Skip to content
1887
Volume 68, Issue 1
  • ISSN: 2056-5135

Abstract

State-of-the-art proton exchange membrane (PEM) electrolysers employ iridium-based catalysts to facilitate oxygen evolution at the anode. To enable scale-up of the technology to the terawatt level, further improvements in the iridium utilisation are needed, without incurring additional overpotential losses or reducing the device lifetime. The research community has only recently started to attempt systematic benchmarking of catalyst stability. Short term electrochemical methods alone are insufficient to predict catalyst degradation; they can both underestimate and overestimate catalyst durability. Complementary techniques, such as inductively coupled plasma-mass spectrometry (ICP-MS), are required to provide more reliable assessment of the amount of catalyst lost through dissolution. In Part I, we critically review the state of the art in probing degradation of iridium-based oxide catalysts.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16848455435118
2023-05-23
2024-07-10
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/1/Murawski_16a_Imp-pt1.html?itemId=/content/journals/10.1595/205651323X16848455435118&mimeType=html&fmt=ahah

References

  1. ‘Hydrogen for Net-Zero: A Critical Cost-Competitive Energy Vector’, Hydrogen Council, Brussels, Belgium, McKinsey & Company, New York, USA, November, 2021, 56 pp LINK https://hydrogencouncil.com/wp-content/uploads/2021/11/hydrogen-for-net-zero.pdf [Google Scholar]
  2. “Green Hydrogen: A Guide to Policy Making”, IRENA (International Renewable Energy Agency), Abu Dhabi, United Arab Emiriates, 2020, 52 pp LINK https://www.irena.org/publications/2020/Nov/Green-hydrogen [Google Scholar]
  3. “Hydrogen-Powered Aviation: A Fact-Based Study of Hydrogen Technology, Economics, and Climate Impact by 2050”, Clean Sky 2 JU, Brussels, Belguim, Fuel Cells and Hydrogen Join Undertaking (CBH 2 JU), Brussels, Belguim, 2020, 96 pp LINK https://doi.org/10.2843/766989 [Google Scholar]
  4. Pawelec G., and Fonseca J. “Steel From Solar Energy: A Techno-Economic Assessment of Green Steel Manufacturing”, Hydrogen Europe, Brussels, Belgium, 2022, 90 pp LINK https://hydrogeneurope.eu/wp-content/uploads/2022/06/Steel_from_Solar_Energy_Report_05-2022_DIGITAL.pdf [Google Scholar]
  5. Mazloomi K., and Gomes C. Renew. Sustain. Energy Rev., 2012, 16, (5), 3024 LINK https://doi.org/10.1016/j.rser.2012.02.028 [Google Scholar]
  6. ‘HyDeploy Project: Gas Network Innovation Competition: Cadent Second Project Progress Report (PPR)’, HyDeploy, Keele University, Keele, UK, December, 2018, 28 pp LINK https://hydeploy.co.uk/app/uploads/2018/12/15055_HD_PH2_PROJECT_REPORT_v2.pdf [Google Scholar]
  7. Bertuccioli L., Chan A., Hart D., Lehner F., Madden B., and Standen E. “Development of Water Electrolysis in the European Union”, Fuel Cells and Hydrogen Joint Undertaking, Institution of Gas Engineers and Managers, Brussels, Belgium, 2014 [Google Scholar]
  8. Voldsund M., Jordal K., and Anantharaman R. Int. J. Hydrogen Energy, 2016, 41, (9), 4969 LINK https://doi.org/10.1016/j.ijhydene.2016.01.009 [Google Scholar]
  9. Vesborg P. C. K., and Jaramillo T. F. RSC Adv., 2012, 2, (21), 7933 LINK https://doi.org/10.1039/c2ra20839c [Google Scholar]
  10. Ayers K., Danilovic N., Ouimet R., Carmo M., Pivovar B., and Bornstein M. Annu. Rev. Chem. Biomol. Eng., 2019, 10, 219 LINK https://doi.org/10.1146/annurev-chembioeng-060718-030241 [Google Scholar]
  11. Babic U., Suermann M., Büchi F. N., Gubler L., and Schmidt T. J. J. Electrochem. Soc., 2017, 164, (4), F 387 LINK https://doi.org/10.1149/2.1441704jes [Google Scholar]
  12. Ayers K. Curr. Opin. Chem. Eng., 2021, 33, 100719 LINK https://doi.org/10.1016/j.coche.2021.100719 [Google Scholar]
  13. Geiger S., Kasian O., Shrestha B. R., Mingers A. M., Mayrhofer K. J. J., and Cherevko S. J. Electrochem. Soc., 2016, 163, (11), F3132 LINK https://doi.org/10.1149/2.0181611jes [Google Scholar]
  14. Ayers K. E., Dalton L. T., and Anderson E. B. ECS Trans., 2012, 41, (33), 27 LINK https://doi.org/10.1149/1.3702410 [Google Scholar]
  15. Cherevko S., Zeradjanin A. R., Topalov A. A., Kulyk N., Katsounaros I., and Mayrhofer K. J. J. ChemCatChem, 2014, 6, (8), 2219 LINK https://doi.org/10.1002/cctc.201402194 [Google Scholar]
  16. Cherevko S., Geiger S., Kasian O., Kulyk N., Grote J.-P., Savan A., Shrestha B. R., Merzlikin S., Breitbach B., Ludwig A., and Mayrhofer K. J. J. Catal. Today, 2016, 262, 170 LINK https://doi.org/10.1016/j.cattod.2015.08.014 [Google Scholar]
  17. Bloxham L., Brown S., Cole L., Cowley A., Fujita M., Girardot N., Jiang J., Ryan M., Tang B., and Wang A. “PGM Market Report”, Johnson Matthey Plc, London, UK, May, 2022, 60 pp LINK https://matthey.com/documents/161599/509428/PGM-market-report-May-2022.pdf/542bcada-f4ac-a673-5f95-ad1bbfca5106 [Google Scholar]
  18. Clapp M., Zalitis C. M., and Ryan M. Catal. Today, 2023, 420, 114140 LINK https://doi.org/10.1016/j.cattod.2023.114140 [Google Scholar]
  19. Bernt M., Siebel A., and Gasteiger H. A. J. Electrochem. Soc., 2018, 165, (5), F305 LINK https://doi.org/10.1149/2.0641805jes [Google Scholar]
  20. Nilsson A., Stephens I., Latimer A., and Dickens C. F. ‘Sustainable N2 Reduction’, in “Research Needs Towards Sustainable Production of Fuels and Chemicals”, eds. Energy-X, San Juan, Puerto Rico, 2019, pp. 4959 [Google Scholar]
  21. Alia S. M., Stariha S., and Borup R. L. J. Electrochem. Soc., 2019, 166, (15), F1164 LINK https://doi.org/10.1149/2.0231915jes [Google Scholar]
  22. Knöppel J., Möckl M., Escalera-López D., Stojanovski K., Bierling M., Böhm T., Thiele S., Rzepka M., and Cherevko S. Nat. Commun., 2021, 12, 2231 LINK https://doi.org/10.1038/s41467-021-22296-9 [Google Scholar]
  23. Lazaridis T., Stühmeier B. M., Gasteiger H. A., and El-Sayed H. A. Nat. Catal., 2022, 5, (5), 363 LINK https://doi.org/10.1038/s41929-022-00776-5 [Google Scholar]
  24. Hartig-Weiss A., Tovini M. F., Gasteiger H. A., and El-Sayed H. A. ACS Appl. Energy Mater., 2020, 3, (11), 10323 LINK https://doi.org/10.1021/acsaem.0c01944 [Google Scholar]
  25. El-Sayed H. A., Weiß A., Olbrich L. F., Putro G. P., and Gasteiger H. A. J. Electrochem. Soc., 2019, 166, (8), F458 LINK https://doi.org/10.1149/2.0301908jes [Google Scholar]
  26. Ehelebe K., Escalera-López D., and Cherevko S. Curr. Opin. Electrochem., 2021, 29, 100832 LINK https://doi.org/10.1016/j.coelec.2021.100832 [Google Scholar]
  27. Grote J.-P., Zeradjanin A. R., Cherevko S., and Mayrhofer K. J. J. Rev. Sci. Instrum., 2014, 85, (10), 104101 LINK https://doi.org/10.1063/1.4896755 [Google Scholar]
  28. Geiger S., Kasian O., Ledendecker M., Pizzutilo E., Mingers A. M., Fu W. T., Diaz-Morales O., Li Z., Oellers T., Fruchter L., Ludwig A., Mayrhofer K. J. J., Koper M. T. M., and Cherevko S. Nat. Catal., 2018, 1, (7), 508 LINK https://doi.org/10.1038/s41929-018-0085-6 [Google Scholar]
  29. Tovini M. F., Hartig-Weiß A., Gasteiger H. A., and El-Sayed H. A. J. Electrochem. Soc., 2021, 168, (1), 014512 LINK https://doi.org/10.1149/1945-7111/abdcc9 [Google Scholar]
  30. Kumar A. K. S., Zhang Y., Li D., and Compton R. G. Electrochem. Commun., 2020, 121, 106867 LINK https://doi.org/10.1016/j.elecom.2020.106867 [Google Scholar]
  31. Pivovar B., Ruth M., and Ahluwalia R. ‘H2NEW: Hydrogen (H2) from Next-generation Electrolyzers of Water LTE Task 3c : System and Techno-Economic Analysis’, DOE Hydrogen Program Project ID No. P196D, Annual Merit Review and Peer Evaluation Meeting, 6th–8th June, 2022, National Renewable Energy Laboratory, Golden, USA, 2nd June, 2022 LINK https://www.nrel.gov/docs/fy23osti/82706.pdf [Google Scholar]
  32. Weiß A., Siebel A., Bernt M., Shen T.-H., Tileli V., and Gasteiger H. A. J. Electrochem. Soc., 2019, 166, (8), F487 LINK https://doi.org/10.1149/2.0421908jes [Google Scholar]
  33. Brightman E., Dodwell J., van Dijk N., and Hinds G. Electrochem. Commun., 2015, 52, 1 LINK https://doi.org/10.1016/j.elecom.2015.01.005 [Google Scholar]
  34. Bernt M., and Gasteiger H. A. J. Electrochem. Soc., 2016, 163, (11), F3179 LINK https://doi.org/10.1149/2.0231611jes [Google Scholar]
  35. Alia S. M., and Anderson G. C. J. Electrochem. Soc., 2019, 166, (4), F282 LINK https://doi.org/10.1149/2.0731904jes [Google Scholar]
  36. Alia S. M., Ha M.-A., Anderson G. C., Ngo C., Pylypenko S., and Larsen R. E. J. Electrochem. Soc., 2019, 166, (15), F1243 LINK https://doi.org/10.1149/2.0771915jes [Google Scholar]
  37. Möckl M., Ernst M. F., Kornherr M., Allebrod F., Bernt M., Byrknes J., Eickes C., Gebauer C., Moskovtseva A., and Gasteiger H. A. J. Electrochem. Soc., 2022, 169, (6), 064505 LINK https://doi.org/10.1149/1945-7111/ac6d14 [Google Scholar]
  38. Yu H., Bonville L., Jankovic J., and Maric R. Appl. Catal. B: Environ., 2020, 260, 118194 LINK https://doi.org/10.1016/j.apcatb.2019.118194 [Google Scholar]
  39. Martelli G. N., Ornelas R., and Faita G. Electrochim. Acta, 1994, 39, (11–12), 1551 LINK https://doi.org/10.1016/0013-4686(94)85134-4 [Google Scholar]
  40. Liu C. ‘Noble Metal Coated Porous Transport Layers for Polymer Electrolyte Membrane Water Electrolysis’, PhD Thesis, Faculty of Mechanical Engineering, Rhenish-Westphalian Technical University, Aachen, Germany, 2021, 149 pp [Google Scholar]
  41. Rakousky C., Reimer U., Wippermann K., Carmo M., Lueke W., and Stolten D. J. Power Sources, 2016, 326, 120 LINK https://doi.org/10.1016/j.jpowsour.2016.06.082 [Google Scholar]
  42. Durst J., Simon C., Hasché F., and Gasteiger H. A. J. Electrochem. Soc., 2014, 162, (1), F190 LINK https://doi.org/10.1149/2.0981501jes [Google Scholar]
  43. Alia S. M., Reeves K. S., Yu H., Park J., Kariuki N., Kropf A. J., Myers D. J., and Cullen D. A. J. Electrochem. Soc., 2022, 169, (5), 054517 LINK https://doi.org/10.1149/1945-7111/ac697e [Google Scholar]
  44. Reier T., Nong H. N., Teschner D., Schlögl R., and Strasser P. Adv. Energy Mater., 2016, 7, (1), 1601275 LINK https://doi.org/10.1002/aenm.201601275 [Google Scholar]
  45. Spöri C., Kwan J. T. H., Bonakdarpour A., Wilkinson D. P., and Strasser P. Angew. Chem. Int. Ed., 2017, 56, (22), 5994 LINK https://doi.org/10.1002/anie.201608601 [Google Scholar]
  46. Kasian O., Grote J.-P., Geiger S., Cherevko S., and Mayrhofer K. J. J. Angew. Chem. Int. Ed., 2018, 57, (9), 2488 LINK https://doi.org/10.1002/anie.201709652 [Google Scholar]
  47. Bozal-Ginesta C., Rao R. R., Mesa C. A., Wang Y., Zhao Y., Hu G., Antón-García D., Stephens I. E. L., Reisner E., Brudvig G. W., Wang D., and Durrant J. R. J. Am. Chem. Soc., 2022, 144, (19), 8454 LINK https://doi.org/10.1021/jacs.2c02006 [Google Scholar]
  48. Sheehan S. W., Thomsen J. M., Hintermair U., Crabtree R. H., Brudvig G. W., and Schmuttenmaer C. A. Nat. Commun., 2015, 6, 6469 LINK https://doi.org/10.1038/ncomms7469 [Google Scholar]
  49. Ledendecker M., Geiger S., Hengge K., Lim J., Cherevko S., Mingers A. M., Göhl D., Fortunato G. V, Jalalpoor D., Schüth F., Scheu C., and Mayrhofer K. J. J. Nano Res., 2019, 12, (9), 2275 LINK https://doi.org/10.1007/s12274-019-2383-y [Google Scholar]
  50. Seitz L. C., Dickens C. F., Nishio K., Hikita Y., Montoya J., Doyle A., Kirk C., Vojvodic A., Hwang H. Y., Norskov J. K., and Jaramillo T. F. Science, 2016, 353, (6303), 1011 LINK https://doi.org/10.1126/science.aaf5050 [Google Scholar]
  51. Grimaud A., Demortière A., Saubanère M., Dachraoui W., Duchamp M., Doublet M.-L., and Tarascon J.-M. Nat. Energy, 2017, 2, (1), 16189 LINK https://doi.org/10.1038/nenergy.2016.189 [Google Scholar]
  52. Sun W., Song Y., Gong X.-Q., Cao L., and Yang J. ACS Appl. Mater. Interfaces, 2016, 8, (1), 820 LINK https://doi.org/10.1021/acsami.5b10159 [Google Scholar]
  53. Sardar K., Petrucco E., Hiley C. I., Sharman J. D. B., Wells P. P., Russell A. E., Kashtiban R. J., Sloan J., and Walton R. I. Angew. Chem. Int. Ed., 2014, 53, (41), 10960 LINK https://doi.org/10.1002/anie.201406668 [Google Scholar]
  54. Sun W., Liu J.-Y., Gong X.-Q., Zaman W.-Q., Cao L.-M., and Yang J. Sci. Rep., 2016, 6, 38429 LINK https://doi.org/10.1038/srep38429 [Google Scholar]
  55. Lebedev D., Povia M., Waltar K., Abdala P. M., Castelli I. E., Fabbri E., Blanco M. V., Fedorov A., Copéret C., Marzari N., and Schmidt T. J. Chem. Mater., 2017, 29, (12), 5182 LINK https://doi.org/10.1021/acs.chemmater.7b00766 [Google Scholar]
  56. Liu H., Zhang Z., Li M., Wang Z., Zhang X., Li T., Li Y., Tian S., Kuang Y., and Sun X. Small, 2022, 18, (30), 2202513 LINK https://doi.org/10.1002/smll.202202513 [Google Scholar]
  57. Sen F. G., Kinaci A., Narayanan B., Gray S. K., Davis M. J., Sankaranarayanan S. K. R. S., and Chan M. K. Y. J. Mater. Chem. A, 2015, 3, (37), 18970 LINK https://doi.org/10.1039/c5ta04678e [Google Scholar]
  58. Scott S. B., Sørensen J. E., Rao R. R., Moon C., Kibsgaard J., Shao-Horn Y., and Chorkendorff I. Energy Environ. Sci., 2022, 15, (5), 1988 LINK https://doi.org/10.1039/d1ee03915f [Google Scholar]
  59. Abbott D. F., Lebedev D., Waltar K., Povia M., Nachtegaal M., Fabbri E., Copéret C., and Schmidt T. J. Chem. Mater., 2016, 28, (18), 6591 LINK https://doi.org/10.1021/acs.chemmater.6b02625 [Google Scholar]
  60. da Silva G. C., Perini N., and Ticianelli E. A. Appl. Catal. B: Environ., 2017, 218, 287 LINK https://doi.org/10.1016/j.apcatb.2017.06.044 [Google Scholar]
  61. Fierro S., Nagel T., Baltruschat H., and Comninellis C. Electrochem. Commun., 2007, 9, (8), 1969 LINK https://doi.org/10.1016/j.elecom.2007.05.008 [Google Scholar]
  62. Kasian O., Geiger S., Li T., Grote J.-P., Schweinar K., Zhang S., Scheu C., Raabe D., Cherevko S., Gault B., and Mayrhofer K. J. J. Energy Environ. Sci., 2019, 12, (12), 3548 LINK https://doi.org/10.1039/c9ee01872g [Google Scholar]
  63. Scott S. B., Kibsgaard J., Vesborg P. C. K., and Chorkendorff I. Electrochim. Acta, 2021, 374, 137844 LINK https://doi.org/10.1016/j.electacta.2021.137844 [Google Scholar]
  64. Felix C., Bladergroen B., Linkov V., Pollet B. G., and Pasupathi S. Catalysts, 2019, 9, (4), 318 LINK https://doi.org/10.3390/catal9040318 [Google Scholar]
  65. Binninger T., Mohamed R., Waltar K., Fabbri E., Levecque P., Kötz R., and Schmidt T. J. Sci. Rep., 2015, 5, 12167 LINK https://doi.org/10.1038/srep12167 [Google Scholar]
  66. Roy C., Rao R. R., Stoerzinger K. A., Hwang J., Rossmeisl J., Chorkendorff I., Shao-Horn Y., and Stephens I. E. L. ACS Energy Lett., 2018, 3, (9), 2045 LINK https://doi.org/10.1021/acsenergylett.8b01178 [Google Scholar]
  67. Özer E., Spöri C., Reier T., and Strasser P. ChemCatChem, 2017, 9, (4), 597 LINK https://doi.org/10.1002/cctc.201600423 [Google Scholar]
  68. Scohy M., Abbou S., Martin V., Gilles B., Sibert E., Dubau L., and Maillard F. ACS Catal., 2019, 9, (11), 9859 LINK https://doi.org/10.1021/acscatal.9b02988 [Google Scholar]
  69. BalaKrishnan A., Blanc N., Hagemann U., Gemagami P., Wonner K., Tschulik K., and Li T. Angew. Chem., 2021, 133, (39), 21566 LINK https://doi.org/10.1002/ange.202106790 [Google Scholar]
  70. Lončar A., Escalera-López D., Cherevko S., and Hodnik N. Angew. Chem., 2022, 134, (14), e202114437 LINK https://doi.org/10.1002/ange.202114437 [Google Scholar]
  71. Pourbaix M. J. N., Van Muylde J., and de Zoubov N. Platinum Metals Rev., 1959, 3, (3), 100 LINK https://technology.matthey.com/article/3/3/100-106/ [Google Scholar]
  72. Wang Z., Zheng Y.-R., Chorkendorff I., and Nørskov J. K. ACS Energy Lett., 2020, 5, (9), 2905 LINK https://doi.org/10.1021/acsenergylett.0c01625 [Google Scholar]
  73. Cherevko S. J. Electroanal. Chem., 2017, 787, 11 LINK https://doi.org/10.1016/j.jelechem.2017.01.029 [Google Scholar]
  74. Raman A. S., and Vojvodic A. J. Phys. Chem. C, 2022, 126, (2), 922 LINK https://doi.org/10.1021/acs.jpcc.1c08737 [Google Scholar]
  75. “Green Hydrogen Cost Reduction: Scaling Up Electrolysers to meet the 1.5°C Climate Goal”, IRENA (International Renewable Energy Agency), Abu Dhabi, Dubai, December, 2020 LINK https://www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction [Google Scholar]
  76. Rasten E., Hagen G., and Tunold R. Electrochim. Acta, 2003, 48, (25–26), 3945 LINK https://doi.org/10.1016/j.electacta.2003.04.001 [Google Scholar]
  77. Yu H., Danilovic N., Wang Y., Willis W., Poozhikunnath A., Bonville L., Capuano C., Ayers K., and Maric R. Appl. Catal. B: Environ., 2018, 239, 133 LINK https://doi.org/10.1016/j.apcatb.2018.07.064 [Google Scholar]
  78. Rozain C., Mayousse E., Guillet N., and Millet P. Appl. Catal. B: Environ., 2016, 182, 123 LINK https://doi.org/10.1016/j.apcatb.2015.09.011 [Google Scholar]
  79. Siracusano S., Van Dijk N., Backhouse R., Merlo L., Baglio V., and Aricò A. S. Renew. Energy, 2018, 123, 52 LINK https://doi.org/10.1016/j.renene.2018.02.024 [Google Scholar]
  80. Bard A. J., and Faulkner L. R. “Electrochemical Methods: Fundamentals and Applications”, 2nd Edn., John Wiley and Sons Inc, New York, USA, 2001, 864 pp [Google Scholar]
  81. Ioroi T., Nagai T., Siroma Z., and Yasuda K. Int. J. Hydrogen Energy, 2022, 47, (91), 38506 LINK https://doi.org/10.1016/j.ijhydene.2022.09.059 [Google Scholar]
  82. Kötz R., Stucki S., Scherson D., and Kolb D. M. J. Electroanal. Chem. Interfacial Electrochem., 1984, 172, (1–2), 211 LINK https://doi.org/10.1016/0022-0728(84)80187-4 [Google Scholar]
  83. Vuković M. J. Chem. Soc., Faraday Trans., 1990, 86, (22), 3743 LINK https://doi.org/10.1039/ft9908603743 [Google Scholar]
  84. Kroschel M., Bonakdarpour A., Kwan J. T. H., Strasser P., and Wilkinson D. P. Electrochim. Acta, 2019, 317, 722 LINK https://doi.org/10.1016/j.electacta.2019.05.011 [Google Scholar]
  85. Petzoldt P. J., Kwan J. T. H., Bonakdarpour A., and Wilkinson D. P. J. Electrochem. Soc., 2021, 168, (2), 026507 LINK https://doi.org/10.1149/1945-7111/abde7d [Google Scholar]
  86. Cherevko S., Reier T., Zeradjanin A. R., Pawolek Z., Strasser P., and Mayrhofer K. J. J. Electrochem. Commun., 2014, 48, 81 LINK https://doi.org/10.1016/j.elecom.2014.08.027 [Google Scholar]
  87. Cherevko S., Geiger S., Kasian O., Mingers A., and Mayrhofer K. J. J. J. Electroanal. Chem., 2016, 773, 69 LINK https://doi.org/10.1016/j.jelechem.2016.04.033 [Google Scholar]
  88. Cherevko S., Geiger S., Kasian O., Mingers A., and Mayrhofer K. J. J. J. Electroanal. Chem., 2016, 774, 102 LINK https://doi.org/10.1016/j.jelechem.2016.05.015 [Google Scholar]
  89. Zalitis C. M., Kramer D., and Kucernak A. R. Phys. Chem. Chem. Phys., 2013, 15, (12), 4329 LINK https://doi.org/10.1039/c3cp44431g [Google Scholar]
  90. Inaba M., Jensen A. W., Sievers G. W., Escudero-Escribano M., Zana A., and Arenz M. Energy Environ. Sci., 2018, 11, (4), 988 LINK https://doi.org/10.1039/c8ee00019k [Google Scholar]
  91. Hrnjić A., Ruiz-Zepeda F., Gaberšček M., Bele M., Suhadolnik L., Hodnik N., and Jovanovič P. J. Electrochem. Soc., 2020, 167, (16), 166501 LINK https://doi.org/10.1149/1945-7111/abc9de [Google Scholar]
  92. Frydendal R., Paoli E. A., Knudsen B. P., Wickman B., Malacrida P., Stephens I. E. L., and Chorkendorff I. ChemElectroChem, 2014, 1, (12), 2075 LINK https://doi.org/10.1002/celc.201402262 [Google Scholar]
  93. Buttry D. A., and Ward M. D. Chem. Rev., 1992, 92, (6), 1355 LINK https://doi.org/10.1021/cr00014a006 [Google Scholar]
  94. Frydendal R., Paoli E. A., Chorkendorff I., Rossmeisl J., and Stephens I. E. L. Adv. Energy Mater., 2015, 5, (22), 1500991 LINK https://doi.org/10.1002/aenm.201500991 [Google Scholar]
  95. Trimarco D. B., Scott S. B., Thilsted A. H., Pan J. Y., Pedersen T., Hansen O., Chorkendorff I., and Vesborg P. C. K. Electrochim. Acta, 2018, 268, 520 LINK https://doi.org/10.1016/j.electacta.2018.02.060 [Google Scholar]
  96. Claudel F., Dubau L., Berthomé G., Sola-Hernandez L., Beauger C., Piccolo L., and Maillard F. ACS Catal., 2019, 9, (5), 4688 LINK https://doi.org/10.1021/acscatal.9b00280 [Google Scholar]
  97. McCrory C. C. L., Jung S., Peters J. C., and Jaramillo T. F. J. Am. Chem. Soc., 2013, 135, (45), 16977 LINK https://doi.org/10.1021/ja407115p [Google Scholar]
  98. McCrory C. C. L., Jung S., Ferrer I. M., Chatman S. M., Peters J. C., and Jaramillo T. F. J. Am. Chem. Soc., 2015, 137, (13), 4347 LINK https://doi.org/10.1021/ja510442p [Google Scholar]
  99. Gou W., Zhang M., Zou Y., Zhou X., and Qu Y. ChemCatChem, 2019, 11, (24), 6008 LINK https://doi.org/10.1002/cctc.201901411 [Google Scholar]
  100. Li L., Wang P., Cheng Z., Shao Q., and Huang X. Nano Res., 2022, 15, (2), 1087 LINK https://doi.org/10.1007/s12274-021-3603-9 [Google Scholar]
  101. Wang Z., Zheng Z., Xue Y., He F., and Li Y. Adv. Energy Mater., 2021, 11, (32), 2170126 LINK https://doi.org/10.1002/aenm.202170126 [Google Scholar]
  102. Chen Y., Li H., Wang J., Du Y., Xi S., Sun Y., Sherburne M., Ager J. W., Fisher A. C., and Xu Z. J. Nat. Commun., 2019, 10, 572 LINK https://doi.org/10.1038/s41467-019-08532-3 [Google Scholar]
  103. Spöri C., Brand C., Kroschel M., and Strasser P. J. Electrochem. Soc., 2021, 168, (3), 034508 LINK https://doi.org/10.1149/1945-7111/abeb61 [Google Scholar]
  104. Tsotridis G., and Pilenga A. “EU Harmonized Protocols for Testing of Low Temperature Water Electrolysis”, JRC Technical Report No. JRC122565, European Commission, Petten, The Netherlands, 2021, 171 pp LINK https://doi.org/10.2760/58880 [Google Scholar]
  105. Danilovic N., Subbaraman R., Chang K.-C., Chang S. H., Kang Y. J., Snyder J., Paulikas A. P., Strmcnik D., Kim Y.-T., Myers D., Stamenkovic V. R., and Markovic N. M. J. Phys. Chem. Lett., 2014, 5, (14), 2474 LINK https://doi.org/10.1021/jz501061n [Google Scholar]
  106. Ferreira da Silva C. D., Claudel F., Martin V., Chattot R., Abbou S., Kumar K., Jiménez-Morales I., Cavaliere S., Jones D., Rozière J., Solà-Hernandez L., Beauger C., Faustini M., Peron J., Gilles B., Encinas T., Piccolo L., Barros de Lima F. H., Dubau L., and Maillard F. ACS Catal., 2021, 11, (7), 4107 LINK https://doi.org/10.1021/acscatal.0c04613 [Google Scholar]
  107. Edgington J., Deberghes A., and Seitz L. C. ACS Appl. Energy Mater., 2022, 5, (10), 12206 LINK https://doi.org/10.1021/acsaem.2c01690 [Google Scholar]
  108. Wei C., Sun S., Mandler D., Wang X., Qiao S. Z., and Xu Z. J. Chem. Soc. Rev., 2019, 48, (9), 2518 LINK https://doi.org/10.1039/c8cs00848e [Google Scholar]
  109. Watzele S., Hauenstein P., Liang Y., Xue S., Fichtner J., Garlyyev B., Scieszka D., Claudel F., Maillard F., and Bandarenka A. S. ACS Catal., 2019, 9, (10), 9222 LINK https://doi.org/10.1021/acscatal.9b02006 [Google Scholar]
  110. Kasian O., Li T., Mingers A. M., Schweinar K., Savan A., Ludwig A., and Mayrhofer K. J. Phys. Energy, 2021, 3, (3), 034006 LINK https://doi.org/10.1088/2515-7655/abbd34 [Google Scholar]
  111. Kasian O., Geiger S., Stock P., Polymeros G., Breitbach B., Savan A., Ludwig A., Cherevko S., and Mayrhofer K. J. J. J. Electrochem. Soc., 2016, 163, (11), F 3099 LINK https://doi.org/10.1149/2.0131611jes [Google Scholar]
  112. Kasian O., Geiger S., Mayrhofer K. J. J., and Cherevko S. Chem. Rec., 2019, 19, (10), 2130 LINK https://doi.org/10.1002/tcr.201800162 [Google Scholar]
  113. Kasian O., Geiger S., Schalenbach M., Mingers A. M., Savan A., Ludwig A., Cherevko S., and Mayrhofer K. J. J. Electrocatalysis, 2018, 9, (2), 139 LINK https://doi.org/10.1007/s12678-017-0394-6 [Google Scholar]
  114. Zhang R., Pearce P. E., Pimenta V., Cabana J., Li H., Corte D. A. D., Abakumov A. M., Rousse G., Giaume D., Deschamps M., and Grimaud A. Chem. Mater., 2020, 32, (8), 3499 LINK https://doi.org/10.1021/acs.chemmater.0c00432 [Google Scholar]
  115. Zhang R., Dubouis N., Osman M. B., Yin W., Sougrati M. T., Corte D. A. D., Giaume D., and Grimaud A. Angew. Chem. Int. Ed., 2019, 58, (14), 4571 LINK https://doi.org/10.1002/anie.201814075 [Google Scholar]
  116. Geiger S., Kasian O., Mingers A. M., Nicley S. S., Haenen K., Mayrhofer K. J. J., and Cherevko S. ChemSusChem, 2017, 10, (21), 4140 LINK https://doi.org/10.1002/cssc.201701523 [Google Scholar]
  117. Bernt M., Hartig-Weiß A., Tovini M. F., El-Sayed H. A., Schramm C., Schröter J., Gebauer C., and Gasteiger H. A. Chem. Ing. Tech., 2020, 92, (1–2), 31 LINK https://doi.org/10.1002/cite.201900101 [Google Scholar]
  118. Oakton E., Lebedev D., Povia M., Abbott D. F., Fabbri E., Fedorov A., Nachtegaal M., Copéret C., and Schmidt T. J. ACS Catal., 2017, 7, (4), 2346 LINK https://doi.org/10.1021/acscatal.6b03246 [Google Scholar]
  119. Trogisch N., Koch M., El Sawy E. N., and El-Sayed H. A. ACS Catal., 2022, 12, (21), 13715 LINK https://doi.org/10.1021/acscatal.2c03881 [Google Scholar]
  120. Voronova A., Kim H.-J., Jang J. H., Park H.-Y., and Seo B. Int. J. Energy Res., 2022, 46, (9), 11867 LINK https://doi.org/10.1002/er.7953 [Google Scholar]
  121. Papakonstantinou G., Algara-Siller G., Teschner D., Vidaković-Koch T., Schlögl R., and Sundmacher K. Appl. Energy, 2020, 280, 115911 LINK https://doi.org/10.1016/j.apenergy.2020.115911 [Google Scholar]
  122. Tang-Kong R., Chidsey C. E. D., and McIntyre P. C. J. Electrochem. Soc., 2019, 166, (14), H712 LINK https://doi.org/10.1149/2.0491914jes [Google Scholar]
  123. Papakonstantinou G., Spanos I., Dam A. P., Schlögl R., and Sundmacher K. Phys. Chem. Chem. Phys., 2022, 24, (23), 14579 LINK https://doi.org/10.1039/d2cp00828a [Google Scholar]
  124. Tan X., Shen J., Semagina N., and Secanell M. J. Catal., 2019, 371, 57 LINK https://doi.org/10.1016/j.jcat.2019.01.018 [Google Scholar]
  125. Zheng Y.-R., Vernieres J., Wang Z., Zhang K., Hochfilzer D., Krempl K., Liao T.-W., Presel F., Altantzis T., Fatermans J., Scott S. B., Secher N. M., Moon C., Liu P., Bals S., Van Aert S., Cao A., Anand M., Nørskov J. K., Kibsgaard J., and Chorkendorff I. Nat. Energy, 2022, 7, (1), 55 LINK https://doi.org/10.1038/s41560-021-00948-w [Google Scholar]
  126. Malkow T., De Marco G., and Tsotridis G. “EU Harmonised Cyclic Voltammetry Test Method for Low Temperature Water Electrolysis Single Cells”, JRC Validated Methods, Reference Methods and Measurement Report No. JRC111151, European Union, Petten, The Netherlands, 2018, 28 pp LINK https://doi.org/10.2760/140687 [Google Scholar]
  127. Malkow T., Pilenga A., and Tsotridis G. “EU Harmonised Test Procedure: Electrochemical Impedance Spectroscopy for Water Electrolysis Cells”, JRC Validated Methods, Reference Methods and Measurement Report No. JRC107053, European Union, Petten, The Netherlands, 2018, 33 pp LINK https://doi.org/10.2760/8984 [Google Scholar]
  128. Malkow T., Pilenga A., and Tsotridis G. “EU Harmonised Polarisation Curve Test Method for Low Temperature Water Electrolysis”, JRC Validated Methods, Reference Methods and Measurement Report No. JRC104045, European Union, Petten, The Netherlands, 2018, 48 pp LINK https://doi.org/10.2760/179509 [Google Scholar]
  129. Siracusano S., Baglio V., Grigoriev S. A., Merlo L., Fateev V. N., and Aricò A. S. J. Power Sources, 2017, 366, 105 LINK https://doi.org/10.1016/j.jpowsour.2017.09.020 [Google Scholar]
  130. Reier T., Pawolek Z., Cherevko S., Bruns M., Jones T., Teschner D., Selve S., Bergmann A., Nong H. N., Schlögl R., Mayrhofer K. J. J., and Strasser P. J. Am. Chem. Soc., 2015, 137, (40), 13031 LINK https://doi.org/10.1021/jacs.5b07788 [Google Scholar]
  131. Pfeifer V., Jones T. E., Velasco Vélez J. J., Massué C., Arrigo R., Teschner D., Girgsdies F., Scherzer M., Greiner M. T., Allan J., Hashagen M., Weinberg G., Piccinin S., Hävecker M., Knop-Gericke A., and Schlögl R. Surf. Interface Anal., 2015, 48, (5), 261 LINK https://doi.org/10.1002/sia.5895 [Google Scholar]
  132. Rozain C., Mayousse E., Guillet N., and Millet P. Appl. Catal. B: Environ., 2016, 182, 153 LINK https://doi.org/10.1016/j.apcatb.2015.09.013 [Google Scholar]
  133. Balcerzak M. Anal. Sci., 2002, 18, (7), 737 LINK https://doi.org/10.2116/analsci.18.737 [Google Scholar]
  134. Lee S., Bi X., Reed R. B., Ranville J. F., Herckes P., and Westerhoff P. Environ. Sci. Technol., 2014, 48, (17), 10291 LINK https://doi.org/10.1021/es502422v [Google Scholar]
  135. Sun W., Zhou Z., Zaman W. Q., Cao L., and Yang J. ACS Appl. Mater. Interfaces, 2017, 9, (48), 41855 LINK https://doi.org/10.1021/acsami.7b12775 [Google Scholar]
  136. Willinger E., Massué C., Schlögl R., and Willinger M. G. J. Am. Chem. Soc., 2017, 139, (34), 12093 LINK https://doi.org/10.1021/jacs.7b07079 [Google Scholar]
  137. Huang J., Scott S. B., Chorkendorff I., and Wen Z. ACS Catal., 2021, 11, (20), 12745 LINK https://doi.org/10.1021/acscatal.1c03430 [Google Scholar]
  138. Scott S. B., Rao R. R., Moon C., Sørensen J. E., Kibsgaard J., Shao-Horn Y., and Chorkendorff I. Energy Environ. Sci., 2022, 15, (5), 1977 LINK https://doi.org/10.1039/d1ee03914h [Google Scholar]
  139. Moriau L., Smiljanić M., Lončar A., and Hodnik N. ChemCatChem, 2022, 14, (20), e202200586 LINK https://doi.org/10.1002/cctc.202200586 [Google Scholar]
  140. Abbou S., Chattot R., Martin V., Claudel F., Solà-Hernandez L., Beauger C., Dubau L., and Maillard F. ACS Catal., 2020, 10, (13), 7283 LINK https://doi.org/10.1021/acscatal.0c01084 [Google Scholar]
  141. Tang H., Peikang S., Jiang S. P., Wang F., and Pan M. J. Power Sources, 2007, 170, (1), 85 LINK https://doi.org/10.1016/j.jpowsour.2007.03.061 [Google Scholar]
  142. Retuerto M., Pascual L., Torrero J., Salam M. A., Tolosana-Moranchel Á., Gianolio D., Ferrer P., Kayser P., Wilke V., Stiber S., Celorrio V., Mokthar M., Sanchez D. G., Gago A. S., Friedrich K. A., Peña M. A., Alonso J. A., and Rojas S. Nat. Commun., 2022, 13, 7935 LINK https://doi.org/10.1038/s41467-022-35631-5 [Google Scholar]
  143. Burch M. J., Lewinski K. A., Buckett M. I., Luopa S., Sun F., Olson E. J., and Steinbach A. J. J. Power Sources, 2021, 500, 229978 LINK https://doi.org/10.1016/j.jpowsour.2021.229978 [Google Scholar]
  144. Murawski J., Scott S. B., Rao R., Rigg K., Zalitis C., Stevens J., Sharman J., Hinds G., and Stephens I. E. L. Johnson Matthey Technol. Rev., 2024, 68, (1), 147 LINK https://doi.org/10.1595/205651323X16848455435118 [Google Scholar]
/content/journals/10.1595/205651323X16848455435118
Loading
/content/journals/10.1595/205651323X16848455435118
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error