Skip to content
Volume 67, Issue 3
  • ISSN: 2056-5135


Renewable and low-carbon hydrogen will contribute to a future climate-neutral economy as a fuel, clean energy carrier and feedstock. One of the main concerns when considering its production by the present proton exchange membrane water electrolysers (PEMWE) is the use of scarce and expensive noble metals as catalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), because they contribute to increase the cost of the technology. Several strategies have been developed to overcome this drawback, such as optimising the catalyst loading in the electrodes and alloying or using alternative catalyst supports, always with the aim to maintain or even increase electrolyser performance and durability. In this review, we examine the latest developments in HER and OER catalysts intended for practical PEMWE systems, which point in the short term to the use of platinum and iridium nanoparticles highly dispersed at low loadings on conductive non-carbon supports.


Article metrics loading...

Loading full text...

Full text loading...



  1. Bareiß K., de la Rua C., Möckl M., and Hamacher T. Appl. Energy, 2019, 237, 862 LINK [Google Scholar]
  2. Vesborg P. C. K., and Jaramillo T. F. RSC Adv., 2012, 2, (21), 7933 LINK [Google Scholar]
  3. Pudukudy M., Yaakob Z., Mohammad M., Narayanan B., and Sopian K. Renew. Sustain. Energy Rev., 2014, 30, 743 LINK [Google Scholar]
  4. Nikolaidis P., and Poullikkas A. Renew. Sustain. Energy Rev., 2017, 67, 597 LINK [Google Scholar]
  5. Naimi Y., Antar A., ‘Hydrogen Generation by Water Electrolysis’, in “Advances in Hydrogen Generation Technologies”, ed. and Eyvaz M. InTechOpen, London, UK, 2018, 18 pp LINK [Google Scholar]
  6. Santos D. M. F., Sequeira C. A. C., and Figueiredo J. L. Quim. Nova, 2013, 36, (8), 1176 LINK [Google Scholar]
  7. Berndt D., and Spahrbier D. ‘Batteries’, in “Ullmann’s Encyclopedia of Industrial Chemistry”, Wiley-VCH Verlag GmbH, Weinheim, Germany, 2005 [Google Scholar]
  8. Brauns J., and Turek T. Processes, 2020, 8, (2), 248 LINK [Google Scholar]
  9. Aricò A. S., Siracusano S., Briguglio N., Baglio V., Di A. Blasi, and Antonucci V. J. Appl. Electrochem., 2013, 43, (2), 107 LINK [Google Scholar]
  10. Sun X., Xu K., Fleischer C., Liu X., Grandcolas M., Strandbakke R., Bjørheim T. S., Norby T., and Chatzitakis A. Catalysts, 2018, 8, (12), 657 LINK [Google Scholar]
  11. Kusoglu A., and Weber A. Z. Chem. Rev., 2017, 117, (3), 987 LINK [Google Scholar]
  12. Millet P., Mbemba N., Grigoriev S. A., Fateev V. N., Aukauloo A., and Etiévant C. Int. J. Hydrogen Energy, 2011, 36, (6), 4134 LINK [Google Scholar]
  13. Suermann M., Bensmann B., and Hanke-Rauschenbach R. J. Electrochem. Soc., 2019, 166, (10), F645 LINK [Google Scholar]
  14. Shirvanian P., and van Berkel F. Electrochem. Commun., 2020, 114, 106704 LINK [Google Scholar]
  15. Holzapfel P., Bühler M., Van Pham C., Hegge F., Böhm T., McLaughlin D., Breitwieser M., and Thiele S. Electrochem. Commun., 2020, 110, 106640 LINK [Google Scholar]
  16. Reier T., Oezaslan M., and Strasser P. ACS Catal., 2012, 2, (8), 1765 LINK [Google Scholar]
  17. Kim T., Kim B., Kwon T., Kim H. Y., Kim J. Y., and Lee K. Mater. Chem. Front., 2021, 5, (12), 4445 LINK [Google Scholar]
  18. Ayers K., Danilovic N., Ouimet R., Carmo M., Pivovar B., and Bornstein M. Annu. Rev. Chem. Biomol. Eng., 2019, 10, 219 LINK [Google Scholar]
  19. Klose C., Trinke P., Böhm T., Bensmann B., Vierrath S., Hanke-Rauschenbach R., and Thiele S. J. Electrochem. Soc., 2018, 165, (16), F1271 LINK [Google Scholar]
  20. Hu J., Luo J., Wagner P., Conrad O., and Agert C. Electrochem. Commun., 2009, 11, (12), 2324 LINK [Google Scholar]
  21. Feng Q., Yuan X.-Z., Liu G., Wei B., Zhang Z., Li H., and Wang H. J. Power Sources, 2017, 366, 33 LINK [Google Scholar]
  22. Bühler M., Hegge F., Holzapfel P., Bierling M., Suermann M., Vierrath S., and Thiele S. J. Mater. Chem. A, 2019, 7, (47), 26984 LINK [Google Scholar]
  23. Stähler M., Stähler A., Scheepers F., Carmo M., and Stolten D. Int. J. Hydrogen Energy, 2019, 44, (14), 7053 LINK [Google Scholar]
  24. Bernt M., and Gasteiger H. A. J. Electrochem. Soc., 2016, 163, (11), F3179 LINK [Google Scholar]
  25. Bernt M., Siebel A., and Gasteiger H. A. J. Electrochem. Soc., 2018, 165, (5), F305 LINK [Google Scholar]
  26. Stähler M., Stähler A., Scheepers F., Carmo M., Lehnert W., and Stolten D. Int. J. Hydrogen Energy, 2020, 45, (7), 4008 LINK [Google Scholar]
  27. Bajdich M., García-Mota M., Vojvodic A., Nørskov J. K., and Bell A. T. J. Am. Chem. Soc., 2013, 135, (36), 13521 LINK [Google Scholar]
  28. Kumar S. S., and Himabindu V. Mater. Sci. Energy Technol., 2019, 2, (3), 442 LINK [Google Scholar]
  29. Kumar S. S., and Himabindu V. Renew. Energy, 2020, 146, 2281 LINK [Google Scholar]
  30. Kang Z., Yang G., Mo J., Li Y., Yu S., Cullen D. A., Retterer S. T., Toops T. J., Bender G., Pivovar B. S., Green J. B., and Zhang F.-Y. Nano Energy, 2018, 47, 434 LINK [Google Scholar]
  31. Carmo M., Fritz D. L., Mergel J., and Stolten D. Int. J. Hydrogen Energy, 2013, 38, (12), 4901 LINK [Google Scholar]
  32. Grigoriev S. A., and Kalinnikov A. A. Int. J. Hydrogen Energy, 2017, 42, (3), 1590 LINK [Google Scholar]
  33. Grigoriev S. A., Mamat M. S., Dzhus K. A., Walker G. S., and Millet P. Int. J. Hydrogen Energy, 2011, 36, (6), 4143 LINK [Google Scholar]
  34. Tavakkoli M., Holmberg N., Kronberg R., Jiang H., Sainio J., Kauppinen E. I., Kallio T., and Laasonen K. ACS Catal., 2017, 7, (5), 3121 LINK [Google Scholar]
  35. Rajala T., Kronberg R., Backhouse R., Buan M. E. M., Tripathi M., Zitolo A., Jiang H., Laasonen K., Susi T., Jaouen F., and Kallio T. Appl. Catal. B: Environ., 2020, 265, 118582 LINK [Google Scholar]
  36. Sheng W., Gasteiger H. A., and Shao-Horn Y. J. Electrochem. Soc., 2010, 157, (11), B1529 LINK [Google Scholar]
  37. Zalitis C. M., Kramer D., and Kucernak A. R. Phys. Chem. Chem. Phys., 2013, 15, (12), 4329 LINK [Google Scholar]
  38. Price E. Johnson Matthey Technol. Rev., 2017, 61, (1), 47 LINK [Google Scholar]
  39. Trinke P., Bensmann B., and Hanke-Rauschenbach R. Electrochem. Commun., 2017, 82, 98 LINK [Google Scholar]
  40. Chandesris M., Médeau V., Guillet N., Chelghoum S., Thoby D., and Fouda-Onana F. Int. J. Hydrogen Energy, 2015, 40, (3), 1353 LINK [Google Scholar]
  41. Franco A. A., and Gerard M. J. Electrochem. Soc., 2008, 155, (4), B367 LINK [Google Scholar]
  42. Chen X., and Mao S. S. Chem. Rev., 2007, 107, (7), 2891 LINK [Google Scholar]
  43. Shi Y., Guo L., Lu Z., Wang Z., Gan Y., Guo C., Tan H., and Yan C. Energy Technol., 2019, 7, (5), 1800781 LINK [Google Scholar]
  44. Wang X., Yuan X., Liu X., Dong W., Dong C., Lou M., Li J., Lin T., and Huang F. J. Alloys Compd., 2017, 701, 669 LINK [Google Scholar]
  45. Alcaide F., Genova R. V., Álvarez G., Grande H.-J., Miguel Ó., and Cabot P. L. Int. J. Hydrogen Energy, 2020, 45, (40), 20605 LINK [Google Scholar]
  46. Shi G., Yano H., Tryk D. A., Nohara S., and Uchida H. Phys. Chem. Chem. Phys., 2019, 21, (6), 2861 LINK [Google Scholar]
  47. Li C., and Baek J.-B. ACS Omega, 2020, 5, (1), 31 LINK [Google Scholar]
  48. Cheng N., Stambula S., Wang D., Banis M. N., Liu J., Riese A., Xiao B., Li R., Sham T.-K., Liu L.-M., Botton G. A., and Sun X. Nat. Commun., 2016, 7, 13638 LINK [Google Scholar]
  49. Fabbri E., and Schmidt T. J. ACS Catal., 2018, 8, (10), 9765 LINK [Google Scholar]
  50. Suen N.-T., Hung S.-F., Quan Q., Zhang N., Xu Y.-J., and Chen H. M. Chem. Soc. Rev., 2017, 46, (2), 337 LINK [Google Scholar]
  51. Trasatti S. Electrochim. Acta, 1984, 29, (11), 1503 LINK [Google Scholar]
  52. Park S., Shao Y., Liu J., and Wang Y. Energy Environ. Sci., 2012, 5, (11), 9331 LINK [Google Scholar]
  53. Cherevko S., Geiger S., Kasian O., Kulyk N., Grote J.-P., Savan A., Shrestha B. R., Merzlikin S., Breitbach B., Ludwig A., and Mayrhofer K. J. J. Catal. Today, 2016, 262, 170 LINK [Google Scholar]
  54. Bernt M., Hartig-Weiß A., Tovini M. F., El-Sayed H. A., Schramm C., Schröter J., Gebauer C., and Gasteiger H. A. Chem. Ing. Tech., 2020, 92, (1–2), 31 LINK [Google Scholar]
  55. Iwakura C., Hirao K., and Tamura H. Electrochim. Acta, 1977, 22, (4), 329 LINK [Google Scholar]
  56. Paoli E. A., Masini F., Frydendal R., Deiana D., Schlaup C., Malizia M., Hansen T. W., Horch S., Stephens I. E. L., and Chorkendorff I. Chem. Sci., 2015, 6, (1), 190 LINK [Google Scholar]
  57. Escudero-Escribano M., Pedersen A. F., Paoli E. A., Frydendal R., Friebel D., Malacrida P., Rossmeisl J., Stephens I. E. L., and Chorkendorff I. J. Phys. Chem. B, 2018, 122, (2), 947 LINK [Google Scholar]
  58. Danilovic N., Subbaraman R., Chang K.-C., Chang S. H., Kang Y. J., Snyder J., Paulikas A. P., Strmcnik D., Kim Y.-T., Myers D., Stamenkovic V. R., and Markovic N. M. J. Phys. Chem. Lett., 2014, 5, (14), 2427 LINK [Google Scholar]
  59. Kötz R., and Stucki S. Electrochim. Acta, 1986, 31, (10), 1311 LINK [Google Scholar]
  60. Saveleva V. A., Wang L., Kasian O., Batuk M., Hadermann J., Gallet J.-J., Bournel F., Alonso-Vante N., Ozouf G., Beauger C., Mayrhofer K. J. J., Cherevko S., Gago A. S., Friedrich K. A., Zafeiratos S., and Savinova E. R. ACS Catal., 2020, 10, (4), 2508 LINK [Google Scholar]
  61. Ayers K. E., Renner J. N., Danilovic N., Wang J. X., Zhang Y., Maric R., and Yu H. Catal. Today, 2016, 262, 121 LINK [Google Scholar]
  62. Xia X., Figueroa-Cosme L., Tao J., Peng H.-C., Niu G., Zhu Y., and Xia Y. J. Am. Chem. Soc., 2014, 136, (31), 10878 LINK [Google Scholar]
  63. Siracusano S., Baglio V., Grigoriev S. A., Merlo L., Fateev V. N., and Aricò A. S. J. Power Sources, 2017, 366, 105 LINK [Google Scholar]
  64. Tackett B. M., Sheng W., Kattel S., Yao S., Yan B., Kuttiyiel K. A., Wu Q., and Chen J. G. ACS Catal., 2018, 8, (3), 2615 LINK [Google Scholar]
  65. Nong H. N., Oh H.-S., Reier T., Willinger E., Willinger M.-G., Petkov V., Teschner D., and Strasser P. Angew. Chem. Int. Ed., 2015, 54, (10), 2975 LINK [Google Scholar]
  66. Jiang G., Yu H., Li Y., Yao D., Chi J., Sun S., and Shao Z. ACS Appl. Mater. Interfaces, 2021, 13, (13), 15073 LINK [Google Scholar]
  67. Neyerlin K. C., Bugosh G., Forgie R., Liu Z., and Strasser P. J. Electrochem. Soc., 2009, 156, (3), B363 LINK [Google Scholar]
  68. Siracusano S., Van Dijk N., Payne-Johnson E., Baglio V., and Aricò A. S. Appl. Catal. B: Environ., 2015, 164, 488 LINK [Google Scholar]
  69. Siracusano S., Trocino S., Briguglio N., Pantò F., and Aricò A. S. J. Power Sources, 2020, 468, 228390 LINK [Google Scholar]
  70. Wang L., Saveleva V. A., Zafeiratos S., Savinova E. R., Lettenmeier P., Gazdzicki P., Gago A. S., and Friedrich K. A. Nano Energy, 2017, 34, 385 LINK [Google Scholar]
  71. Kadakia K., Datta M. K., Velikokhatnyi O. I., Jampani P., Park S. K., Saha P., Poston J. A., Manivannan A., and Kumta P. N. Int. J. Hydrogen Energy, 2012, 37, (4), 3001 LINK [Google Scholar]
  72. Man I. C., Su H.-Y., Calle-Vallejo F., Hansen H. A., Martínez J. I., Inoglu N. G., Kitchin J., Jaramillo T. F., Nørskov J. K., and Rossmeisl J. ChemCatChem, 2011, 3, (7), 1159 LINK [Google Scholar]
  73. Eftekhari A. Mater. Today Energy, 2017, 5, 37 LINK [Google Scholar]
  74. Rossmeisl J., Qu Z.-W., Zhu H., Kroes G.-J., and Nørskov J. K. J. Electroanal. Chem., 2007, 607, (1–2), 83 LINK [Google Scholar]
  75. Koper M. T. M. J. Electroanal. Chem., 2011, 660, (2), 254 LINK [Google Scholar]
  76. Tang R., Nie Y., Kawasaki J. K., Kuo D.-Y., Petretto G., Hautier G., Rignanese G.-M., Shen K. M., Schlom D. G., and Suntivich J. J. Mater. Chem. A, 2016, 4, (18), 6831 LINK [Google Scholar]
  77. Yang L., Yu G., Ai X., Yan W., Duan H., Chen W., Li X., Wang T., Zhang C., Huang X., Chen J.-S., and Zou X. Nat. Commun., 2018, 9, 5236 LINK [Google Scholar]
  78. Lu Z.-X., Shi Y., Gupta P., Min X., Tan H., Wang Z.-D., Guo C., Zou Z., Yang H., Mukerjee S., and Yan C.-F. Electrochim. Acta, 2020, 348, 136302 LINK [Google Scholar]
  79. Shi Q., Zhu C., Du D., Wang J., Xia H., Engelhard M. H., Feng S., and Lin Y. J. Mater. Chem. A, 2018, 6, (19), 8855 LINK [Google Scholar]
  80. Zhao C., Yu H., Li Y., Li X., Ding L., and Fan L. J. Electroanal. Chem., 2013, 688, 269 LINK [Google Scholar]
  81. Lewinski K. A., van der Vliet D., and Luopa S. M. ECS Trans., 2015, 69, (17), 893 LINK [Google Scholar]
  82. Atanasoski R. T., Atanasoska L. L., Cullen D. A., Haugen G. M., More K. L., and Vernstrom G. D. Electrocatalysis, 2012, 3, (3–4), 284 LINK [Google Scholar]
  83. Jensen A. W., Sievers G. W., Jensen K. D., Quinson J., Arminio-Ravelo J. A., Brüser V., Arenz M., and Escudero-Escribano M. J. Mater. Chem. A, 2020, 8, (3), 1066 LINK [Google Scholar]
  84. Mirshekari G., Ouimet R., Zeng Z., Yu H., Bliznakov S., Bonville L., Niedzwiecki A., Capuano C., Ayers K., and Maric R. Int. J. Hydrogen Energy, 2021, 46, (2), 1526 LINK [Google Scholar]
  85. Oh H.-S., Nong H. N., Reier T., Gliech M., and Strasser P. Chem. Sci., 2015, 6, (6), 3321 LINK [Google Scholar]
  86. Wang L., Lettenmeier P., Golla-Schindler U., Gazdzicki P., Cañas N. A., Morawietz T., Hiesgen R., Hosseiny S. S., Gago A. S., and Friedrich K. A. Phys. Chem. Chem. Phys., 2016, 18, (6), 4487 LINK [Google Scholar]
  87. Solà-Hernández L., Claudel F., Maillard F., and Beauger C. Int. J. Hydrogen Energy, 2019, 44, (45), 24331 LINK [Google Scholar]
  88. Jorge A. B., Dedigama I., Miller T. S., Shearing P., Brett D. J. L., and McMillan P. F. Nanomaterials, 2018, 8, (6), 432 LINK [Google Scholar]
  89. Genova-Koleva R. V., Alcaide F., Álvarez G., Cabot P. L., Grande H.-J., Martínez-Huerta M. V., and Miguel O. J. Energy Chem., 2019, 34, 227 LINK [Google Scholar]
  90. Xue Q., Gao W., Zhu J., Peng R., Xu Q., Chen P., and Chen Y. J. Colloid Interface Sci., 2018, 529, 325 LINK [Google Scholar]
  91. Badam R., Hara M., Huang H.-H., and Yoshimura M. Int. J. Hydrogen Energy, 2018, 43, (39), 18095 LINK [Google Scholar]
  92. Fuentes R. E., Farell J., and Weidner J. W. Electrochem. Solid-State Lett., 2011, 14, (3), E5 LINK [Google Scholar]
  93. García-Mota M., Vojvodic A., Metiu H., Man I. C., Su H.-Y., Rossmeisl J., and Nørskov J. K. ChemCatChem, 2011, 3, (10), 1607 LINK [Google Scholar]
  94. Aizawa M., Lee S., and Anderson S. L. Surf. Sci., 2003, 542, (3), 253 LINK [Google Scholar]
  95. Walsh F. C., and Wills R. G. A. Electrochim. Acta, 2010, 55, (22), 6342 LINK [Google Scholar]
  96. Huang S.-S., Lin Y.-H., Chuang W., Shao P.-S., Chuang C.-H., Lee J.-F., Lu M.-L., Weng Y.-T., and Wu N.-L. ACS Sustain. Chem. Eng., 2018, 6, (3), 3162 LINK [Google Scholar]
  97. Huang K., Li Y., and Xing Y. J. Mater. Res., 2013, 28, (3), 454 LINK [Google Scholar]
  98. Kitada A., Hasegawa G., Kobayashi Y., Kanamori K., Nakanishi K., and Kageyama H. J. Am. Chem. Soc., 2012, 134, (26), 10894 LINK [Google Scholar]
  99. Gurrola M. P., Gutiérrez J., Rivas S., Guerra-Balcázar M., Ledesma-García J., and Arriaga L. G. Int. J. Hydrogen Energy, 2014, 39, (29), 16763 LINK [Google Scholar]
  100. Han S.-B., Mo Y.-H., Lee Y.-S., Lee S.-G., Park D.-H., and Park K.-W. Int. J. Hydrogen Energy, 2020, 45, (3), 1409 LINK [Google Scholar]
  101. Geiger S., Kasian O., Mingers A. M., Mayrhofer K. J. J., and Cherevko S. Sci. Rep., 2017, 7, 4595 LINK [Google Scholar]
  102. Mazúr P., Polonský J., Paidar M., and Bouzek K. Int. J. Hydrogen Energy, 2012, 37, (17), 12081 LINK [Google Scholar]
  103. Nah Y.-C., Paramasivam I., and Schmuki P. ChemPhysChem, 2010, 11, (13), 2698 LINK [Google Scholar]
  104. Garcia-Belmonte G., Kytin V., Dittrlch T., and Bisquert J. J. Appl. Phys., 2003, 94, (8), 5261 LINK [Google Scholar]
  105. Rozain C., Mayousse E., Guillet N., and Millet P. Appl. Catal. B: Environ., 2016, 182, 123 LINK [Google Scholar]
  106. Cheng J., Yang J., Kitano S., Juhasz G., Higashi M., Sadakiyo M., Kato K., Yoshioka S., Sugiyama T., Yamauchi M., and Nakashima N. ACS Catal., 2019, 9, (8), 6974 LINK [Google Scholar]
  107. Weiß A., Siebel A., Bernt M., Shen T.-H., Tileli V., and Gasteiger H. A. J. Electrochem. Soc., 2019, 166, (8), F487 LINK [Google Scholar]
  108. Hao C., Lv H., Zhao Q., Li B., Zhang C., Mi C., Song Y., and Ma J. Int. J. Hydrogen Energy, 2017, 42, (15), 9384 LINK [Google Scholar]
  109. Hao C., Lv H., Mi C., Song Y., and Ma J. ACS Sustain. Chem. Eng., 2016, 4, (3), 746 LINK [Google Scholar]
  110. Lv H., Wang S., Hao C., Zhou W., Li J., Xue M., and Zhang C. ChemCatChem, 2019, 11, (10), 2511 LINK [Google Scholar]
  111. Lv H., Zhang G., Hao C., Mi C., Zhou W., Yang D., Li B., and Zhang C. RSC Adv., 2017, 7, (64), 40427 LINK [Google Scholar]
  112. Lv H., Zuo J., Zhou W., Shen X., Li B., Yang D., Liu Y., Jin L., and Zhang C. J. Electroanal. Chem., 2019, 833, 471 LINK [Google Scholar]
  113. Hu W., Chen S., and Xia Q. Int. J. Hydrogen Energy, 2014, 39, (13), 6967 LINK [Google Scholar]
  114. Siracusano S., Baglio V., D’Urso C., Antonucci V., and Aricò A. S. Electrochim. Acta, 2009, 54, (26), 6292 LINK [Google Scholar]
  115. Liu G., Xu J., Wang Y., and Wang X. J. Mater. Chem. A, 2015, 3, (41), 20791 LINK [Google Scholar]
  116. Wang L., Song F., Ozouf G., Geiger D., Morawietz T., Handl M., Gazdzicki P., Beauger C., Kaiser U., Hiesgen R., Gago A. S., and Friedrich K. A. J. Mater. Chem. A, 2017, 5, (7), 3172 LINK [Google Scholar]
  117. Spöri C., Kwan J. T. H., Bonakdarpour A., Wilkinson D. P., and Strasser P. Angew. Chem. Int. Ed., 2017, 56, (22), 5994 LINK [Google Scholar]
  118. Wang S., Lu A., and Zhong C.-J. Nano Converg., 2021, 8, 4 LINK [Google Scholar]
  119. Chen Z., Guo L., Pan L., Yan T., He Z., Li Y., Shi C., Huang Z.-F., Zhang X., and Zou J.-J. Adv. Energy Mater., 2022, 12, (14), 2103670 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error