Skip to content
1887
Volume 67, Issue 3
  • ISSN: 2056-5135
  • oa Advanced Supports for Noble Metal Catalysts in Proton Exchange Membrane Water Electrolysers: A Review

    Improving the performance, stability, durability and cost of iridium- and platinum-based catalytic materials

  • Authors: Pere L. Cabot1, María V. Martínez-Huerta2 and Francisco Alcaide3,4
  • Affiliations: 1 Laboratory of Electrochemistry of Materials and the Environment, Department of Materials Science and Physical Chemistry, Faculty of Chemistry, University of BarcelonaMartí and Franquès 1, 08028 BarcelonaSpain 2 Institute of Catalysis and Petrochemistry, Spanish Council for Scientific Research (CSIC)C/ Marie Curie, 2. Cantoblanco, 28049 MadridSpain 3 Laboratory of Electrochemistry of Materials and the Environment, Department of Materials Science and Physical Chemistry, Faculty of Chemistry, University of BarcelonaMartí and Franquès 1, 08028 BarcelonaSpain 4 CIDETEC, Basque Research and Technology Alliance (BRTA)Paseo Miramón, 196, 20014 San SebastiánSpain
  • Source: Johnson Matthey Technology Review, Volume 67, Issue 3, Jul 2023, p. 249 - 265
  • DOI: https://doi.org/10.1595/205651323X16648726195503
    • Received: 29 Jul 2020
    • Accepted: 03 Oct 2022
    • Published online: 04 Oct 2022

Abstract

Renewable and low-carbon hydrogen will contribute to a future climate-neutral economy as a fuel, clean energy carrier and feedstock. One of the main concerns when considering its production by the present proton exchange membrane water electrolysers (PEMWE) is the use of scarce and expensive noble metals as catalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), because they contribute to increase the cost of the technology. Several strategies have been developed to overcome this drawback, such as optimising the catalyst loading in the electrodes and alloying or using alternative catalyst supports, always with the aim to maintain or even increase electrolyser performance and durability. In this review, we examine the latest developments in HER and OER catalysts intended for practical PEMWE systems, which point in the short term to the use of platinum and iridium nanoparticles highly dispersed at low loadings on conductive non-carbon supports.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16648726195503
2022-10-04
2024-12-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/3/Alcaide_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16648726195503&mimeType=html&fmt=ahah

References

  1. K. Bareiß, C. de la Rua, M. Möckl, T. Hamacher, Appl. Energy, 2019, 237, 862 LINK https://doi.org/10.1016/j.apenergy.2019.01.001 [Google Scholar]
  2. P. C. K. Vesborg, T. F. Jaramillo, RSC Adv., 2012, 2, (21), 7933 LINK https://doi.org/10.1039/C2RA20839C [Google Scholar]
  3. M. Pudukudy, Z. Yaakob, M. Mohammad, B. Narayanan, K. Sopian, Renew. Sustain. Energy Rev., 2014, 30, 743 LINK https://doi.org/10.1016/j.rser.2013.11.015 [Google Scholar]
  4. P. Nikolaidis, A. Poullikkas, Renew. Sustain. Energy Rev., 2017, 67, 597 LINK https://doi.org/10.1016/j.rser.2016.09.044 [Google Scholar]
  5. Y. Naimi, A. Antar, ‘Hydrogen Generation by Water Electrolysis’, in “Advances in Hydrogen Generation Technologies”, ed. M. Eyvaz, InTechOpen, London, UK, 2018, 18 pp LINK https://doi.org/10.5772/intechopen.76814 [Google Scholar]
  6. D. M. F. Santos, C. A. C. Sequeira, J. L. Figueiredo, Quim. Nova, 2013, 36, (8), 1176 LINK http://doi.org/10.1590/S0100-40422013000800017 [Google Scholar]
  7. D. Berndt, D. Spahrbier, ‘Batteries’, in “Ullmann’s Encyclopedia of Industrial Chemistry”, Wiley-VCH Verlag GmbH, Weinheim, Germany, 2005 [Google Scholar]
  8. J. Brauns, T. Turek, Processes, 2020, 8, (2), 248 LINK https://doi.org/10.3390/pr8020248 [Google Scholar]
  9. A. S. Aricò, S. Siracusano, N. Briguglio, V. Baglio, A. Blasi Di, V. Antonucci, J. Appl. Electrochem., 2013, 43, (2), 107 LINK https://doi.org/10.1007/s10800-012-0490-5 [Google Scholar]
  10. X. Sun, K. Xu, C. Fleischer, X. Liu, M. Grandcolas, R. Strandbakke, T. S. Bjørheim, T. Norby, A. Chatzitakis, Catalysts, 2018, 8, (12), 657 LINK https://doi.org/10.3390/catal8120657 [Google Scholar]
  11. A. Kusoglu, A. Z. Weber, Chem. Rev., 2017, 117, (3), 987 LINK https://doi.org/10.1021/acs.chemrev.6b00159 [Google Scholar]
  12. P. Millet, N. Mbemba, S. A. Grigoriev, V. N. Fateev, A. Aukauloo, C. Etiévant, Int. J. Hydrogen Energy, 2011, 36, (6), 4134 LINK https://doi.org/10.1016/j.ijhydene.2010.06.105 [Google Scholar]
  13. M. Suermann, B. Bensmann, R. Hanke-Rauschenbach, J. Electrochem. Soc., 2019, 166, (10), F645 LINK https://doi.org/10.1149/2.1451910jes [Google Scholar]
  14. P. Shirvanian, F. van Berkel, Electrochem. Commun., 2020, 114, 106704 LINK https://doi.org/10.1016/j.elecom.2020.106704 [Google Scholar]
  15. P. Holzapfel, M. Bühler, C. Van Pham, F. Hegge, T. Böhm, D. McLaughlin, M. Breitwieser, S. Thiele, Electrochem. Commun., 2020, 110, 106640 LINK https://doi.org/10.1016/j.elecom.2019.106640 [Google Scholar]
  16. T. Reier, M. Oezaslan, P. Strasser, ACS Catal., 2012, 2, (8), 1765 LINK https://doi.org/10.1021/cs3003098 [Google Scholar]
  17. T. Kim, B. Kim, T. Kwon, H. Y. Kim, J. Y. Kim, K. Lee, Mater. Chem. Front., 2021, 5, (12), 4445 LINK https://doi.org/10.1039/d1qm00138h [Google Scholar]
  18. K. Ayers, N. Danilovic, R. Ouimet, M. Carmo, B. Pivovar, M. Bornstein, Annu. Rev. Chem. Biomol. Eng., 2019, 10, 219 LINK https://doi.org/10.1146/annurev-chembioeng-060718-030241 [Google Scholar]
  19. C. Klose, P. Trinke, T. Böhm, B. Bensmann, S. Vierrath, R. Hanke-Rauschenbach, S. Thiele, J. Electrochem. Soc., 2018, 165, (16), F1271 LINK https://doi.org/10.1149/2.1241814jes [Google Scholar]
  20. J. Hu, J. Luo, P. Wagner, O. Conrad, C. Agert, Electrochem. Commun., 2009, 11, (12), 2324 LINK https://doi.org/10.1016/j.elecom.2009.10.020 [Google Scholar]
  21. Q. Feng, X.-Z. Yuan, G. Liu, B. Wei, Z. Zhang, H. Li, H. Wang, J. Power Sources, 2017, 366, 33 LINK https://doi.org/10.1016/j.jpowsour.2017.09.006 [Google Scholar]
  22. M. Bühler, F. Hegge, P. Holzapfel, M. Bierling, M. Suermann, S. Vierrath, S. Thiele, J. Mater. Chem. A, 2019, 7, (47), 26984 LINK https://doi.org/10.1039/c9ta08396k [Google Scholar]
  23. M. Stähler, A. Stähler, F. Scheepers, M. Carmo, D. Stolten, Int. J. Hydrogen Energy, 2019, 44, (14), 7053 LINK https://doi.org/10.1016/j.ijhydene.2019.02.016 [Google Scholar]
  24. M. Bernt, H. A. Gasteiger, J. Electrochem. Soc., 2016, 163, (11), F3179 LINK https://doi.org/10.1149/2.0231611jes [Google Scholar]
  25. M. Bernt, A. Siebel, H. A. Gasteiger, J. Electrochem. Soc., 2018, 165, (5), F305 LINK https://doi.org/10.1149/2.0641805jes [Google Scholar]
  26. M. Stähler, A. Stähler, F. Scheepers, M. Carmo, W. Lehnert, D. Stolten, Int. J. Hydrogen Energy, 2020, 45, (7), 4008 LINK https://doi.org/10.1016/j.ijhydene.2019.12.016 [Google Scholar]
  27. M. Bajdich, M. García-Mota, A. Vojvodic, J. K. Nørskov, A. T. Bell, J. Am. Chem. Soc., 2013, 135, (36), 13521 LINK https://doi.org/10.1021/ja405997s [Google Scholar]
  28. S. S. Kumar, V. Himabindu, Mater. Sci. Energy Technol., 2019, 2, (3), 442 LINK https://doi.org/10.1016/j.mset.2019.03.002 [Google Scholar]
  29. S. S. Kumar, V. Himabindu, Renew. Energy, 2020, 146, 2281 LINK https://doi.org/10.1016/j.renene.2019.08.068 [Google Scholar]
  30. Z. Kang, G. Yang, J. Mo, Y. Li, S. Yu, D. A. Cullen, S. T. Retterer, T. J. Toops, G. Bender, B. S. Pivovar, J. B. Green, F.-Y. Zhang, Nano Energy, 2018, 47, 434 LINK https://doi.org/10.1016/j.nanoen.2018.03.015 [Google Scholar]
  31. M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrogen Energy, 2013, 38, (12), 4901 LINK https://doi.org/10.1016/j.ijhydene.2013.01.151 [Google Scholar]
  32. S. A. Grigoriev, A. A. Kalinnikov, Int. J. Hydrogen Energy, 2017, 42, (3), 1590 LINK https://doi.org/10.1016/j.ijhydene.2016.09.058 [Google Scholar]
  33. S. A. Grigoriev, M. S. Mamat, K. A. Dzhus, G. S. Walker, P. Millet, Int. J. Hydrogen Energy, 2011, 36, (6), 4143 LINK https://doi.org/10.1016/j.ijhydene.2010.07.013 [Google Scholar]
  34. M. Tavakkoli, N. Holmberg, R. Kronberg, H. Jiang, J. Sainio, E. I. Kauppinen, T. Kallio, K. Laasonen, ACS Catal., 2017, 7, (5), 3121 LINK https://doi.org/10.1021/acscatal.7b00199 [Google Scholar]
  35. T. Rajala, R. Kronberg, R. Backhouse, M. E. M. Buan, M. Tripathi, A. Zitolo, H. Jiang, K. Laasonen, T. Susi, F. Jaouen, T. Kallio, Appl. Catal. B: Environ., 2020, 265, 118582 LINK https://doi.org/10.1016/j.apcatb.2019.118582 [Google Scholar]
  36. W. Sheng, H. A. Gasteiger, Y. Shao-Horn, J. Electrochem. Soc., 2010, 157, (11), B1529 LINK https://doi.org/10.1149/1.3483106 [Google Scholar]
  37. C. M. Zalitis, D. Kramer, A. R. Kucernak, Phys. Chem. Chem. Phys., 2013, 15, (12), 4329 LINK https://doi.org/10.1039/C3CP44431G [Google Scholar]
  38. E. Price, Johnson Matthey Technol. Rev., 2017, 61, (1), 47 LINK https://technology.matthey.com/article/61/1/47-51/ [Google Scholar]
  39. P. Trinke, B. Bensmann, R. Hanke-Rauschenbach, Electrochem. Commun., 2017, 82, 98 LINK https://doi.org/10.1016/j.elecom.2017.07.018 [Google Scholar]
  40. M. Chandesris, V. Médeau, N. Guillet, S. Chelghoum, D. Thoby, F. Fouda-Onana, Int. J. Hydrogen Energy, 2015, 40, (3), 1353 LINK https://doi.org/10.1016/j.ijhydene.2014.11.111 [Google Scholar]
  41. A. A. Franco, M. Gerard, J. Electrochem. Soc., 2008, 155, (4), B367 LINK http://doi.org/10.1149/1.2838165 [Google Scholar]
  42. X. Chen, S. S. Mao, Chem. Rev., 2007, 107, (7), 2891 LINK https://doi.org/10.1021/cr0500535 [Google Scholar]
  43. Y. Shi, L. Guo, Z. Lu, Z. Wang, Y. Gan, C. Guo, H. Tan, C. Yan, Energy Technol., 2019, 7, (5), 1800781 LINK https://doi.org/10.1002/ente.201800781 [Google Scholar]
  44. X. Wang, X. Yuan, X. Liu, W. Dong, C. Dong, M. Lou, J. Li, T. Lin, F. Huang, J. Alloys Compd., 2017, 701, 669 LINK https://doi.org/10.1016/j.jallcom.2017.01.152 [Google Scholar]
  45. F. Alcaide, R. V. Genova, G. Álvarez, H.-J. Grande, Ó. Miguel, P. L. Cabot, Int. J. Hydrogen Energy, 2020, 45, (40), 20605 LINK https://doi.org/10.1016/j.ijhydene.2020.01.057 [Google Scholar]
  46. G. Shi, H. Yano, D. A. Tryk, S. Nohara, H. Uchida, Phys. Chem. Chem. Phys., 2019, 21, (6), 2861 LINK https://doi.org/10.1039/C8CP06825A [Google Scholar]
  47. C. Li, J.-B. Baek, ACS Omega, 2020, 5, (1), 31 LINK https://doi.org/10.1021/acsomega.9b03550 [Google Scholar]
  48. N. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T.-K. Sham, L.-M. Liu, G. A. Botton, X. Sun, Nat. Commun., 2016, 7, 13638 LINK https://doi.org/10.1038/ncomms13638 [Google Scholar]
  49. E. Fabbri, T. J. Schmidt, ACS Catal., 2018, 8, (10), 9765 LINK https://doi.org/10.1021/acscatal.8b02712 [Google Scholar]
  50. N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H. M. Chen, Chem. Soc. Rev., 2017, 46, (2), 337 LINK https://doi.org/10.1039/C6CS00328A [Google Scholar]
  51. S. Trasatti, Electrochim. Acta, 1984, 29, (11), 1503 LINK https://doi.org/10.1016/0013-4686(84)85004-5 [Google Scholar]
  52. S. Park, Y. Shao, J. Liu, Y. Wang, Energy Environ. Sci., 2012, 5, (11), 9331 LINK https://doi.org/10.1039/C2EE22554A [Google Scholar]
  53. S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J.-P. Grote, A. Savan, B. R. Shrestha, S. Merzlikin, B. Breitbach, A. Ludwig, K. J. J. Mayrhofer, Catal. Today, 2016, 262, 170 LINK https://doi.org/https://doi.org/10.1016/j.cattod.2015.08.014 [Google Scholar]
  54. M. Bernt, A. Hartig-Weiß, M. F. Tovini, H. A. El-Sayed, C. Schramm, J. Schröter, C. Gebauer, H. A. Gasteiger, Chem. Ing. Tech., 2020, 92, (1–2), 31 LINK https://doi.org/10.1002/cite.201900101 [Google Scholar]
  55. C. Iwakura, K. Hirao, H. Tamura, Electrochim. Acta, 1977, 22, (4), 329 LINK https://doi.org/10.1016/0013-4686(77)85082-2 [Google Scholar]
  56. E. A. Paoli, F. Masini, R. Frydendal, D. Deiana, C. Schlaup, M. Malizia, T. W. Hansen, S. Horch, I. E. L. Stephens, I. Chorkendorff, Chem. Sci., 2015, 6, (1), 190 LINK https://doi.org/10.1039/c4sc02685c [Google Scholar]
  57. M. Escudero-Escribano, A. F. Pedersen, E. A. Paoli, R. Frydendal, D. Friebel, P. Malacrida, J. Rossmeisl, I. E. L. Stephens, I. Chorkendorff, J. Phys. Chem. B, 2018, 122, (2), 947 LINK https://doi.org/10.1021/acs.jpcb.7b07047 [Google Scholar]
  58. N. Danilovic, R. Subbaraman, K.-C. Chang, S. H. Chang, Y. J. Kang, J. Snyder, A. P. Paulikas, D. Strmcnik, Y.-T. Kim, D. Myers, V. R. Stamenkovic, N. M. Markovic, J. Phys. Chem. Lett., 2014, 5, (14), 2427 LINK https://doi.org/10.1021/jz501061n [Google Scholar]
  59. R. Kötz, S. Stucki, Electrochim. Acta, 1986, 31, (10), 1311 LINK https://doi.org/10.1016/0013-4686(86)80153-0 [Google Scholar]
  60. V. A. Saveleva, L. Wang, O. Kasian, M. Batuk, J. Hadermann, J.-J. Gallet, F. Bournel, N. Alonso-Vante, G. Ozouf, C. Beauger, K. J. J. Mayrhofer, S. Cherevko, A. S. Gago, K. A. Friedrich, S. Zafeiratos, E. R. Savinova, ACS Catal., 2020, 10, (4), 2508 LINK https://doi.org/10.1021/acscatal.9b04449 [Google Scholar]
  61. K. E. Ayers, J. N. Renner, N. Danilovic, J. X. Wang, Y. Zhang, R. Maric, H. Yu, Catal. Today, 2016, 262, 121 LINK https://doi.org/10.1016/j.cattod.2015.10.019 [Google Scholar]
  62. X. Xia, L. Figueroa-Cosme, J. Tao, H.-C. Peng, G. Niu, Y. Zhu, Y. Xia, J. Am. Chem. Soc., 2014, 136, (31), 10878 LINK https://doi.org/10.1021/ja505716v [Google Scholar]
  63. S. Siracusano, V. Baglio, S. A. Grigoriev, L. Merlo, V. N. Fateev, A. S. Aricò, J. Power Sources, 2017, 366, 105 LINK https://doi.org/10.1016/j.jpowsour.2017.09.020 [Google Scholar]
  64. B. M. Tackett, W. Sheng, S. Kattel, S. Yao, B. Yan, K. A. Kuttiyiel, Q. Wu, J. G. Chen, ACS Catal., 2018, 8, (3), 2615 LINK https://doi.org/10.1021/acscatal.7b04410 [Google Scholar]
  65. H. N. Nong, H.-S. Oh, T. Reier, E. Willinger, M.-G. Willinger, V. Petkov, D. Teschner, P. Strasser, Angew. Chem. Int. Ed., 2015, 54, (10), 2975 LINK https://doi.org/10.1002/anie.201411072 [Google Scholar]
  66. G. Jiang, H. Yu, Y. Li, D. Yao, J. Chi, S. Sun, Z. Shao, ACS Appl. Mater. Interfaces, 2021, 13, (13), 15073 LINK https://doi.org/10.1021/acsami.0c20791 [Google Scholar]
  67. K. C. Neyerlin, G. Bugosh, R. Forgie, Z. Liu, P. Strasser, J. Electrochem. Soc., 2009, 156, (3), B363 LINK https://doi.org/10.1149/1.3049820 [Google Scholar]
  68. S. Siracusano, N. Van Dijk, E. Payne-Johnson, V. Baglio, A. S. Aricò, Appl. Catal. B: Environ., 2015, 164, 488 LINK https://doi.org/10.1016/j.apcatb.2014.09.005 [Google Scholar]
  69. S. Siracusano, S. Trocino, N. Briguglio, F. Pantò, A. S. Aricò, J. Power Sources, 2020, 468, 228390 LINK https://doi.org/10.1016/j.jpowsour.2020.228390 [Google Scholar]
  70. L. Wang, V. A. Saveleva, S. Zafeiratos, E. R. Savinova, P. Lettenmeier, P. Gazdzicki, A. S. Gago, K. A. Friedrich, Nano Energy, 2017, 34, 385 LINK https://doi.org/10.1016/j.nanoen.2017.02.045 [Google Scholar]
  71. K. Kadakia, M. K. Datta, O. I. Velikokhatnyi, P. Jampani, S. K. Park, P. Saha, J. A. Poston, A. Manivannan, P. N. Kumta, Int. J. Hydrogen Energy, 2012, 37, (4), 3001 LINK https://doi.org/10.1016/j.ijhydene.2011.11.055 [Google Scholar]
  72. I. C. Man, H.-Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, J. Rossmeisl, ChemCatChem, 2011, 3, (7), 1159 LINK https://doi.org/10.1002/cctc.201000397 [Google Scholar]
  73. A. Eftekhari, Mater. Today Energy, 2017, 5, 37 LINK https://doi.org/10.1016/j.mtener.2017.05.002 [Google Scholar]
  74. J. Rossmeisl, Z.-W. Qu, H. Zhu, G.-J. Kroes, J. K. Nørskov, J. Electroanal. Chem., 2007, 607, (1–2), 83 LINK https://doi.org/10.1016/j.jelechem.2006.11.008 [Google Scholar]
  75. M. T. M. Koper, J. Electroanal. Chem., 2011, 660, (2), 254 LINK https://doi.org/10.1016/j.jelechem.2010.10.004 [Google Scholar]
  76. R. Tang, Y. Nie, J. K. Kawasaki, D.-Y. Kuo, G. Petretto, G. Hautier, G.-M. Rignanese, K. M. Shen, D. G. Schlom, J. Suntivich, J. Mater. Chem. A, 2016, 4, (18), 6831 LINK https://doi.org/10.1039/c5ta09530a [Google Scholar]
  77. L. Yang, G. Yu, X. Ai, W. Yan, H. Duan, W. Chen, X. Li, T. Wang, C. Zhang, X. Huang, J.-S. Chen, X. Zou, Nat. Commun., 2018, 9, 5236 LINK https://doi.org/10.1038/s41467-018-07678-w [Google Scholar]
  78. Z.-X. Lu, Y. Shi, P. Gupta, X. Min, H. Tan, Z.-D. Wang, C. Guo, Z. Zou, H. Yang, S. Mukerjee, C.-F. Yan, Electrochim. Acta, 2020, 348, 136302 LINK https://doi.org/10.1016/j.electacta.2020.136302 [Google Scholar]
  79. Q. Shi, C. Zhu, D. Du, J. Wang, H. Xia, M. H. Engelhard, S. Feng, Y. Lin, J. Mater. Chem. A, 2018, 6, (19), 8855 LINK https://doi.org/10.1039/c8ta01288a [Google Scholar]
  80. C. Zhao, H. Yu, Y. Li, X. Li, L. Ding, L. Fan, J. Electroanal. Chem., 2013, 688, 269 LINK https://doi.org/10.1016/j.jelechem.2012.08.032 [Google Scholar]
  81. K. A. Lewinski, D. van der Vliet, S. M. Luopa, ECS Trans., 2015, 69, (17), 893 LINK https://doi.org/10.1149/06917.0893ecst [Google Scholar]
  82. R. T. Atanasoski, L. L. Atanasoska, D. A. Cullen, G. M. Haugen, K. L. More, G. D. Vernstrom, Electrocatalysis, 2012, 3, (3–4), 284 LINK https://doi.org/10.1007/s12678-012-0092-3 [Google Scholar]
  83. A. W. Jensen, G. W. Sievers, K. D. Jensen, J. Quinson, J. A. Arminio-Ravelo, V. Brüser, M. Arenz, M. Escudero-Escribano, J. Mater. Chem. A, 2020, 8, (3), 1066 LINK https://doi.org/10.1039/c9ta12796h [Google Scholar]
  84. G. Mirshekari, R. Ouimet, Z. Zeng, H. Yu, S. Bliznakov, L. Bonville, A. Niedzwiecki, C. Capuano, K. Ayers, R. Maric, Int. J. Hydrogen Energy, 2021, 46, (2), 1526 LINK https://doi.org/10.1016/j.ijhydene.2020.10.112 [Google Scholar]
  85. H.-S. Oh, H. N. Nong, T. Reier, M. Gliech, P. Strasser, Chem. Sci., 2015, 6, (6), 3321 LINK https://doi.org/10.1039/c5sc00518c [Google Scholar]
  86. L. Wang, P. Lettenmeier, U. Golla-Schindler, P. Gazdzicki, N. A. Cañas, T. Morawietz, R. Hiesgen, S. S. Hosseiny, A. S. Gago, K. A. Friedrich, Phys. Chem. Chem. Phys., 2016, 18, (6), 4487 LINK https://doi.org/10.1039/c5cp05296c [Google Scholar]
  87. L. Solà-Hernández, F. Claudel, F. Maillard, C. Beauger, Int. J. Hydrogen Energy, 2019, 44, (45), 24331 LINK https://doi.org/10.1016/j.ijhydene.2019.07.152 [Google Scholar]
  88. A. B. Jorge, I. Dedigama, T. S. Miller, P. Shearing, D. J. L. Brett, P. F. McMillan, Nanomaterials, 2018, 8, (6), 432 LINK https://doi.org/10.3390/nano8060432 [Google Scholar]
  89. R. V. Genova-Koleva, F. Alcaide, G. Álvarez, P. L. Cabot, H.-J. Grande, M. V. Martínez-Huerta, O. Miguel, J. Energy Chem., 2019, 34, 227 LINK https://doi.org/10.1016/j.jechem.2019.03.008 [Google Scholar]
  90. Q. Xue, W. Gao, J. Zhu, R. Peng, Q. Xu, P. Chen, Y. Chen, J. Colloid Interface Sci., 2018, 529, 325 LINK https://doi.org/10.1016/j.jcis.2018.06.014 [Google Scholar]
  91. R. Badam, M. Hara, H.-H. Huang, M. Yoshimura, Int. J. Hydrogen Energy, 2018, 43, (39), 18095 LINK https://doi.org/10.1016/j.ijhydene.2018.08.034 [Google Scholar]
  92. R. E. Fuentes, J. Farell, J. W. Weidner, Electrochem. Solid-State Lett., 2011, 14, (3), E5 LINK https://doi.org/10.1149/1.3528163 [Google Scholar]
  93. M. García-Mota, A. Vojvodic, H. Metiu, I. C. Man, H.-Y. Su, J. Rossmeisl, J. K. Nørskov, ChemCatChem, 2011, 3, (10), 1607 LINK https://doi.org/10.1002/cctc.201100160 [Google Scholar]
  94. M. Aizawa, S. Lee, S. L. Anderson, Surf. Sci., 2003, 542, (3), 253 LINK https://doi.org/10.1016/S0039-6028(03)00984-1 [Google Scholar]
  95. F. C. Walsh, R. G. A. Wills, Electrochim. Acta, 2010, 55, (22), 6342 LINK https://doi.org/10.1016/j.electacta.2010.05.011 [Google Scholar]
  96. S.-S. Huang, Y.-H. Lin, W. Chuang, P.-S. Shao, C.-H. Chuang, J.-F. Lee, M.-L. Lu, Y.-T. Weng, N.-L. Wu, ACS Sustain. Chem. Eng., 2018, 6, (3), 3162 LINK https://doi.org/10.1021/acssuschemeng.7b03189 [Google Scholar]
  97. K. Huang, Y. Li, Y. Xing, J. Mater. Res., 2013, 28, (3), 454 LINK https://doi.org/10.1557/jmr.2012.353 [Google Scholar]
  98. A. Kitada, G. Hasegawa, Y. Kobayashi, K. Kanamori, K. Nakanishi, H. Kageyama, J. Am. Chem. Soc., 2012, 134, (26), 10894 LINK https://doi.org/10.1021/ja302083n [Google Scholar]
  99. M. P. Gurrola, J. Gutiérrez, S. Rivas, M. Guerra-Balcázar, J. Ledesma-García, L. G. Arriaga, Int. J. Hydrogen Energy, 2014, 39, (29), 16763 LINK https://doi.org/10.1016/j.ijhydene.2014.02.156 [Google Scholar]
  100. S.-B. Han, Y.-H. Mo, Y.-S. Lee, S.-G. Lee, D.-H. Park, K.-W. Park, Int. J. Hydrogen Energy, 2020, 45, (3), 1409 LINK https://doi.org/10.1016/j.ijhydene.2019.11.109 [Google Scholar]
  101. S. Geiger, O. Kasian, A. M. Mingers, K. J. J. Mayrhofer, S. Cherevko, Sci. Rep., 2017, 7, 4595 LINK https://doi.org/10.1038/s41598-017-04079-9 [Google Scholar]
  102. P. Mazúr, J. Polonský, M. Paidar, K. Bouzek, Int. J. Hydrogen Energy, 2012, 37, (17), 12081 LINK https://doi.org/10.1016/j.ijhydene.2012.05.129 [Google Scholar]
  103. Y.-C. Nah, I. Paramasivam, P. Schmuki, ChemPhysChem, 2010, 11, (13), 2698 LINK https://doi.org/10.1002/cphc.201000276 [Google Scholar]
  104. G. Garcia-Belmonte, V. Kytin, T. Dittrlch, J. Bisquert, J. Appl. Phys., 2003, 94, (8), 5261 LINK https://doi.org/10.1063/1.1610805 [Google Scholar]
  105. C. Rozain, E. Mayousse, N. Guillet, P. Millet, Appl. Catal. B: Environ., 2016, 182, 123 LINK http://doi.org/10.1016/j.apcatb.2015.09.011 [Google Scholar]
  106. J. Cheng, J. Yang, S. Kitano, G. Juhasz, M. Higashi, M. Sadakiyo, K. Kato, S. Yoshioka, T. Sugiyama, M. Yamauchi, N. Nakashima, ACS Catal., 2019, 9, (8), 6974 LINK https://doi.org/10.1021/acscatal.9b01438 [Google Scholar]
  107. A. Weiß, A. Siebel, M. Bernt, T.-H. Shen, V. Tileli, H. A. Gasteiger, J. Electrochem. Soc., 2019, 166, (8), F487 LINK https://doi.org/10.1149/2.0421908jes [Google Scholar]
  108. C. Hao, H. Lv, Q. Zhao, B. Li, C. Zhang, C. Mi, Y. Song, J. Ma, Int. J. Hydrogen Energy, 2017, 42, (15), 9384 LINK https://doi.org/10.1016/j.ijhydene.2017.02.131 [Google Scholar]
  109. C. Hao, H. Lv, C. Mi, Y. Song, J. Ma, ACS Sustain. Chem. Eng., 2016, 4, (3), 746 LINK https://doi.org/10.1021/acssuschemeng.5b00531 [Google Scholar]
  110. H. Lv, S. Wang, C. Hao, W. Zhou, J. Li, M. Xue, C. Zhang, ChemCatChem, 2019, 11, (10), 2511 LINK https://doi.org/10.1002/cctc.201900090 [Google Scholar]
  111. H. Lv, G. Zhang, C. Hao, C. Mi, W. Zhou, D. Yang, B. Li, C. Zhang, RSC Adv., 2017, 7, (64), 40427 LINK https://doi.org/10.1039/c7ra06534e [Google Scholar]
  112. H. Lv, J. Zuo, W. Zhou, X. Shen, B. Li, D. Yang, Y. Liu, L. Jin, C. Zhang, J. Electroanal. Chem., 2019, 833, 471 LINK https://doi.org/10.1016/j.jelechem.2018.12.008 [Google Scholar]
  113. W. Hu, S. Chen, Q. Xia, Int. J. Hydrogen Energy, 2014, 39, (13), 6967 LINK https://doi.org/10.1016/j.ijhydene.2014.02.114 [Google Scholar]
  114. S. Siracusano, V. Baglio, C. D’Urso, V. Antonucci, A. S. Aricò, Electrochim. Acta, 2009, 54, (26), 6292 LINK https://doi.org/10.1016/j.electacta.2009.05.094 [Google Scholar]
  115. G. Liu, J. Xu, Y. Wang, X. Wang, J. Mater. Chem. A, 2015, 3, (41), 20791 LINK https://doi.org/10.1039/c5ta02942b [Google Scholar]
  116. L. Wang, F. Song, G. Ozouf, D. Geiger, T. Morawietz, M. Handl, P. Gazdzicki, C. Beauger, U. Kaiser, R. Hiesgen, A. S. Gago, K. A. Friedrich, J. Mater. Chem. A, 2017, 5, (7), 3172 LINK https://doi.org/10.1039/c7ta00679a [Google Scholar]
  117. C. Spöri, J. T. H. Kwan, A. Bonakdarpour, D. P. Wilkinson, P. Strasser, Angew. Chem. Int. Ed., 2017, 56, (22), 5994 LINK https://doi.org/10.1002/anie.201608601 [Google Scholar]
  118. S. Wang, A. Lu, C.-J. Zhong, Nano Converg., 2021, 8, 4 LINK https://doi.org/10.1186/s40580-021-00254-x [Google Scholar]
  119. Z. Chen, L. Guo, L. Pan, T. Yan, Z. He, Y. Li, C. Shi, Z.-F. Huang, X. Zhang, J.-J. Zou, Adv. Energy Mater., 2022, 12, (14), 2103670 LINK https://doi.org/10.1002/aenm.202103670 [Google Scholar]
/content/journals/10.1595/205651323X16648726195503
Loading
/content/journals/10.1595/205651323X16648726195503
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test