Skip to content
1887
Volume 67, Issue 3
  • ISSN: 2056-5135
  • oa Electrochemical Synthesis of Monodisperse Platinum-Cobalt Nanocrystals

    Minimising environmental impact and increasing commercial viability

  • Authors: Daniel J. Rosen1, Duncan Zavanelli1 and Christopher B. Murray2
  • Affiliations: 1 Department of Materials Science and EngineeringUniversity of Pennsylvania, PhiladelphiaUSA 2 Department of Materials Science and Engineering and Department of ChemistryUniversity of Pennsylvania, PhiladelphiaUSA
  • Source: Johnson Matthey Technology Review, Volume 67, Issue 3, Jul 2023, p. 349 - 356
  • DOI: https://doi.org/10.1595/205651323X16799975192215
    • Received: 30 Nov 2022
    • Accepted: 03 Mar 2023
    • Published online: 28 Mar 2023

Abstract

The synthesis of platinum-cobalt nanocrystals (NCs) using colloidal solvothermal techniques is well understood. However, for monodisperse NCs to form, high temperatures and environmentally detrimental solvents are needed. We report a room temperature, aqueous method of platinum-cobalt NC synthesis using electrochemical reduction as the driving force for nucleation and growth. It is found that colloidal NCs will form in both the presence and absence of surfactant. Additionally, we report a monodisperse electrochemical deposition of NCs utilising a transparent conducting oxide electrode. The methods developed here will allow for a synthetic method to produce nanocatalysts with minimal environmental impact and should be readily applicable to other NC systems, including single- and multi-component alloys.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16799975192215
2023-03-28
2024-12-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/3/Murray_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16799975192215&mimeType=html&fmt=ahah

References

  1. A. C. Foucher, N. Marcella, J. D. Lee, D. J. Rosen, R. Tappero, C. B. Murray, A. I. Frenkel, E. A. Stach, ACS Nano, 2021, 15, (12), 20619 LINK https://doi.org/10.1021/acsnano.1c09450 [Google Scholar]
  2. D. J. Rosen, S. Yang, E. Marino, Z. Jiang, C. B. Murray, J. Phys. Chem. C, 2022, 126, (7), 3623 LINK https://doi.org/10.1021/acs.jpcc.2c00608 [Google Scholar]
  3. A. Espinosa, G. R. Castro, J. Reguera, C. Castellano, J. Castillo, J. Camarero, C. Wilhelm, M. A. García, Á. Muñoz-Noval, Nano Lett., 2021, 21, (1), 769 LINK https://doi.org/10.1021/ACS.NANOLETT.0C04477 [Google Scholar]
  4. X. Yin, M. Shi, J. Wu, Y.-T. Pan, D. L. Gray, J. A. Bertke, H. Yang, Nano Lett., 2017, 17, (10), 6146 LINK https://doi.org/10.1021/acs.nanolett.7b02751 [Google Scholar]
  5. B. T. Diroll, T. Dadosh, A. Koschitzky, Y. E. Goldman, C. B. Murray, J. Phys. Chem. C, 2013, 117, (45), 23928 LINK https://doi.org/10.1021/jp407151f [Google Scholar]
  6. T. Geninatti, G. Bruno, B. Barile, R. L. Hood, M. Farina, J. Schmulen, G. Canavese, A. Grattoni, Biomed. Microdevices, 2015, 17, (1), 24 LINK https://doi.org/10.1007/s10544-014-9909-6 [Google Scholar]
  7. K. Yan, F. Xu, W. Wei, C. Yang, D. Wang, X. Shi, Colloids Surf. B: Biointerfaces, 2021, 202, 111711 LINK https://doi.org/10.1016/J.COLSURFB.2021.111711 [Google Scholar]
  8. P. Pandey, S. Merwyn, G. S. Agarwal, B. K. Tripathi, S. C. Pant, J. Nanopart. Res., 2012, 14, 709 LINK https://doi.org/10.1007/s11051-011-0709-0 [Google Scholar]
  9. S. Zhang, Y. Hao, D. Su, V. V. T. Doan-Nguyen, Y. Wu, J. Li, S. Sun, C. B. Murray, J. Am. Chem. Soc., 2014, 136, (45), 15921 LINK https://doi.org/10.1021/ja5099066 [Google Scholar]
  10. M. Cargnello, D. Sala, C. Chen, M. D’Arienzo, R. J. Gorte, C. B. Murray, RSC Adv., 2015, 5, (52), 41920 LINK https://doi.org/10.1039/c5ra06910f [Google Scholar]
  11. M. Cargnello, V. V. T. Doan-Nguyen, T. R. Gordon, R. E. Diaz, E. A. Stach, R. J. Gorte, P. Fornasiero, C. B. Murray, Science, 2013, 341, (6147), 771 LINK https://doi.org/10.1126/science.1240148 [Google Scholar]
  12. C. Wang, J. Luo, V. Liao, J. D. Lee, T. M. Onn, C. B. Murray, R. J. Gorte, Catal. Today, 2018, 302, 73 LINK https://doi.org/10.1016/J.CATTOD.2017.06.042 [Google Scholar]
  13. A. C. Foucher, S. Yang, D. J. Rosen, J. D. Lee, R. Huang, Z. Jiang, F. G. Barrera, K. Chen, G. G. Hollyer, C. M. Friend, R. J. Gorte, C. B. Murray, E. A. Stach, J. Am. Chem. Soc., 2022, 144, (17), 7919 LINK https://doi.org/10.1021/jacs.2c02538 [Google Scholar]
  14. Y. Kang, M. Li, Y. Cai, M. Cargnello, R. E. Diaz, T. R. Gordon, N. L. Wieder, R. R. Adzic, R. J. Gorte, E. A. Stach, C. B. Murray, J. Am. Chem. Soc., 2013, 135, (7), 2741 LINK https://doi.org/10.1021/JA3116839 [Google Scholar]
  15. J. Luo, J. D. Lee, H. Yun, C. Wang, M. Monai, C. B. Murray, P. Fornasiero, R. J. Gorte, Appl. Catal. B: Environ., 2016, 199, 439 LINK https://doi.org/10.1016/J.APCATB.2016.06.051 [Google Scholar]
  16. J. D. Lee, D. Jishkariani, Y. Zhao, S. Najmr, D. Rosen, J. M. Kikkawa, E. A. Stach, C. B. Murray, ACS Appl. Mater. Interfaces, 2019, 11, (30), 26789 LINK https://doi.org/10.1021/acsami.9b06346 [Google Scholar]
  17. S. Wang, W. Xu, Y. Zhu, Q. Luo, C. Zhang, S. Tang, Y. Du, ACS Appl. Mater. Interfaces, 2021, 13, (1), 827 LINK https://doi.org/10.1021/ACSAMI.0C21348 [Google Scholar]
  18. D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo, H. D. Abruña, Nature Mater., 2013, 12, (1), 81 LINK https://doi.org/10.1038/nmat3458 [Google Scholar]
  19. R. Lin, T. Zheng, L. Chen, H. Wang, X. Cai, Y. Sun, Z. Hao, ACS Appl. Mater. Interfaces, 2021, 13, (29), 34397 LINK https://doi.org/10.1021/ACSAMI.1C08810 [Google Scholar]
  20. D. J. Rosen, A. C. Foucher, J. D. Lee, S. Yang, E. Marino, E. A. Stach, C. B. Murray, ACS Mater. Lett., 2022, 4, (5), 823 LINK https://doi.org/10.1021/acsmaterialslett.2c00174 [Google Scholar]
  21. M. Liu, X. Xiao, Q. Li, L. Luo, M. Ding, B. Zhang, Y. Li, J. Zou, B. Jiang, Colloid J. Interface Sci., 2022, 607, (1), 791 LINK https://doi.org/10.1016/J.JCIS.2021.09.008 [Google Scholar]
  22. P. Gao, M. Pu, Q. Chen, H. Zhu, Catalysts, 2021, 11, (9), 1050 LINK https://doi.org/10.3390/CATAL11091050 [Google Scholar]
  23. M. M. Whiston, I. L. Azevedo, S. Litster, K. S. Whitefoot, C. Samaras, J. F. Whitacre, Proc. Natl. Acad. Sci. USA, 2019, 116, (11), 4899 LINK https://doi.org/10.1073/PNAS.1804221116 [Google Scholar]
  24. P. T. Anastas, J. B. Zimmerman, Environ. Sci. Technol., 2003, 37, (5), 94A LINK https://doi.org/10.1021/ES032373G [Google Scholar]
  25. S. Terada, H. Ueda, T. Ono, K. Saitow, ACS Sustain. Chem. Eng., 2022, 10, (5), 1765 LINK https://doi.org/10.1021/ACSSUSCHEMENG.1C04985 [Google Scholar]
  26. Y.-W. Peng, C.-P. Wang, G. Kumar, P.-L. Hsieh, C.-M. Hsieh, M. H. Huang, ACS Sustain. Chem. Eng., 2022, 10, (4), 1578 LINK https://doi.org/10.1021/ACSSUSCHEMENG.1C07218 [Google Scholar]
  27. A. Ahmed, S. Arya, ‘Green Synthesis of Nanomaterials via Electrochemical Method’, in “Advances in Green Synthesis”, eds. Inamuddin, R. Boddula, M. I. Ahamed, A. Khan, Advances in Science, Technology & Innovation, Springer, Cham, Switzerland, 2021, pp. 205216 LINK https://doi.org/10.1007/978-3-030-67884-5_11 [Google Scholar]
  28. N. Arshi, F. Ahmed, M. S. Anwar, S. Kumar, B. H. Koo, J. Lu, C. G. Lee, Nano, 2011, 6, (4), 295 LINK https://doi.org/10.1142/S1793292011002743 [Google Scholar]
  29. M. N. Groves, C. Malardier-Jugroot, M. Jugroot, Chem. Phys. Lett., 2014, 612, 309 LINK https://doi.org/10.1016/J.CPLETT.2014.08.017 [Google Scholar]
  30. S. P. Nayak, L. K. Ventrapragada, S. S. Ramamurthy, J. K. Kiran Kumar, A. M. Rao, Nano Energy, 2022, 94, 106966 LINK https://doi.org/10.1016/J.NANOEN.2022.106966 [Google Scholar]
  31. P. Yu, Q. Qian, X. Wang, H. Cheng, T. Ohsaka, L. Mao, J. Mater. Chem., 2010, 20, (28), 5820 LINK https://doi.org/10.1039/C0JM01293A [Google Scholar]
  32. C.-J. Huang, Y.-H. Wang, P.-H. Chiu, M.-C. Shih, T.-H. Meen, Mater. Lett., 2006, 60, (15), 1896 LINK https://doi.org/10.1016/J.MATLET.2005.12.045 [Google Scholar]
  33. C.-J. Huang, P.-H. Chiu, Y.-H. Wang, C.-F. Yang, Colloid J. Interface Sci., 2006, 303, (2), 430 LINK https://doi.org/10.1016/J.JCIS.2006.07.073 [Google Scholar]
  34. M. K. Rabinal, M. N. Kalasad, K. Praveenkumar, V. R. Bharadi, A. M. Bhikshavartimath, Alloys J. Compd., 2013, 562, 43 LINK https://doi.org/10.1016/J.JALLCOM.2013.01.043 [Google Scholar]
  35. Q.-S. Chen, Z.-N. Xu, S.-Y. Peng, Y.-M. Chen, D.-M. Lv, Z.-Q. Wang, J. Sun, G.-C. Guo, Power J. Sources, 2015, 282, 471 LINK https://doi.org/10.1016/J.JPOWSOUR.2015.02.042 [Google Scholar]
  36. V. V. Yanilkin, G. R. Nasretdinova, Y. N. Osin, V. V. Salnikov, Electrochim. Acta, 2015, 168, 82 LINK https://doi.org/10.1016/J.ELECTACTA.2015.03.214 [Google Scholar]
  37. G. R. Nasretdinova, Y. N. Osin, A. T. Gubaidullin, V. V. Yanilkin, J. Electrochem. Soc., 2016, 163, (8), G 99 LINK https://doi.org/10.1149/2.1021608JES [Google Scholar]
  38. D.-W. Chou, C.-J. Huang, N.-H. Liu, J. Electrochem. Soc., 2016, 163, (10), D603 LINK https://doi.org/10.1149/2.0491610JES [Google Scholar]
  39. V. V. Yanilkin, N. V. Nastapova, G. R. Nasretdinova, R. R. Fazleeva, Y. N. Osin, Electrochem. Commun., 2016, 69, 36 LINK https://doi.org/10.1016/J.ELECOM.2016.05.016 [Google Scholar]
  40. M. Hasan, W. Khunsin, C. K. Mavrokefalos, S. A. Maier, J. F. Rohan, J. S. Foord, ChemElectroChem, 2018, 5, (4), 619 LINK https://doi.org/10.1002/CELC.201701132 [Google Scholar]
  41. Y.-Y. Yu, S.-S. Chang, C.-L. Lee, C. R. C. Wang, J. Phys. Chem. B, 1997, 101, (34), 6661 LINK https://doi.org/10.1021/JP971656Q [Google Scholar]
  42. S. Huang, H. Ma, X. Zhang, F. Yong, X. Feng, W. Pan, X. Wang, Y. Wang, S. Chen, J. Phys. Chem. B, 2005, 109, (42), 19823 LINK https://doi.org/10.1021/JP052863Q [Google Scholar]
  43. W. Pan, X. Zhang, H. Ma, J. Zhang, J. Phys. Chem. C, 2008, 112, (7), 2456 LINK https://doi.org/10.1021/JP710092Z [Google Scholar]
  44. N. Vilar-Vidal, M. C. Blanco, M. A. López-Quintela, J. Rivas, C. Serra, J. Phys. Chem. C, 2010, 114, (38), 15924 LINK https://doi.org/10.1021/JP911380S [Google Scholar]
  45. O. A. Petrii, Russ. Chem. Rev., 2015, 84, (2), 159 LINK https://doi.org/10.1070/RCR4438 [Google Scholar]
  46. Z. Wang, C. Li, K. Deng, Y. Xu, H. Xue, X. Li, L. Wang, H. Wang, ACS Sustain. Chem. Eng., 2019, 7, (2), 2400 LINK https://doi.org/10.1021/ACSSUSCHEMENG.8B05245 [Google Scholar]
  47. A. L. Querejeta, M. C. del Barrio, S. G. García, J. Electroanal. Chem., 2016, 778, 98 LINK https://doi.org/10.1016/J.JELECHEM.2016.07.035 [Google Scholar]
  48. G. R. Nasretdinova, R. R. Fazleeva, Y. N. Osin, V. G. Evtjugin, A. T. Gubaidullin, A. Y. Ziganshina, V. V. Yanilkin, Electrochim. Acta, 2018, 285, 149 LINK https://doi.org/10.1016/J.ELECTACTA.2018.07.109 [Google Scholar]
  49. C. Garcia, P. Lecante, B. Warot-Fonrose, D. Neumeyer, M. Verelst, Mater. Lett., 2008, 62, (14), 2106 LINK https://doi.org/10.1016/J.MATLET.2007.11.025 [Google Scholar]
  50. M. T. Reetz, W. Helbig, J. Am. Chem. Soc., 1994, 116, (16), 7401 LINK https://doi.org/10.1021/JA00095A051 [Google Scholar]
  51. S. Shen, F. Li, L. Luo, Y. Guo, X. Yan, C. Ke, J. Zhang, J. Electrochem. Soc., 2018, 165, (2), D43 LINK https://doi.org/10.1149/2.0471802JES [Google Scholar]
/content/journals/10.1595/205651323X16799975192215
Loading
/content/journals/10.1595/205651323X16799975192215
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test