downing S. P., Pogorzelec P. J., Danopoulos A. A., and Cole-Hamilton D. J. Eur. J. Inorg. Chem., 2009, (13), 1816 LINK https://doi.org/10.1002/ejic.200801162 [Google Scholar]
  75. Trofimenko S. Chem. Rev., 1993, 93, (3), 943 LINK https://doi.org/10.1021/cr00019a006 [Google Scholar]
  76. Jiao Y., Morris J., Brennessel W. W., and Jones W. D. J. Am. Chem. Soc., 2013, 135, (43), 16198 LINK https://doi.org/10.1021/ja4080985 [Google Scholar]
  77. Wick D. D., Northcutt T. O., Lachicotte R. J., and Jones W. D. Organometallics, 1998, 17, (20), 4484 LINK https://doi.org/10.1021/om971066e [Google Scholar]
  78. Jones W. D., and Hessell E. T. J. Am. Chem. Soc., 1993, 115, (2), 554 LINK https://doi.org/10.1021/ja00055a027 [Google Scholar]
  79. Bromberg S. E., Yang H., Asplund M. C., Lian T., McNamara B. K., Kotz K. T., Yeston J. S., Wilkens M., Frei H., Bergman R. G., and Harris C. B. Science, 1997, 278, (5336), 260 LINK https://doi.org/10.1126/science.278.5336.260 [Google Scholar]
  80. Asplund M. C., Snee P. T., Yeston J. S., Wilkens M. J., Payne C. K., Yang H., Kotz K. T., Frei H., Bergman R. G., and Harris C. B. J. Am. Chem. Soc., 2002, 124, (35), 10605 LINK https://doi.org/10.1021/ja020418s [Google Scholar]
  81. Guan J., Wriglesworth A., Sun X. Z., Brothers E. N., Zarić S. D., Evans M. E., Jones W. D., Towrie M., Hall M. B., and George M. W. J. Am. Chem. Soc., 2018, 140, (5), 1842 LINK https://doi.org/10.1021/jacs.7b12152 [Google Scholar]
  82. Mkhalid I. A. I., Barnard J. H., Marder T. B., Murphy J. M., and Hartwig J. F. Chem. Rev., 2010, 110, (2), 890 LINK https://doi.org/10.1021/cr900206p [Google Scholar]
  83. Neeve E. C., Geier S. J., Mkhalid I. A. I., Westcott S. A., and Marder T. B. Chem. Rev., 2016, 116, (16), 9091 LINK https://doi.org/10.1021/acs.chemrev.6b00193 [Google Scholar]
  84. Hartwig J. F., Cook K. S., Hapke M., Incarvito C. D., Fan Y., Webster C. E., and Hall M. B. J. Am. Chem. Soc., 2005, 127, (8), 2538 LINK https://doi.org/10.1021/ja045090c [Google Scholar]
  85. Adams J., and Kauffman M. Cancer Invest., 2004, 22, (2), 304 LINK https://doi.org/10.1081/cnv-120030218 [Google Scholar]
  86. Hartwig J. F. Acc. Chem. Res., 2011, 45, (6), 864 LINK https://doi.org/10.1021/ar200206a [Google Scholar]
  87. Waltz K. M., and Hartwig J. F. Science, 1997, 277, (5323), 211 LINK https://doi.org/10.1126/science.277.5323.211 [Google Scholar]
  88. Waltz K. M., He X., Muhoro C., and Hartwig J. F. J. Am. Chem. Soc., 1995, 117, (45), 11357 LINK https://doi.org/10.1021/ja00150a041 [Google Scholar]
  89. Iverson C. N., and Smith M. R. J. Am. Chem. Soc., 1999, 121, (33), 7696 LINK https://doi.org/10.1021/ja991258w [Google Scholar]
  90. Cho J.-Y., Iverson C. N., and Smith M. R. J. Am. Chem. Soc., 2000, 122, (51), 12868 LINK https://doi.org/10.1021/ja0013069 [Google Scholar]
  91. Chen H., Schlecht S., Semple T. C., and Hartwig J. F. Science, 2000, 287, (5460), 1995 LINK https://doi.org/10.1126/science.287.5460.1995 [Google Scholar]
  92. Ishiyama T., Takagi J., Ishida K., Miyaura N., Anastasi N. R., and Hartwig J. F. J. Am. Chem. Soc., 2002, 124, (3), 390 LINK https://doi.org/10.1021/ja0173019 [Google Scholar]
  93. Xu L., Wang G., Zhang S., Wang H., Wang L., Liu L., Jiao J., and Li P. Tetrahedron, 2017, 73, (51), 7123 LINK https://doi.org/10.1016/j.tet.2017.11.005 [Google Scholar]
  94. Lyons A. J., Clarke A., Fisk H., Jackson B., Moore P. R., Oke S., Ronson T. O., and Meadows R. E. Org. Process Res. Dev., 2022, 26, (5), 1378 LINK https://doi.org/10.1021/acs.oprd.1c00432 [Google Scholar]
  95. Furukawa T., Tobisu M., and Chatani N. J. Am. Chem. Soc., 2015, 137, (38), 12211 LINK https://doi.org/10.1021/jacs.5b07677 [Google Scholar]
  96. Larsen M. A., Oeschger R. J., and Hartwig J. F. ACS Catal., 2020, 10, (5), 3415 LINK https://doi.org/10.1021/acscatal.0c00152 [Google Scholar]
  97. Larsen M. A., and Hartwig J. F. J. Am. Chem. Soc., 2014, 136, (11), 4287 LINK https://doi.org/10.1021/ja412563e [Google Scholar]
  98. Hu J., Lv J., and Shi Z. Trends Chem., 2022, 4, (8), 685 LINK https://doi.org/10.1016/j.trechm.2022.04.011 [Google Scholar]
  99. Bisht R., Haldar C., Hassan M. M. M., Hoque M. E., Chaturvedi J., and Chattopadhyay B. Chem. Soc. Rev., 2022, 51, (12), 5042 LINK https://doi.org/10.1039/d1cs01012c [Google Scholar]
  100. Oeschger R., Su B., Yu I., Ehinger C., Romero E., He S., and Hartwig J. Science, 2020, 368, (6492), 736 LINK https://doi.org/10.1126/science.aba6146 [Google Scholar]
  101. Jones M. R., Fast C. D., and Schley N. D. J. Am. Chem. Soc., 2020, 142, (14), 6488 LINK https://doi.org/10.1021/jacs.0c00524 [Google Scholar]
  102. Evans K. J., Morton P. A., Luz C., Miller C., Raine O., Lynam J. M., and Mansell S. M. Chem. Eur. J., 2021, 27, (71), 17824 LINK https://doi.org/10.1002/chem.202102961 [Google Scholar]
  103. Smith K. T., Berritt S., González-Moreiras M., Ahn S., Smith M. R., Baik M.-H., and Mindiola D. J. Science, 2016, 351, (6280), 1424 LINK https://doi.org/10.1126/science.aad9730 [Google Scholar]
  104. Ahn S., Sorsche D., Berritt S., Gau M. R., Mindiola D. J., and Baik M.-H. ACS Catal., 2018, 8, (11), 10021 LINK https://doi.org/10.1021/acscatal.8b02771 [Google Scholar]
  105. Staples O., Ferrandon M. S., Laurent G. P., Kanbur U., Kropf A. J., Gau M. R., Carroll P. J., McCullough K., Sorsche D., Perras F. A., Delferro M., Kaphan D. M., and Mindiola D. J. J. Am. Chem. Soc., 2023, 145, (14), 7992 LINK https://doi.org/10.1021/jacs.2c13612 [Google Scholar]
  106. Gandeepan P., Müller T., Zell D., Cera G., Warratz S., and Ackermann L. Chem. Rev., 2019, 119, (4), 2192 LINK https://doi.org/10.1021/acs.chemrev.8b00507 [Google Scholar]
  107. Craescu C. V., Schubach M. J., Huss S., and Elacqua E. Trends Chem., 2021, 3, (8), 686 LINK https://doi.org/10.1016/j.trechm.2021.05.002 [Google Scholar]
  108. Shamsabadi A., and Chudasama V. Org. Biomol. Chem., 2019, 17, (11), 2865 LINK https://doi.org/10.1039/c9ob00339h [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651323X16765646706676
Loading
/content/journals/10.1595/205651323X16765646706676
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error