Skip to content
1887
Volume 68, Issue 1
  • ISSN: 2056-5135

Abstract

State-of-the-art proton exchange membrane (PEM) electrolysers employ iridium-based catalysts to facilitate oxygen evolution at the anode. To enable scale-up of the technology to the terawatt level, further improvements in the iridium utilisation are needed, without incurring additional overpotential losses or reducing the device lifetime. The research community has only recently started to attempt systematic benchmarking of catalyst stability. Short term electrochemical methods alone are insufficient to predict catalyst degradation; they can both underestimate and overestimate catalyst durability. Complementary techniques, such as inductively coupled plasma-mass spectrometry (ICP-MS), are required to provide more reliable assessment of the amount of catalyst lost through dissolution. In Part I, we critically review the state of the art in probing degradation of iridium-based oxide catalysts.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16848455435118
2023-05-23
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/1/Murawski_16a_Imp-pt1.html?itemId=/content/journals/10.1595/205651323X16848455435118&mimeType=html&fmt=ahah

References

  1. ‘Hydrogen for Net-Zero: A Critical Cost-Competitive Energy Vector’, Hydrogen Council, Brussels, Belgium, McKinsey & Company, New York, USA, November, 2021, 56 pp LINK https://hydrogencouncil.com/wp-content/uploads/2021/11/hydrogen-for-net-zero.pdf [Google Scholar]
  2. “Green Hydrogen: A Guide to Policy Making”, IRENA (International Renewable Energy Agency), Abu Dhabi, United Arab Emiriates, 2020, 52 pp LINK https://www.irena.org/publications/2020/Nov/Green-hydrogen [Google Scholar]
  3. “Hydrogen-Powered Aviation: A Fact-Based Study of Hydrogen Technology, Economics, and Climate Impact by 2050”, Clean Sky 2 JU, Brussels, Belguim, Fuel Cells and Hydrogen Join Undertaking (CBH 2 JU), Brussels, Belguim, 2020, 96 pp LINK https://doi.org/10.2843/766989 [Google Scholar]
  4. G. Pawelec, J. Fonseca, “Steel From Solar Energy: A Techno-Economic Assessment of Green Steel Manufacturing”, Hydrogen Europe, Brussels, Belgium, 2022, 90 pp LINK https://hydrogeneurope.eu/wp-content/uploads/2022/06/Steel_from_Solar_Energy_Report_05-2022_DIGITAL.pdf [Google Scholar]
  5. K. Mazloomi, C. Gomes, Renew. Sustain. Energy Rev., 2012, 16, (5), 3024 LINK https://doi.org/10.1016/j.rser.2012.02.028 [Google Scholar]
  6. ‘HyDeploy Project: Gas Network Innovation Competition: Cadent Second Project Progress Report (PPR)’, HyDeploy, Keele University, Keele, UK, December, 2018, 28 pp LINK https://hydeploy.co.uk/app/uploads/2018/12/15055_HD_PH2_PROJECT_REPORT_v2.pdf [Google Scholar]
  7. L. Bertuccioli, A. Chan, D. Hart, F. Lehner, B. Madden, E. Standen, “Development of Water Electrolysis in the European Union”, Fuel Cells and Hydrogen Joint Undertaking, Institution of Gas Engineers and Managers, Brussels, Belgium, 2014 [Google Scholar]
  8. M. Voldsund, K. Jordal, R. Anantharaman, Int. J. Hydrogen Energy, 2016, 41, (9), 4969 LINK https://doi.org/10.1016/j.ijhydene.2016.01.009 [Google Scholar]
  9. P. C. K. Vesborg, T. F. Jaramillo, RSC Adv., 2012, 2, (21), 7933 LINK https://doi.org/10.1039/c2ra20839c [Google Scholar]
  10. K. Ayers, N. Danilovic, R. Ouimet, M. Carmo, B. Pivovar, M. Bornstein, Annu. Rev. Chem. Biomol. Eng., 2019, 10, 219 LINK https://doi.org/10.1146/annurev-chembioeng-060718-030241 [Google Scholar]
  11. U. Babic, M. Suermann, F. N. Büchi, L. Gubler, T. J. Schmidt, J. Electrochem. Soc., 2017, 164, (4), F 387 LINK https://doi.org/10.1149/2.1441704jes [Google Scholar]
  12. K. Ayers, Curr. Opin. Chem. Eng., 2021, 33, 100719 LINK https://doi.org/10.1016/j.coche.2021.100719 [Google Scholar]
  13. S. Geiger, O. Kasian, B. R. Shrestha, A. M. Mingers, K. J. J. Mayrhofer, S. Cherevko, J. Electrochem. Soc., 2016, 163, (11), F3132 LINK https://doi.org/10.1149/2.0181611jes [Google Scholar]
  14. K. E. Ayers, L. T. Dalton, E. B. Anderson, ECS Trans., 2012, 41, (33), 27 LINK https://doi.org/10.1149/1.3702410 [Google Scholar]
  15. S. Cherevko, A. R. Zeradjanin, A. A. Topalov, N. Kulyk, I. Katsounaros, K. J. J. Mayrhofer, ChemCatChem, 2014, 6, (8), 2219 LINK https://doi.org/10.1002/cctc.201402194 [Google Scholar]
  16. S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J.-P. Grote, A. Savan, B. R. Shrestha, S. Merzlikin, B. Breitbach, A. Ludwig, K. J. J. Mayrhofer, Catal. Today, 2016, 262, 170 LINK https://doi.org/10.1016/j.cattod.2015.08.014 [Google Scholar]
  17. L. Bloxham, S. Brown, L. Cole, A. Cowley, M. Fujita, N. Girardot, J. Jiang, M. Ryan, B. Tang, A. Wang, “PGM Market Report”, Johnson Matthey Plc, London, UK, May, 2022, 60 pp LINK https://matthey.com/documents/161599/509428/PGM-market-report-May-2022.pdf/542bcada-f4ac-a673-5f95-ad1bbfca5106 [Google Scholar]
  18. M. Clapp, C. M. Zalitis, M. Ryan, Catal. Today, 2023, 420, 114140 LINK https://doi.org/10.1016/j.cattod.2023.114140 [Google Scholar]
  19. M. Bernt, A. Siebel, H. A. Gasteiger, J. Electrochem. Soc., 2018, 165, (5), F305 LINK https://doi.org/10.1149/2.0641805jes [Google Scholar]
  20. A. Nilsson, I. Stephens, A. Latimer, C. F. Dickens, ‘Sustainable N2 Reduction’, in “Research Needs Towards Sustainable Production of Fuels and Chemicals”, eds. Energy-X, San Juan, Puerto Rico, 2019, pp. 4959 [Google Scholar]
  21. S. M. Alia, S. Stariha, R. L. Borup, J. Electrochem. Soc., 2019, 166, (15), F1164 LINK https://doi.org/10.1149/2.0231915jes [Google Scholar]
  22. J. Knöppel, M. Möckl, D. Escalera-López, K. Stojanovski, M. Bierling, T. Böhm, S. Thiele, M. Rzepka, S. Cherevko, Nat. Commun., 2021, 12, 2231 LINK https://doi.org/10.1038/s41467-021-22296-9 [Google Scholar]
  23. T. Lazaridis, B. M. Stühmeier, H. A. Gasteiger, H. A. El-Sayed, Nat. Catal., 2022, 5, (5), 363 LINK https://doi.org/10.1038/s41929-022-00776-5 [Google Scholar]
  24. A. Hartig-Weiss, M. F. Tovini, H. A. Gasteiger, H. A. El-Sayed, ACS Appl. Energy Mater., 2020, 3, (11), 10323 LINK https://doi.org/10.1021/acsaem.0c01944 [Google Scholar]
  25. H. A. El-Sayed, A. Weiß, L. F. Olbrich, G. P. Putro, H. A. Gasteiger, J. Electrochem. Soc., 2019, 166, (8), F458 LINK https://doi.org/10.1149/2.0301908jes [Google Scholar]
  26. K. Ehelebe, D. Escalera-López, S. Cherevko, Curr. Opin. Electrochem., 2021, 29, 100832 LINK https://doi.org/10.1016/j.coelec.2021.100832 [Google Scholar]
  27. J.-P. Grote, A. R. Zeradjanin, S. Cherevko, K. J. J. Mayrhofer, Rev. Sci. Instrum., 2014, 85, (10), 104101 LINK https://doi.org/10.1063/1.4896755 [Google Scholar]
  28. S. Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A. M. Mingers, W. T. Fu, O. Diaz-Morales, Z. Li, T. Oellers, L. Fruchter, A. Ludwig, K. J. J. Mayrhofer, M. T. M. Koper, S. Cherevko, Nat. Catal., 2018, 1, (7), 508 LINK https://doi.org/10.1038/s41929-018-0085-6 [Google Scholar]
  29. M. F. Tovini, A. Hartig-Weiß, H. A. Gasteiger, H. A. El-Sayed, J. Electrochem. Soc., 2021, 168, (1), 014512 LINK https://doi.org/10.1149/1945-7111/abdcc9 [Google Scholar]
  30. A. K. S. Kumar, Y. Zhang, D. Li, R. G. Compton, Electrochem. Commun., 2020, 121, 106867 LINK https://doi.org/10.1016/j.elecom.2020.106867 [Google Scholar]
  31. B. Pivovar, M. Ruth, R. Ahluwalia, ‘H2NEW: Hydrogen (H2) from Next-generation Electrolyzers of Water LTE Task 3c : System and Techno-Economic Analysis’, DOE Hydrogen Program Project ID No. P196D, Annual Merit Review and Peer Evaluation Meeting, 6th–8th June, 2022, National Renewable Energy Laboratory, Golden, USA, 2nd June, 2022 LINK https://www.nrel.gov/docs/fy23osti/82706.pdf [Google Scholar]
  32. A. Weiß, A. Siebel, M. Bernt, T.-H. Shen, V. Tileli, H. A. Gasteiger, J. Electrochem. Soc., 2019, 166, (8), F487 LINK https://doi.org/10.1149/2.0421908jes [Google Scholar]
  33. E. Brightman, J. Dodwell, N. van Dijk, G. Hinds, Electrochem. Commun., 2015, 52, 1 LINK https://doi.org/10.1016/j.elecom.2015.01.005 [Google Scholar]
  34. M. Bernt, H. A. Gasteiger, J. Electrochem. Soc., 2016, 163, (11), F3179 LINK https://doi.org/10.1149/2.0231611jes [Google Scholar]
  35. S. M. Alia, G. C. Anderson, J. Electrochem. Soc., 2019, 166, (4), F282 LINK https://doi.org/10.1149/2.0731904jes [Google Scholar]
  36. S. M. Alia, M.-A. Ha, G. C. Anderson, C. Ngo, S. Pylypenko, R. E. Larsen, J. Electrochem. Soc., 2019, 166, (15), F1243 LINK https://doi.org/10.1149/2.0771915jes [Google Scholar]
  37. M. Möckl, M. F. Ernst, M. Kornherr, F. Allebrod, M. Bernt, J. Byrknes, C. Eickes, C. Gebauer, A. Moskovtseva, H. A. Gasteiger, J. Electrochem. Soc., 2022, 169, (6), 064505 LINK https://doi.org/10.1149/1945-7111/ac6d14 [Google Scholar]
  38. H. Yu, L. Bonville, J. Jankovic, R. Maric, Appl. Catal. B: Environ., 2020, 260, 118194 LINK https://doi.org/10.1016/j.apcatb.2019.118194 [Google Scholar]
  39. G. N. Martelli, R. Ornelas, G. Faita, Electrochim. Acta, 1994, 39, (11–12), 1551 LINK https://doi.org/10.1016/0013-4686(94)85134-4 [Google Scholar]
  40. C. Liu, ‘Noble Metal Coated Porous Transport Layers for Polymer Electrolyte Membrane Water Electrolysis’, PhD Thesis, Faculty of Mechanical Engineering, Rhenish-Westphalian Technical University, Aachen, Germany, 2021, 149 pp [Google Scholar]
  41. C. Rakousky, U. Reimer, K. Wippermann, M. Carmo, W. Lueke, D. Stolten, J. Power Sources, 2016, 326, 120 LINK https://doi.org/10.1016/j.jpowsour.2016.06.082 [Google Scholar]
  42. J. Durst, C. Simon, F. Hasché, H. A. Gasteiger, J. Electrochem. Soc., 2014, 162, (1), F190 LINK https://doi.org/10.1149/2.0981501jes [Google Scholar]
  43. S. M. Alia, K. S. Reeves, H. Yu, J. Park, N. Kariuki, A. J. Kropf, D. J. Myers, D. A. Cullen, J. Electrochem. Soc., 2022, 169, (5), 054517 LINK https://doi.org/10.1149/1945-7111/ac697e [Google Scholar]
  44. T. Reier, H. N. Nong, D. Teschner, R. Schlögl, P. Strasser, Adv. Energy Mater., 2016, 7, (1), 1601275 LINK https://doi.org/10.1002/aenm.201601275 [Google Scholar]
  45. C. Spöri, J. T. H. Kwan, A. Bonakdarpour, D. P. Wilkinson, P. Strasser, Angew. Chem. Int. Ed., 2017, 56, (22), 5994 LINK https://doi.org/10.1002/anie.201608601 [Google Scholar]
  46. O. Kasian, J.-P. Grote, S. Geiger, S. Cherevko, K. J. J. Mayrhofer, Angew. Chem. Int. Ed., 2018, 57, (9), 2488 LINK https://doi.org/10.1002/anie.201709652 [Google Scholar]
  47. C. Bozal-Ginesta, R. R. Rao, C. A. Mesa, Y. Wang, Y. Zhao, G. Hu, D. Antón-García, I. E. L. Stephens, E. Reisner, G. W. Brudvig, D. Wang, J. R. Durrant, J. Am. Chem. Soc., 2022, 144, (19), 8454 LINK https://doi.org/10.1021/jacs.2c02006 [Google Scholar]
  48. S. W. Sheehan, J. M. Thomsen, U. Hintermair, R. H. Crabtree, G. W. Brudvig, C. A. Schmuttenmaer, Nat. Commun., 2015, 6, 6469 LINK https://doi.org/10.1038/ncomms7469 [Google Scholar]
  49. M. Ledendecker, S. Geiger, K. Hengge, J. Lim, S. Cherevko, A. M. Mingers, D. Göhl, G. V Fortunato, D. Jalalpoor, F. Schüth, C. Scheu, K. J. J. Mayrhofer, Nano Res., 2019, 12, (9), 2275 LINK https://doi.org/10.1007/s12274-019-2383-y [Google Scholar]
  50. L. C. Seitz, C. F. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, H. Y. Hwang, J. K. Norskov, T. F. Jaramillo, Science, 2016, 353, (6303), 1011 LINK https://doi.org/10.1126/science.aaf5050 [Google Scholar]
  51. A. Grimaud, A. Demortière, M. Saubanère, W. Dachraoui, M. Duchamp, M.-L. Doublet, J.-M. Tarascon, Nat. Energy, 2017, 2, (1), 16189 LINK https://doi.org/10.1038/nenergy.2016.189 [Google Scholar]
  52. W. Sun, Y. Song, X.-Q. Gong, L. Cao, J. Yang, ACS Appl. Mater. Interfaces, 2016, 8, (1), 820 LINK https://doi.org/10.1021/acsami.5b10159 [Google Scholar]
  53. K. Sardar, E. Petrucco, C. I. Hiley, J. D. B. Sharman, P. P. Wells, A. E. Russell, R. J. Kashtiban, J. Sloan, R. I. Walton, Angew. Chem. Int. Ed., 2014, 53, (41), 10960 LINK https://doi.org/10.1002/anie.201406668 [Google Scholar]
  54. W. Sun, J.-Y. Liu, X.-Q. Gong, W.-Q. Zaman, L.-M. Cao, J. Yang, Sci. Rep., 2016, 6, 38429 LINK https://doi.org/10.1038/srep38429 [Google Scholar]
  55. D. Lebedev, M. Povia, K. Waltar, P. M. Abdala, I. E. Castelli, E. Fabbri, M. V. Blanco, A. Fedorov, C. Copéret, N. Marzari, T. J. Schmidt, Chem. Mater., 2017, 29, (12), 5182 LINK https://doi.org/10.1021/acs.chemmater.7b00766 [Google Scholar]
  56. H. Liu, Z. Zhang, M. Li, Z. Wang, X. Zhang, T. Li, Y. Li, S. Tian, Y. Kuang, X. Sun, Small, 2022, 18, (30), 2202513 LINK https://doi.org/10.1002/smll.202202513 [Google Scholar]
  57. F. G. Sen, A. Kinaci, B. Narayanan, S. K. Gray, M. J. Davis, S. K. R. S. Sankaranarayanan, M. K. Y. Chan, J. Mater. Chem. A, 2015, 3, (37), 18970 LINK https://doi.org/10.1039/c5ta04678e [Google Scholar]
  58. S. B. Scott, J. E. Sørensen, R. R. Rao, C. Moon, J. Kibsgaard, Y. Shao-Horn, I. Chorkendorff, Energy Environ. Sci., 2022, 15, (5), 1988 LINK https://doi.org/10.1039/d1ee03915f [Google Scholar]
  59. D. F. Abbott, D. Lebedev, K. Waltar, M. Povia, M. Nachtegaal, E. Fabbri, C. Copéret, T. J. Schmidt, Chem. Mater., 2016, 28, (18), 6591 LINK https://doi.org/10.1021/acs.chemmater.6b02625 [Google Scholar]
  60. G. C. da Silva, N. Perini, E. A. Ticianelli, Appl. Catal. B: Environ., 2017, 218, 287 LINK https://doi.org/10.1016/j.apcatb.2017.06.044 [Google Scholar]
  61. S. Fierro, T. Nagel, H. Baltruschat, C. Comninellis, Electrochem. Commun., 2007, 9, (8), 1969 LINK https://doi.org/10.1016/j.elecom.2007.05.008 [Google Scholar]
  62. O. Kasian, S. Geiger, T. Li, J.-P. Grote, K. Schweinar, S. Zhang, C. Scheu, D. Raabe, S. Cherevko, B. Gault, K. J. J. Mayrhofer, Energy Environ. Sci., 2019, 12, (12), 3548 LINK https://doi.org/10.1039/c9ee01872g [Google Scholar]
  63. S. B. Scott, J. Kibsgaard, P. C. K. Vesborg, I. Chorkendorff, Electrochim. Acta, 2021, 374, 137844 LINK https://doi.org/10.1016/j.electacta.2021.137844 [Google Scholar]
  64. C. Felix, B. Bladergroen, V. Linkov, B. G. Pollet, S. Pasupathi, Catalysts, 2019, 9, (4), 318 LINK https://doi.org/10.3390/catal9040318 [Google Scholar]
  65. T. Binninger, R. Mohamed, K. Waltar, E. Fabbri, P. Levecque, R. Kötz, T. J. Schmidt, Sci. Rep., 2015, 5, 12167 LINK https://doi.org/10.1038/srep12167 [Google Scholar]
  66. C. Roy, R. R. Rao, K. A. Stoerzinger, J. Hwang, J. Rossmeisl, I. Chorkendorff, Y. Shao-Horn, I. E. L. Stephens, ACS Energy Lett., 2018, 3, (9), 2045 LINK https://doi.org/10.1021/acsenergylett.8b01178 [Google Scholar]
  67. E. Özer, C. Spöri, T. Reier, P. Strasser, ChemCatChem, 2017, 9, (4), 597 LINK https://doi.org/10.1002/cctc.201600423 [Google Scholar]
  68. M. Scohy, S. Abbou, V. Martin, B. Gilles, E. Sibert, L. Dubau, F. Maillard, ACS Catal., 2019, 9, (11), 9859 LINK https://doi.org/10.1021/acscatal.9b02988 [Google Scholar]
  69. A. BalaKrishnan, N. Blanc, U. Hagemann, P. Gemagami, K. Wonner, K. Tschulik, T. Li, Angew. Chem., 2021, 133, (39), 21566 LINK https://doi.org/10.1002/ange.202106790 [Google Scholar]
  70. A. Lončar, D. Escalera-López, S. Cherevko, N. Hodnik, Angew. Chem., 2022, 134, (14), e202114437 LINK https://doi.org/10.1002/ange.202114437 [Google Scholar]
  71. M. J. N. Pourbaix, J. Van Muylde, N. de Zoubov, Platinum Metals Rev., 1959, 3, (3), 100 LINK https://technology.matthey.com/article/3/3/100-106/ [Google Scholar]
  72. Z. Wang, Y.-R. Zheng, I. Chorkendorff, J. K. Nørskov, ACS Energy Lett., 2020, 5, (9), 2905 LINK https://doi.org/10.1021/acsenergylett.0c01625 [Google Scholar]
  73. S. Cherevko, J. Electroanal. Chem., 2017, 787, 11 LINK https://doi.org/10.1016/j.jelechem.2017.01.029 [Google Scholar]
  74. A. S. Raman, A. Vojvodic, J. Phys. Chem. C, 2022, 126, (2), 922 LINK https://doi.org/10.1021/acs.jpcc.1c08737 [Google Scholar]
  75. “Green Hydrogen Cost Reduction: Scaling Up Electrolysers to meet the 1.5°C Climate Goal”, IRENA (International Renewable Energy Agency), Abu Dhabi, Dubai, December, 2020 LINK https://www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction [Google Scholar]
  76. E. Rasten, G. Hagen, R. Tunold, Electrochim. Acta, 2003, 48, (25–26), 3945 LINK https://doi.org/10.1016/j.electacta.2003.04.001 [Google Scholar]
  77. H. Yu, N. Danilovic, Y. Wang, W. Willis, A. Poozhikunnath, L. Bonville, C. Capuano, K. Ayers, R. Maric, Appl. Catal. B: Environ., 2018, 239, 133 LINK https://doi.org/10.1016/j.apcatb.2018.07.064 [Google Scholar]
  78. C. Rozain, E. Mayousse, N. Guillet, P. Millet, Appl. Catal. B: Environ., 2016, 182, 123 LINK https://doi.org/10.1016/j.apcatb.2015.09.011 [Google Scholar]
  79. S. Siracusano, N. Van Dijk, R. Backhouse, L. Merlo, V. Baglio, A. S. Aricò, Renew. Energy, 2018, 123, 52 LINK https://doi.org/10.1016/j.renene.2018.02.024 [Google Scholar]
  80. A. J. Bard, L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications”, 2nd Edn., John Wiley and Sons Inc, New York, USA, 2001, 864 pp [Google Scholar]
  81. T. Ioroi, T. Nagai, Z. Siroma, K. Yasuda, Int. J. Hydrogen Energy, 2022, 47, (91), 38506 LINK https://doi.org/10.1016/j.ijhydene.2022.09.059 [Google Scholar]
  82. R. Kötz, S. Stucki, D. Scherson, D. M. Kolb, J. Electroanal. Chem. Interfacial Electrochem., 1984, 172, (1–2), 211 LINK https://doi.org/10.1016/0022-0728(84)80187-4 [Google Scholar]
  83. M. Vuković, J. Chem. Soc., Faraday Trans., 1990, 86, (22), 3743 LINK https://doi.org/10.1039/ft9908603743 [Google Scholar]
  84. M. Kroschel, A. Bonakdarpour, J. T. H. Kwan, P. Strasser, D. P. Wilkinson, Electrochim. Acta, 2019, 317, 722 LINK https://doi.org/10.1016/j.electacta.2019.05.011 [Google Scholar]
  85. P. J. Petzoldt, J. T. H. Kwan, A. Bonakdarpour, D. P. Wilkinson, J. Electrochem. Soc., 2021, 168, (2), 026507 LINK https://doi.org/10.1149/1945-7111/abde7d [Google Scholar]
  86. S. Cherevko, T. Reier, A. R. Zeradjanin, Z. Pawolek, P. Strasser, K. J. J. Mayrhofer, Electrochem. Commun., 2014, 48, 81 LINK https://doi.org/10.1016/j.elecom.2014.08.027 [Google Scholar]
  87. S. Cherevko, S. Geiger, O. Kasian, A. Mingers, K. J. J. Mayrhofer, J. Electroanal. Chem., 2016, 773, 69 LINK https://doi.org/10.1016/j.jelechem.2016.04.033 [Google Scholar]
  88. S. Cherevko, S. Geiger, O. Kasian, A. Mingers, K. J. J. Mayrhofer, J. Electroanal. Chem., 2016, 774, 102 LINK https://doi.org/10.1016/j.jelechem.2016.05.015 [Google Scholar]
  89. C. M. Zalitis, D. Kramer, A. R. Kucernak, Phys. Chem. Chem. Phys., 2013, 15, (12), 4329 LINK https://doi.org/10.1039/c3cp44431g [Google Scholar]
  90. M. Inaba, A. W. Jensen, G. W. Sievers, M. Escudero-Escribano, A. Zana, M. Arenz, Energy Environ. Sci., 2018, 11, (4), 988 LINK https://doi.org/10.1039/c8ee00019k [Google Scholar]
  91. A. Hrnjić, F. Ruiz-Zepeda, M. Gaberšček, M. Bele, L. Suhadolnik, N. Hodnik, P. Jovanovič, J. Electrochem. Soc., 2020, 167, (16), 166501 LINK https://doi.org/10.1149/1945-7111/abc9de [Google Scholar]
  92. R. Frydendal, E. A. Paoli, B. P. Knudsen, B. Wickman, P. Malacrida, I. E. L. Stephens, I. Chorkendorff, ChemElectroChem, 2014, 1, (12), 2075 LINK https://doi.org/10.1002/celc.201402262 [Google Scholar]
  93. D. A. Buttry, M. D. Ward, Chem. Rev., 1992, 92, (6), 1355 LINK https://doi.org/10.1021/cr00014a006 [Google Scholar]
  94. R. Frydendal, E. A. Paoli, I. Chorkendorff, J. Rossmeisl, I. E. L. Stephens, Adv. Energy Mater., 2015, 5, (22), 1500991 LINK https://doi.org/10.1002/aenm.201500991 [Google Scholar]
  95. D. B. Trimarco, S. B. Scott, A. H. Thilsted, J. Y. Pan, T. Pedersen, O. Hansen, I. Chorkendorff, P. C. K. Vesborg, Electrochim. Acta, 2018, 268, 520 LINK https://doi.org/10.1016/j.electacta.2018.02.060 [Google Scholar]
  96. F. Claudel, L. Dubau, G. Berthomé, L. Sola-Hernandez, C. Beauger, L. Piccolo, F. Maillard, ACS Catal., 2019, 9, (5), 4688 LINK https://doi.org/10.1021/acscatal.9b00280 [Google Scholar]
  97. C. C. L. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc., 2013, 135, (45), 16977 LINK https://doi.org/10.1021/ja407115p [Google Scholar]
  98. C. C. L. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc., 2015, 137, (13), 4347 LINK https://doi.org/10.1021/ja510442p [Google Scholar]
  99. W. Gou, M. Zhang, Y. Zou, X. Zhou, Y. Qu, ChemCatChem, 2019, 11, (24), 6008 LINK https://doi.org/10.1002/cctc.201901411 [Google Scholar]
  100. L. Li, P. Wang, Z. Cheng, Q. Shao, X. Huang, Nano Res., 2022, 15, (2), 1087 LINK https://doi.org/10.1007/s12274-021-3603-9 [Google Scholar]
  101. Z. Wang, Z. Zheng, Y. Xue, F. He, Y. Li, Adv. Energy Mater., 2021, 11, (32), 2170126 LINK https://doi.org/10.1002/aenm.202170126 [Google Scholar]
  102. Y. Chen, H. Li, J. Wang, Y. Du, S. Xi, Y. Sun, M. Sherburne, J. W. Ager, A. C. Fisher, Z. J. Xu, Nat. Commun., 2019, 10, 572 LINK https://doi.org/10.1038/s41467-019-08532-3 [Google Scholar]
  103. C. Spöri, C. Brand, M. Kroschel, P. Strasser, J. Electrochem. Soc., 2021, 168, (3), 034508 LINK https://doi.org/10.1149/1945-7111/abeb61 [Google Scholar]
  104. G. Tsotridis, A. Pilenga, “EU Harmonized Protocols for Testing of Low Temperature Water Electrolysis”, JRC Technical Report No. JRC122565, European Commission, Petten, The Netherlands, 2021, 171 pp LINK https://doi.org/10.2760/58880 [Google Scholar]
  105. N. Danilovic, R. Subbaraman, K.-C. Chang, S. H. Chang, Y. J. Kang, J. Snyder, A. P. Paulikas, D. Strmcnik, Y.-T. Kim, D. Myers, V. R. Stamenkovic, N. M. Markovic, J. Phys. Chem. Lett., 2014, 5, (14), 2474 LINK https://doi.org/10.1021/jz501061n [Google Scholar]
  106. C. D. Ferreira da Silva, F. Claudel, V. Martin, R. Chattot, S. Abbou, K. Kumar, I. Jiménez-Morales, S. Cavaliere, D. Jones, J. Rozière, L. Solà-Hernandez, C. Beauger, M. Faustini, J. Peron, B. Gilles, T. Encinas, L. Piccolo, F. H. Barros de Lima, L. Dubau, F. Maillard, ACS Catal., 2021, 11, (7), 4107 LINK https://doi.org/10.1021/acscatal.0c04613 [Google Scholar]
  107. J. Edgington, A. Deberghes, L. C. Seitz, ACS Appl. Energy Mater., 2022, 5, (10), 12206 LINK https://doi.org/10.1021/acsaem.2c01690 [Google Scholar]
  108. C. Wei, S. Sun, D. Mandler, X. Wang, S. Z. Qiao, Z. J. Xu, Chem. Soc. Rev., 2019, 48, (9), 2518 LINK https://doi.org/10.1039/c8cs00848e [Google Scholar]
  109. S. Watzele, P. Hauenstein, Y. Liang, S. Xue, J. Fichtner, B. Garlyyev, D. Scieszka, F. Claudel, F. Maillard, A. S. Bandarenka, ACS Catal., 2019, 9, (10), 9222 LINK https://doi.org/10.1021/acscatal.9b02006 [Google Scholar]
  110. O. Kasian, T. Li, A. M. Mingers, K. Schweinar, A. Savan, A. Ludwig, K. Mayrhofer, J. Phys. Energy, 2021, 3, (3), 034006 LINK https://doi.org/10.1088/2515-7655/abbd34 [Google Scholar]
  111. O. Kasian, S. Geiger, P. Stock, G. Polymeros, B. Breitbach, A. Savan, A. Ludwig, S. Cherevko, K. J. J. Mayrhofer, J. Electrochem. Soc., 2016, 163, (11), F 3099 LINK https://doi.org/10.1149/2.0131611jes [Google Scholar]
  112. O. Kasian, S. Geiger, K. J. J. Mayrhofer, S. Cherevko, Chem. Rec., 2019, 19, (10), 2130 LINK https://doi.org/10.1002/tcr.201800162 [Google Scholar]
  113. O. Kasian, S. Geiger, M. Schalenbach, A. M. Mingers, A. Savan, A. Ludwig, S. Cherevko, K. J. J. Mayrhofer, Electrocatalysis, 2018, 9, (2), 139 LINK https://doi.org/10.1007/s12678-017-0394-6 [Google Scholar]
  114. R. Zhang, P. E. Pearce, V. Pimenta, J. Cabana, H. Li, D. A. D. Corte, A. M. Abakumov, G. Rousse, D. Giaume, M. Deschamps, A. Grimaud, Chem. Mater., 2020, 32, (8), 3499 LINK https://doi.org/10.1021/acs.chemmater.0c00432 [Google Scholar]
  115. R. Zhang, N. Dubouis, M. B. Osman, W. Yin, M. T. Sougrati, D. A. D. Corte, D. Giaume, A. Grimaud, Angew. Chem. Int. Ed., 2019, 58, (14), 4571 LINK https://doi.org/10.1002/anie.201814075 [Google Scholar]
  116. S. Geiger, O. Kasian, A. M. Mingers, S. S. Nicley, K. Haenen, K. J. J. Mayrhofer, S. Cherevko, ChemSusChem, 2017, 10, (21), 4140 LINK https://doi.org/10.1002/cssc.201701523 [Google Scholar]
  117. M. Bernt, A. Hartig-Weiß, M. F. Tovini, H. A. El-Sayed, C. Schramm, J. Schröter, C. Gebauer, H. A. Gasteiger, Chem. Ing. Tech., 2020, 92, (1–2), 31 LINK https://doi.org/10.1002/cite.201900101 [Google Scholar]
  118. E. Oakton, D. Lebedev, M. Povia, D. F. Abbott, E. Fabbri, A. Fedorov, M. Nachtegaal, C. Copéret, T. J. Schmidt, ACS Catal., 2017, 7, (4), 2346 LINK https://doi.org/10.1021/acscatal.6b03246 [Google Scholar]
  119. N. Trogisch, M. Koch, E. N. El Sawy, H. A. El-Sayed, ACS Catal., 2022, 12, (21), 13715 LINK https://doi.org/10.1021/acscatal.2c03881 [Google Scholar]
  120. A. Voronova, H.-J. Kim, J. H. Jang, H.-Y. Park, B. Seo, Int. J. Energy Res., 2022, 46, (9), 11867 LINK https://doi.org/10.1002/er.7953 [Google Scholar]
  121. G. Papakonstantinou, G. Algara-Siller, D. Teschner, T. Vidaković-Koch, R. Schlögl, K. Sundmacher, Appl. Energy, 2020, 280, 115911 LINK https://doi.org/10.1016/j.apenergy.2020.115911 [Google Scholar]
  122. R. Tang-Kong, C. E. D. Chidsey, P. C. McIntyre, J. Electrochem. Soc., 2019, 166, (14), H712 LINK https://doi.org/10.1149/2.0491914jes [Google Scholar]
  123. G. Papakonstantinou, I. Spanos, A. P. Dam, R. Schlögl, K. Sundmacher, Phys. Chem. Chem. Phys., 2022, 24, (23), 14579 LINK https://doi.org/10.1039/d2cp00828a [Google Scholar]
  124. X. Tan, J. Shen, N. Semagina, M. Secanell, J. Catal., 2019, 371, 57 LINK https://doi.org/10.1016/j.jcat.2019.01.018 [Google Scholar]
  125. Y.-R. Zheng, J. Vernieres, Z. Wang, K. Zhang, D. Hochfilzer, K. Krempl, T.-W. Liao, F. Presel, T. Altantzis, J. Fatermans, S. B. Scott, N. M. Secher, C. Moon, P. Liu, S. Bals, S. Van Aert, A. Cao, M. Anand, J. K. Nørskov, J. Kibsgaard, I. Chorkendorff, Nat. Energy, 2022, 7, (1), 55 LINK https://doi.org/10.1038/s41560-021-00948-w [Google Scholar]
  126. T. Malkow, G. De Marco, G. Tsotridis, “EU Harmonised Cyclic Voltammetry Test Method for Low Temperature Water Electrolysis Single Cells”, JRC Validated Methods, Reference Methods and Measurement Report No. JRC111151, European Union, Petten, The Netherlands, 2018, 28 pp LINK https://doi.org/10.2760/140687 [Google Scholar]
  127. T. Malkow, A. Pilenga, G. Tsotridis, “EU Harmonised Test Procedure: Electrochemical Impedance Spectroscopy for Water Electrolysis Cells”, JRC Validated Methods, Reference Methods and Measurement Report No. JRC107053, European Union, Petten, The Netherlands, 2018, 33 pp LINK https://doi.org/10.2760/8984 [Google Scholar]
  128. T. Malkow, A. Pilenga, G. Tsotridis, “EU Harmonised Polarisation Curve Test Method for Low Temperature Water Electrolysis”, JRC Validated Methods, Reference Methods and Measurement Report No. JRC104045, European Union, Petten, The Netherlands, 2018, 48 pp LINK https://doi.org/10.2760/179509 [Google Scholar]
  129. S. Siracusano, V. Baglio, S. A. Grigoriev, L. Merlo, V. N. Fateev, A. S. Aricò, J. Power Sources, 2017, 366, 105 LINK https://doi.org/10.1016/j.jpowsour.2017.09.020 [Google Scholar]
  130. T. Reier, Z. Pawolek, S. Cherevko, M. Bruns, T. Jones, D. Teschner, S. Selve, A. Bergmann, H. N. Nong, R. Schlögl, K. J. J. Mayrhofer, P. Strasser, J. Am. Chem. Soc., 2015, 137, (40), 13031 LINK https://doi.org/10.1021/jacs.5b07788 [Google Scholar]
  131. V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, C. Massué, R. Arrigo, D. Teschner, F. Girgsdies, M. Scherzer, M. T. Greiner, J. Allan, M. Hashagen, G. Weinberg, S. Piccinin, M. Hävecker, A. Knop-Gericke, R. Schlögl, Surf. Interface Anal., 2015, 48, (5), 261 LINK https://doi.org/10.1002/sia.5895 [Google Scholar]
  132. C. Rozain, E. Mayousse, N. Guillet, P. Millet, Appl. Catal. B: Environ., 2016, 182, 153 LINK https://doi.org/10.1016/j.apcatb.2015.09.013 [Google Scholar]
  133. M. Balcerzak, Anal. Sci., 2002, 18, (7), 737 LINK https://doi.org/10.2116/analsci.18.737 [Google Scholar]
  134. S. Lee, X. Bi, R. B. Reed, J. F. Ranville, P. Herckes, P. Westerhoff, Environ. Sci. Technol., 2014, 48, (17), 10291 LINK https://doi.org/10.1021/es502422v [Google Scholar]
  135. W. Sun, Z. Zhou, W. Q. Zaman, L. Cao, J. Yang, ACS Appl. Mater. Interfaces, 2017, 9, (48), 41855 LINK https://doi.org/10.1021/acsami.7b12775 [Google Scholar]
  136. E. Willinger, C. Massué, R. Schlögl, M. G. Willinger, J. Am. Chem. Soc., 2017, 139, (34), 12093 LINK https://doi.org/10.1021/jacs.7b07079 [Google Scholar]
  137. J. Huang, S. B. Scott, I. Chorkendorff, Z. Wen, ACS Catal., 2021, 11, (20), 12745 LINK https://doi.org/10.1021/acscatal.1c03430 [Google Scholar]
  138. S. B. Scott, R. R. Rao, C. Moon, J. E. Sørensen, J. Kibsgaard, Y. Shao-Horn, I. Chorkendorff, Energy Environ. Sci., 2022, 15, (5), 1977 LINK https://doi.org/10.1039/d1ee03914h [Google Scholar]
  139. L. Moriau, M. Smiljanić, A. Lončar, N. Hodnik, ChemCatChem, 2022, 14, (20), e202200586 LINK https://doi.org/10.1002/cctc.202200586 [Google Scholar]
  140. S. Abbou, R. Chattot, V. Martin, F. Claudel, L. Solà-Hernandez, C. Beauger, L. Dubau, F. Maillard, ACS Catal., 2020, 10, (13), 7283 LINK https://doi.org/10.1021/acscatal.0c01084 [Google Scholar]
  141. H. Tang, S. Peikang, S. P. Jiang, F. Wang, M. Pan, J. Power Sources, 2007, 170, (1), 85 LINK https://doi.org/10.1016/j.jpowsour.2007.03.061 [Google Scholar]
  142. M. Retuerto, L. Pascual, J. Torrero, M. A. Salam, Á. Tolosana-Moranchel, D. Gianolio, P. Ferrer, P. Kayser, V. Wilke, S. Stiber, V. Celorrio, M. Mokthar, D. G. Sanchez, A. S. Gago, K. A. Friedrich, M. A. Peña, J. A. Alonso, S. Rojas, Nat. Commun., 2022, 13, 7935 LINK https://doi.org/10.1038/s41467-022-35631-5 [Google Scholar]
  143. M. J. Burch, K. A. Lewinski, M. I. Buckett, S. Luopa, F. Sun, E. J. Olson, A. J. Steinbach, J. Power Sources, 2021, 500, 229978 LINK https://doi.org/10.1016/j.jpowsour.2021.229978 [Google Scholar]
  144. J. Murawski, S. B. Scott, R. Rao, K. Rigg, C. Zalitis, J. Stevens, J. Sharman, G. Hinds, I. E. L. Stephens, Johnson Matthey Technol. Rev., 2024, 68, (1), 147 LINK https://doi.org/10.1595/205651323X16848455435118 [Google Scholar]
/content/journals/10.1595/205651323X16848455435118
Loading
/content/journals/10.1595/205651323X16848455435118
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test