Skip to content
Volume 67, Issue 3
  • ISSN: 2056-5135


Bushings made of platinum-rhodium alloys are a key component in glass fibre production. While bushings have grown in size and functionality since their introduction in the early 20th century, manufacturing constraints still limit their full potential. Both in terms of design and quality, traditional manufacturing methods such as milling, drilling and welding limit the potential of precious metal bushings. The technical feasibility of the use of additive manufacturing for the production of bushings is greatly dependent on the material properties. For the purpose of this work, an additively manufactured alloy consisting of 90 wt% platinum and 10 wt% rhodium (PtRh10) is investigated with regard to density, electrical resistivity, creep performance and the contact angle of E-glass on the PtRh10 samples.


Article metrics loading...

Loading full text...

Full text loading...



  1. Loewenstein K. L. “The Manufacturing Technology of Continuous Glass Fibres”, 2nd Edn.,Elsevier, Amsterdam, The Netherlands, 1983 [Google Scholar]
  2. Commission Implementing Regulation (EU) 2020/379, Official J. Eur. Union, 2020, 63, (L69), 14 LINK [Google Scholar]
  3. Mazumdar S. ‘The Glass Fiber Market’, Composites Manufacturing, Winter 2021, pp. 1819 [Google Scholar]
  4. Becker T., Haag M., Gries T., Pico D., Wilms C., Seide G., Kleinholz R., and Tiesler H. ‘Fibers, 12. Glass Fibers’, in “Ullmann’s Encyclopedia of Industrial Chemistry”, Wiley-VCH Verlag GmbH and Co KGaA,Weinheim, Germany, 2022 LINK [Google Scholar]
  5. Teschner R. “Glasfasern: 2. Auflage”, Springer-Verlag GmbH, Berlin, Germany, 2019 (in German) [Google Scholar]
  6. ‘Standard Terminology of Glass and Glass Products’, ASTM C162-05, ASTM International, West Conshohocken, USA, 2015, 16 pp LINK [Google Scholar]
  7. Masters W. E. ‘Computer Automated Manufacturing Process and System’, US Patent 4,665,492; 1987 [Google Scholar]
  8. Krassenstein B. ‘EOS & Cooksongold Team to Launch the PRECIOUS M 080 Jewelry DMLS 3D Printer’, 3DR Holdings, New York, USA, 15th September, 2014 LINK [Google Scholar]
  9. Raffeis I., Vroomen U., Adjei-Kyeremeh F., Großmann D., Hammelrath H., Westhoff E., Bremen S., Boscolo Bozza D., and Bührig-Polaczek A. Materialwiss. Werkstofftech., 2020, 51, (4), 432 LINK [Google Scholar]
  10. Zhao J.-R., Hung F.-Y., Lu C.-S., and Lai I.-C. Adv. Eng. Mater., 2021, 23, (6), 2001366 LINK [Google Scholar]
  11. Yang C.-L., and Yu K.-T. J. Fail. Anal. Preven., 2013, 13, (5) 521 LINK [Google Scholar]
  12. Stiller H. ‘Material Intensity of Advanced Composite Materials: Results of a Study for the Verbundwerkstofflabor Bremen eV’, Wuppertal Papers, No. 90, Wuppertal Institute for Climate, Environment, Energy gGmbH, Wuppertal, Germany, 1999, 38 pp LINK [Google Scholar]
  13. Wenzel R. N. Ind. Eng. Chem., 1936, 28, (8), 988 LINK [Google Scholar]
  14. Cassie A. B. D., and Baxter S. Trans. Faraday Soc., 1944, 40, 546 LINK [Google Scholar]
  15. Völkl R., and Freund D. J. Test. Eval., 2003, 31, (1) LINK [Google Scholar]
  16. ‘Metallic Materials – Uniaxial Creep Testing in Tension – Method of Test’, ISO 204:2018, International Organization for Standardization, Geneva, Switzerland, 2018, 53 pp LINK [Google Scholar]
  17. ‘Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials’, ASTM E139-11, ASTM International, West Conshohocken, USA, 2018, 14 pp LINK [Google Scholar]
  18. ‘Geometrical Product Specifications (GPS) – Filtration – Part 71: Robust Areal Filters: Gaussian Regression Filters’, ISO 16610-71:2014, International Organization for Standardization, Geneva, Switzerland, 2014, 20 pp LINK [Google Scholar]
  19. Silbernagel C., Ashcroft I., Dickens P., and Galea M. Addit. Manuf., 2018, 21, 395 LINK [Google Scholar]
  20. Bourne A. A., and Darling A. S. Platinum Metals Rev., 1963, 7, (2), 42 LINK [Google Scholar]
  21. Trumić B., Gomidželović L., Marjanović S., Ivanović A., and Krstić V. Mat. Res., 2017, 20, (1), 191 LINK [Google Scholar]
  22. Hamada T. ‘High Temperature Creep of Platinum and Its Alloys’, Dissertation, Department of Physical Science, Osaka University, Japan, January, 1998, 87 pp [Google Scholar]
  23. Fischer B., Behrends A., Freund D., Lupton D. F., and Merker J. Platinum Metals Rev., 1999, 43, (1), 18 LINK [Google Scholar]
  24. Rytvin E. I. “Heat Resistance of Platinum Alloys”, Ore and Metals Publishing House, Moscow, Russia, 1987 [Google Scholar]
  25. Reinacher G. Platinum Metals Rev., 1962, 6, (4), 148 LINK [Google Scholar]
  26. Selman G. L., Spender M. R., and Darling A. S. Platinum Metals Rev., 1965, 9, (4), 130 LINK [Google Scholar]
  27. Acken J. S. Bur. Stand. J. Res., 1934, 12, (2), 249 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error