Skip to content
1887
Volume 67, Issue 3
  • ISSN: 2056-5135

Abstract

The synthesis of platinum-cobalt nanocrystals (NCs) using colloidal solvothermal techniques is well understood. However, for monodisperse NCs to form, high temperatures and environmentally detrimental solvents are needed. We report a room temperature, aqueous method of platinum-cobalt NC synthesis using electrochemical reduction as the driving force for nucleation and growth. It is found that colloidal NCs will form in both the presence and absence of surfactant. Additionally, we report a monodisperse electrochemical deposition of NCs utilising a transparent conducting oxide electrode. The methods developed here will allow for a synthetic method to produce nanocatalysts with minimal environmental impact and should be readily applicable to other NC systems, including single- and multi-component alloys.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16799975192215
2023-03-28
2024-05-17
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/3/Murray_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16799975192215&mimeType=html&fmt=ahah

References

  1. Foucher A. C., Marcella N., Lee J. D., Rosen D. J., Tappero R., Murray C. B., Frenkel A. I., and Stach E. A. ACS Nano, 2021, 15, (12), 20619 LINK https://doi.org/10.1021/acsnano.1c09450 [Google Scholar]
  2. Rosen D. J., Yang S., Marino E., Jiang Z., and Murray C. B. J. Phys. Chem. C, 2022, 126, (7), 3623 LINK https://doi.org/10.1021/acs.jpcc.2c00608 [Google Scholar]
  3. Espinosa A., Castro G. R., Reguera J., Castellano C., Castillo J., Camarero J., Wilhelm C., García M. A., and Muñoz-Noval Á. Nano Lett., 2021, 21, (1), 769 LINK https://doi.org/10.1021/ACS.NANOLETT.0C04477 [Google Scholar]
  4. Yin X., Shi M., Wu J., Pan Y.-T., Gray D. L., Bertke J. A., and Yang H. Nano Lett., 2017, 17, (10), 6146 LINK https://doi.org/10.1021/acs.nanolett.7b02751 [Google Scholar]
  5. Diroll B. T., Dadosh T., Koschitzky A., Goldman Y. E., and Murray C. B. J. Phys. Chem. C, 2013, 117, (45), 23928 LINK https://doi.org/10.1021/jp407151f [Google Scholar]
  6. Geninatti T., Bruno G., Barile B., Hood R. L., Farina M., Schmulen J., Canavese G., and Grattoni A. Biomed. Microdevices, 2015, 17, (1), 24 LINK https://doi.org/10.1007/s10544-014-9909-6 [Google Scholar]
  7. Yan K., Xu F., Wei W., Yang C., Wang D., and Shi X. Colloids Surf. B: Biointerfaces, 2021, 202, 111711 LINK https://doi.org/10.1016/J.COLSURFB.2021.111711 [Google Scholar]
  8. Pandey P., Merwyn S., Agarwal G. S., Tripathi B. K., and Pant S. C. J. Nanopart. Res., 2012, 14, 709 LINK https://doi.org/10.1007/s11051-011-0709-0 [Google Scholar]
  9. Zhang S., Hao Y., Su D., Doan-Nguyen V. V. T., Wu Y., Li J., Sun S., and Murray C. B. J. Am. Chem. Soc., 2014, 136, (45), 15921 LINK https://doi.org/10.1021/ja5099066 [Google Scholar]
  10. Cargnello M., Sala D., Chen C., D’Arienzo M., Gorte R. J., and Murray C. B. RSC Adv., 2015, 5, (52), 41920 LINK https://doi.org/10.1039/c5ra06910f [Google Scholar]
  11. Cargnello M., Doan-Nguyen V. V. T., Gordon T. R., Diaz R. E., Stach E. A., Gorte R. J., Fornasiero P., and Murray C. B. Science, 2013, 341, (6147), 771 LINK https://doi.org/10.1126/science.1240148 [Google Scholar]
  12. Wang C., Luo J., Liao V., Lee J. D., Onn T. M., Murray C. B., and Gorte R. J. Catal. Today, 2018, 302, 73 LINK https://doi.org/10.1016/J.CATTOD.2017.06.042 [Google Scholar]
  13. Foucher A. C., Yang S., Rosen D. J., Lee J. D., Huang R., Jiang Z., Barrera F. G., Chen K., Hollyer G. G., Friend C. M., Gorte R. J., Murray C. B., and Stach E. A. J. Am. Chem. Soc., 2022, 144, (17), 7919 LINK https://doi.org/10.1021/jacs.2c02538 [Google Scholar]
  14. Kang Y., Li M., Cai Y., Cargnello M., Diaz R. E., Gordon T. R., Wieder N. L., Adzic R. R., Gorte R. J., Stach E. A., and Murray C. B. J. Am. Chem. Soc., 2013, 135, (7), 2741 LINK https://doi.org/10.1021/JA3116839 [Google Scholar]
  15. Luo J., Lee J. D., Yun H., Wang C., Monai M., Murray C. B., Fornasiero P., and Gorte R. J. Appl. Catal. B: Environ., 2016, 199, 439 LINK https://doi.org/10.1016/J.APCATB.2016.06.051 [Google Scholar]
  16. Lee J. D., Jishkariani D., Zhao Y., Najmr S., Rosen D., Kikkawa J. M., Stach E. A., and Murray C. B. ACS Appl. Mater. Interfaces, 2019, 11, (30), 26789 LINK https://doi.org/10.1021/acsami.9b06346 [Google Scholar]
  17. Wang S., Xu W., Zhu Y., Luo Q., Zhang C., Tang S., and Du Y. ACS Appl. Mater. Interfaces, 2021, 13, (1), 827 LINK https://doi.org/10.1021/ACSAMI.0C21348 [Google Scholar]
  18. Wang D., Xin H. L., Hovden R., Wang H., Yu Y., Muller D. A., DiSalvo F. J., and Abruña H. D. Nature Mater., 2013, 12, (1), 81 LINK https://doi.org/10.1038/nmat3458 [Google Scholar]
  19. Lin R., Zheng T., Chen L., Wang H., Cai X., Sun Y., and Hao Z. ACS Appl. Mater. Interfaces, 2021, 13, (29), 34397 LINK https://doi.org/10.1021/ACSAMI.1C08810 [Google Scholar]
  20. Rosen D. J., Foucher A. C., Lee J. D., Yang S., Marino E., Stach E. A., and Murray C. B. ACS Mater. Lett., 2022, 4, (5), 823 LINK https://doi.org/10.1021/acsmaterialslett.2c00174 [Google Scholar]
  21. Liu M., Xiao X., Li Q., Luo L., Ding M., Zhang B., Li Y., Zou J., and Jiang B. Colloid J. Interface Sci., 2022, 607, (1), 791 LINK https://doi.org/10.1016/J.JCIS.2021.09.008 [Google Scholar]
  22. Gao P., Pu M., Chen Q., and Zhu H. Catalysts, 2021, 11, (9), 1050 LINK https://doi.org/10.3390/CATAL11091050 [Google Scholar]
  23. Whiston M. M., Azevedo I. L., Litster S., Whitefoot K. S., Samaras C., and Whitacre J. F. Proc. Natl. Acad. Sci. USA, 2019, 116, (11), 4899 LINK https://doi.org/10.1073/PNAS.1804221116 [Google Scholar]
  24. Anastas P. T., and Zimmerman J. B. Environ. Sci. Technol., 2003, 37, (5), 94A LINK https://doi.org/10.1021/ES032373G [Google Scholar]
  25. Terada S., Ueda H., Ono T., and Saitow K. ACS Sustain. Chem. Eng., 2022, 10, (5), 1765 LINK https://doi.org/10.1021/ACSSUSCHEMENG.1C04985 [Google Scholar]
  26. Peng Y.-W., Wang C.-P., Kumar G., Hsieh P.-L., Hsieh C.-M., and Huang M. H. ACS Sustain. Chem. Eng., 2022, 10, (4), 1578 LINK https://doi.org/10.1021/ACSSUSCHEMENG.1C07218 [Google Scholar]
  27. Ahmed A., Arya S., ‘Green Synthesis of Nanomaterials via Electrochemical Method’, in “Advances in Green Synthesis”, eds. Inamuddin, Boddula R., Ahamed M. I., and Khan A. Advances in Science, Technology & Innovation, Springer, Cham, Switzerland, 2021, pp. 205216 LINK https://doi.org/10.1007/978-3-030-67884-5_11 [Google Scholar]
  28. Arshi N., Ahmed F., Anwar M. S., Kumar S., Koo B. H., Lu J., and Lee C. G. Nano, 2011, 6, (4), 295 LINK https://doi.org/10.1142/S1793292011002743 [Google Scholar]
  29. Groves M. N., Malardier-Jugroot C., and Jugroot M. Chem. Phys. Lett., 2014, 612, 309 LINK https://doi.org/10.1016/J.CPLETT.2014.08.017 [Google Scholar]
  30. Nayak S. P., Ventrapragada L. K., Ramamurthy S. S., Kiran Kumar J. K., and Rao A. M. Nano Energy, 2022, 94, 106966 LINK https://doi.org/10.1016/J.NANOEN.2022.106966 [Google Scholar]
  31. Yu P., Qian Q., Wang X., Cheng H., Ohsaka T., and Mao L. J. Mater. Chem., 2010, 20, (28), 5820 LINK https://doi.org/10.1039/C0JM01293A [Google Scholar]
  32. Huang C.-J., Wang Y.-H., Chiu P.-H., Shih M.-C., and Meen T.-H. Mater. Lett., 2006, 60, (15), 1896 LINK https://doi.org/10.1016/J.MATLET.2005.12.045 [Google Scholar]
  33. Huang C.-J., Chiu P.-H., Wang Y.-H., and Yang C.-F. Colloid J. Interface Sci., 2006, 303, (2), 430 LINK https://doi.org/10.1016/J.JCIS.2006.07.073 [Google Scholar]
  34. Rabinal M. K., Kalasad M. N., Praveenkumar K., Bharadi V. R., and Bhikshavartimath A. M. Alloys J. Compd., 2013, 562, 43 LINK https://doi.org/10.1016/J.JALLCOM.2013.01.043 [Google Scholar]
  35. Chen Q.-S., Xu Z.-N., Peng S.-Y., Chen Y.-M., Lv D.-M., Wang Z.-Q., Sun J., and Guo G.-C. Power J. Sources, 2015, 282, 471 LINK https://doi.org/10.1016/J.JPOWSOUR.2015.02.042 [Google Scholar]
  36. Yanilkin V. V., Nasretdinova G. R., Osin Y. N., and Salnikov V. V. Electrochim. Acta, 2015, 168, 82 LINK https://doi.org/10.1016/J.ELECTACTA.2015.03.214 [Google Scholar]
  37. Nasretdinova G. R., Osin Y. N., Gubaidullin A. T., and Yanilkin V. V. J. Electrochem. Soc., 2016, 163, (8), G 99 LINK https://doi.org/10.1149/2.1021608JES [Google Scholar]
  38. Chou D.-W., Huang C.-J., and Liu N.-H. J. Electrochem. Soc., 2016, 163, (10), D603 LINK https://doi.org/10.1149/2.0491610JES [Google Scholar]
  39. Yanilkin V. V., Nastapova N. V., Nasretdinova G. R., Fazleeva R. R., and Osin Y. N. Electrochem. Commun., 2016, 69, 36 LINK https://doi.org/10.1016/J.ELECOM.2016.05.016 [Google Scholar]
  40. Hasan M., Khunsin W., Mavrokefalos C. K., Maier S. A., Rohan J. F., and Foord J. S. ChemElectroChem, 2018, 5, (4), 619 LINK https://doi.org/10.1002/CELC.201701132 [Google Scholar]
  41. Yu Y.-Y., Chang S.-S., Lee C.-L., and Wang C. R. C. J. Phys. Chem. B, 1997, 101, (34), 6661 LINK https://doi.org/10.1021/JP971656Q [Google Scholar]
  42. Huang S., Ma H., Zhang X., Yong F., Feng X., Pan W., Wang X., Wang Y., and Chen S. J. Phys. Chem. B, 2005, 109, (42), 19823 LINK https://doi.org/10.1021/JP052863Q [Google Scholar]
  43. Pan W., Zhang X., Ma H., and Zhang J. J. Phys. Chem. C, 2008, 112, (7), 2456 LINK https://doi.org/10.1021/JP710092Z [Google Scholar]
  44. Vilar-Vidal N., Blanco M. C., López-Quintela M. A., Rivas J., and Serra C. J. Phys. Chem. C, 2010, 114, (38), 15924 LINK https://doi.org/10.1021/JP911380S [Google Scholar]
  45. Petrii O. A. Russ. Chem. Rev., 2015, 84, (2), 159 LINK https://doi.org/10.1070/RCR4438 [Google Scholar]
  46. Wang Z., Li C., Deng K., Xu Y., Xue H., Li X., Wang L., and Wang H. ACS Sustain. Chem. Eng., 2019, 7, (2), 2400 LINK https://doi.org/10.1021/ACSSUSCHEMENG.8B05245 [Google Scholar]
  47. Querejeta A. L., del Barrio M. C., and García S. G. J. Electroanal. Chem., 2016, 778, 98 LINK https://doi.org/10.1016/J.JELECHEM.2016.07.035 [Google Scholar]
  48. Nasretdinova G. R., Fazleeva R. R., Osin Y. N., Evtjugin V. G., Gubaidullin A. T., Ziganshina A. Y., and Yanilkin V. V. Electrochim. Acta, 2018, 285, 149 LINK https://doi.org/10.1016/J.ELECTACTA.2018.07.109 [Google Scholar]
  49. Garcia C., Lecante P., Warot-Fonrose B., Neumeyer D., and Verelst M. Mater. Lett., 2008, 62, (14), 2106 LINK https://doi.org/10.1016/J.MATLET.2007.11.025 [Google Scholar]
  50. Reetz M. T., and Helbig W. J. Am. Chem. Soc., 1994, 116, (16), 7401 LINK https://doi.org/10.1021/JA00095A051 [Google Scholar]
  51. Shen S., Li F., Luo L., Guo Y., Yan X., Ke C., and Zhang J. J. Electrochem. Soc., 2018, 165, (2), D43 LINK https://doi.org/10.1149/2.0471802JES [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651323X16799975192215
Loading
/content/journals/10.1595/205651323X16799975192215
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error