Skip to content
1887
Volume 68 Number 2
  • ISSN: 2056-5135
  • oa Mechanochemistry: A Green and Fast Method to Prepare a New Generation of Metal Supported Catalysts

    Rational design leads to novel properties

  • Authors: Maila Danielis1, Sara Colussi1, Núria J. Divins2, Lluís Soler2, Alessandro Trovarelli1 and Jordi Llorca2
  • Affiliations: 1 Dipartimento Politecnico, Università degli Studi di UdineVia del Cotonificio 108, 33100 UdineItaly 2 Departament d’Enginyeria Química, Institut de Tècniques Energètiques, Centre de Recerca de Ciència i Enginyeria Multiescala de Barcelona, Universitat Politècnica de Catalunya, EEBEEduard Maristany 10–14, 08019 BarcelonaSpain
  • Source: Johnson Matthey Technology Review, Volume 68, Issue 2, Apr 2024, p. 217 - 231
  • DOI: https://doi.org/10.1595/205651323X16933888986996
    • Received: 29 Jun 2023
    • Accepted: 29 Aug 2023
    • Published online: 30 Aug 2023

Abstract

In this review, we report on recent advances in the use of mechanochemistry to synthesise new catalytic materials. We report recent results obtained by our groups where a rational design of the milling parameters led to the synthesis of advanced materials with novel properties such as unconventional arrangements of metals on the surface of oxide support materials, highly dispersed metals or the stabilisation of species in particular oxidation states. These properties resulted in superior catalytic performances of the mechanochemically-synthesised catalysts compared to their counterparts prepared by traditional impregnation methods. To illustrate these advances, we review the progress made in two important fields of catalysis where noble metals are used: (i) emission control catalysis using palladium-based materials; (ii) the development of photocatalysts to produce hydrogen based on gold and palladium materials.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16933888986996
2023-08-30
2024-12-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/2/Llorca_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16933888986996&mimeType=html&fmt=ahah

References

  1. L. Takacs, Chem. Soc. Rev., 2013, 42, (18), 7649 LINK https://doi.org/10.1039/c2cs35442j [Google Scholar]
  2. P. Baláž, M. Achimovičová, M. Baláž, P. Billik, Z. Cherkezova-Zheleva, J. M. Criado, F. Delogu, E. Dutková, E. Gaffet, F. J. Gotor, R. Kumar, I. Mitov, T. Rojac, M. Senna, A. Streletskii, K. Wieczorek-Ciurowa, Chem. Soc. Rev., 2013, 42, (18), 7571 LINK https://doi.org/10.1039/c3cs35468g [Google Scholar]
  3. M. G. Rinaudo, A. M. Beltrán, M. A. Fernández, L. E. Cadús, M. R. Morales, Mater. Today Chem., 2020, 17, 100340 LINK https://doi.org/10.1016/j.mtchem.2020.100340 [Google Scholar]
  4. M. H. Enayati, F. A. Mohamed, Int. Mater. Rev., 2014, 59, (7), 394 LINK https://doi.org/10.1179/1743280414Y.0000000036 [Google Scholar]
  5. V. Šepelák, A. Düvel, M. Wilkening, K.-D. Becker, P. Heitjans, Chem. Soc. Rev., 2013, 42, (18), 7507 LINK https://doi.org/10.1039/c2cs35462d [Google Scholar]
  6. K. J. Ardila-Fierro, J. G. Hernández, ChemSusChem, 2021, 14, (10), 2145 LINK https://doi.org/10.1002/cssc.202100478 [Google Scholar]
  7. T. Iwasaki, KONA Powder Part. J., 2022, 40, 186 LINK https://doi.org/10.14356/kona.2023014 [Google Scholar]
  8. A. P. Amrute, J. De Bellis, M. Felderhoff, F. Schüth, Chem. Eur. J., 2021, 27, (23), 6819 LINK https://doi.org/10.1002/chem.202004583 [Google Scholar]
  9. B. Szczȩśniak, J. Choma, M. Jaroniec, Mater. Adv., 2021, 2, (8), 2510 LINK https://doi.org/10.1039/D1MA00073J [Google Scholar]
  10. J.-L. Do, T. Friščić, ACS Cent. Sci., 2017, 3, (1), 13 LINK https://doi.org/10.1021/acscentsci.6b00277 [Google Scholar]
  11. R. A. Buyanov, V. V. Molchanov, V. V. Boldyrev, Catal. Today, 2009, 144, (3–4), 212 LINK https://doi.org/10.1016/j.cattod.2009.02.042 [Google Scholar]
  12. X. Jiang, M. A. Trunov, M. Schoenitz, R. N. Dave, E. L. Dreizin, J. Alloys Compd., 2009, 478, (1–2), 246 LINK https://doi.org/10.1016/j.jallcom.2008.12.021 [Google Scholar]
  13. M. J. Muñoz-Batista, D. Rodriguez-Padron, A. R. Puente-Santiago, R. Luque, ACS Sustain. Chem. Eng., 2018, 6, (8), 9530 LINK https://doi.org/10.1021/acssuschemeng.8b01716 [Google Scholar]
  14. R. Schlem, C. F. Burmeister, P. Michalowski, S. Ohno, G. F. Dewald, A. Kwade, W. G. Zeier, Adv. Energy Mater., 2021, 11, (30), 2101022 LINK https://doi.org/10.1002/aenm.202101022 [Google Scholar]
  15. D. N. Rainer, R. E. Morris, Dalton Trans., 2021, 50, (26), 8995 LINK https://doi.org/10.1039/D1DT01440D [Google Scholar]
  16. S. Głowniak, B. Szczȩśniak, J. Choma, M. Jaroniec, Mater. Today, 2021, 46, 109 LINK https://doi.org/10.1016/j.mattod.2021.01.008 [Google Scholar]
  17. M. F. Thorne, M. L. R. Gómez, A. M. Bumstead, S. Li, T. D. Bennett, Green Chem., 2020, 22, (8), 2505 LINK https://doi.org/10.1039/D0GC00546K [Google Scholar]
  18. O. Lapshin, O. Ivanova, Adv. Powder Technol., 2022, 33, (12), 103852 LINK https://doi.org/10.1016/j.apt.2022.103852 [Google Scholar]
  19. G.-F. Han, F. Li, Z.-W. Chen, C. Coppex, S.-J. Kim, H.-J. Noh, Z. Fu, Y. Lu, C. V. Singh, S. Siahrostami, Q. Jiang, J.-B. Baek, Nat. Nanotechnol., 2021, 16, (3), 325 LINK https://doi.org/10.1038/s41565-020-00809-9 [Google Scholar]
  20. C. Bolm, J. G. Hernández, Angew. Chem. Int. Ed., 2019, 58, (11), 3285 LINK https://doi.org/10.1002/anie.201810902 [Google Scholar]
  21. H. Schreyer, R. Eckert, S. Immohr, J. de Bellis, M. Felderhoff, F. Schüth, Angew. Chem. Int. Ed., 2019, 58, (33), 11262 LINK https://doi.org/10.1002/anie.201903545 [Google Scholar]
  22. C. Gomes, C. S. Vinagreiro, L. Damas, G. Aquino, J. Quaresma, C. Chaves, J. Pimenta, J. Campos, M. Pereira, M. Pineiro, ACS Omega, 2020, 5, (19), 10868 LINK https://doi.org/10.1021/acsomega.0c00521 [Google Scholar]
  23. R. R. A. Bolt, J. A. Leitch, A. C. Jones, W. I. Nicholson, D. L. Browne, Chem. Soc. Rev., 2022, 51, (11), 4243 LINK https://doi.org/10.1039/D1CS00657F [Google Scholar]
  24. J. Casaban, Y. Zhang, R. Pacheco, C. Coney, C. Holmes, E. Sutherland, C. Hamill, J. Breen, S. L. James, D. Tufano, D. Wong, E. Stavrakakis, H. Annath, A. Moore, Faraday Discuss., 2021, 231, 312 LINK https://doi.org/10.1039/D1FD00025J [Google Scholar]
  25. A. F. Fuentes, L. Takacs, J. Mater. Sci., 2013, 48, (2), 598 LINK https://doi.org/10.1007/s10853-012-6909-x [Google Scholar]
  26. M. Danielis, S. Colussi, C. de Leitenburg, L. Soler, J. Llorca, A. Trovarelli, Angew. Chem. Int. Ed., 2018, 57, (32), 10212 LINK https://doi.org/10.1002/anie.201805929 [Google Scholar]
  27. Y. Chen, L. Soler, C. Xie, X. Vendrell, J. Serafin, D. Crespo, J. Llorca, Appl. Mater. Today, 2020, 21, 100873 LINK https://doi.org/10.1016/j.apmt.2020.100873 [Google Scholar]
  28. Q. Liu, Y. Xu, Y. Zhao, K. Wang, C. Liang, S. Zhao, X. Wang, X. Guo, N. Xue, W. Ding, Adv. Mater. Technol., 2023, 8, (10), 2202007 LINK https://doi.org/10.1002/admt.202202007 [Google Scholar]
  29. M. Li, T. Zhang, S.-Z. Yang, Y. Sun, J. Zhang, F. Polo-Garzon, K. M. Siniard, X. Yu, Z. Wu, D. M. Driscoll, A. S. Ivanov, H. Chen, Z. Yang, S. Dai, ACS Catal., 2023, 13, (9), 6114 LINK https://doi.org/10.1021/acscatal.2c05730 [Google Scholar]
  30. L. F. Orozco, D.-H. Nguyen, J.-Y. Delenne, P. Sornay, F. Radjai, Powder Technol., 2020, 362, 157 LINK https://doi.org/10.1016/j.powtec.2019.12.014 [Google Scholar]
  31. Y. T. Feng, K. Han, D. R. J. Owen, Mater. Sci. Eng.: A, 2004, 375–377, 815 LINK https://doi.org/10.1016/j.msea.2003.10.162 [Google Scholar]
  32. W. Chen, R. N. Dave, R. Pfeffer, O. Walton, Powder Technol., 2004, 146, (1–2), 121 LINK https://doi.org/10.1016/j.powtec.2004.07.014 [Google Scholar]
  33. C. Suryanarayana, Prog. Mater. Sci., 2001, 46, (1–2), 1 LINK https://doi.org/10.1016/S0079-6425(99)00010-9 [Google Scholar]
  34. E. Aneggi, V. Rico-Perez, C. de Leitenburg, S. Maschio, L. Soler, J. Llorca, A. Trovarelli, Angew. Chem. Int. Ed., 2015, 54, (47), 14040 LINK https://doi.org/10.1002/anie.201507839 [Google Scholar]
  35. M. Danielis, S. Colussi, C. de Leitenburg, L. Soler, J. Llorca, A. Trovarelli, Catal. Sci. Technol., 2019, 9, (16), 4232 LINK https://doi.org/10.1039/C9CY01098J [Google Scholar]
  36. M. G. Rinaudo, G. Pecchi, L. E. Cadús, M. R. Morales, Ceram. Int., 2023, 49, (11B), 18614 LINK https://doi.org/10.1016/j.ceramint.2023.02.237 [Google Scholar]
  37. A. K. Datye, M. Votsmeier, Nat. Mater., 2021, 20, (8), 1049 LINK https://doi.org/10.1038/s41563-020-00805-3 [Google Scholar]
  38. R. J. Farrauto, M. Deeba, S. Alerasool, Nat. Catal., 2019, 2, (7), 603 LINK https://doi.org/10.1038/s41929-019-0312-9 [Google Scholar]
  39. C. Morgan, J. Goodwin, Johnson Matthey Technol. Rev., 2023, 67, (2), 239 LINK https://doi.org/10.1595/205651323X16805977899699 [Google Scholar]
  40. C. Hagelüken, J. U. Lee-Shin, A. Carpentier, C. Heron, Recycling, 2016, 1, (2), 242 LINK https://doi.org/10.3390/recycling1020242 [Google Scholar]
  41. M. Monai, T. Montini, R. J. Gorte, P. Fornasiero, Eur. J. Inorg. Chem., 2018, (25), 2884 LINK https://doi.org/10.1002/ejic.201800326 [Google Scholar]
  42. P. T. Benavides, D. C. Cronauer, F. Adom, Z. Wang, J. B. Dunn, Sust. Mater. Technol., 2017, 11, 53 LINK https://doi.org/10.1016/j.susmat.2017.01.002 [Google Scholar]
  43. N. Kotake, M. Kuboki, S. Kiya, Y. Kanda, Adv. Powder Technol., 2011, 22, (1), 86 LINK https://doi.org/10.1016/j.apt.2010.03.015 [Google Scholar]
  44. D. Chen, B. Liu, W. Xu, C. Zhang, E. Guo, J. Lu, G. Sun, Y. Pan, J. Zhang, X. Lu, Adv. Powder Technol., 2022, 33, (11), 103803 LINK https://doi.org/10.1016/j.apt.2022.103803 [Google Scholar]
  45. E. D. Goodman, A. C. Johnston-Peck, E. M. Dietze, C. J. Wrasman, A. S. Hoffman, F. Abild-Pedersen, S. R. Bare, P. N. Plessow, M. Cargnello, Nat. Catal., 2019, 2, (9), 748 LINK https://doi.org/10.1038/s41929-019-0328-1 [Google Scholar]
  46. A. M. Gänzler, M. Casapu, P. Vernoux, S. Loridant, F. J. C. S. Aires, T. Epicier, B. Betz, R. Hoyer, J.-D. Grunwaldt, Angew. Chem. Int. Ed., 2017, 56, (42), 13078 LINK https://doi.org/10.1002/anie.201707842 [Google Scholar]
  47. H. Jeong, O. Kwon, B.-S. Kim, J. Bae, S. Shin, H.-E. Kim, J. Kim, H. Lee, Nat. Catal., 2020, 3, (4), 368 LINK https://doi.org/10.1038/s41929-020-0427-z [Google Scholar]
  48. H. Wang, J.-X. Liu, L. F. Allard, S. Lee, J. Liu, H. Li, J. Wang, J. Wang, S. H. Oh, W. Li, M. Flytzani-Stephanopoulos, M. Shen, B. R. Goldsmith, M. Yang, Nat. Commun., 2019, 10, 3808 LINK https://doi.org/10.1038/s41467-019-11856-9 [Google Scholar]
  49. Y. Hu, B. Li, C. Yu, H. Fang, Z. Li, Mater. Today, 2023, 63, 288 LINK https://doi.org/10.1016/j.mattod.2023.01.019 [Google Scholar]
  50. G.-F. Han, F. Li, A. I. Rykov, Y.-K. Im, S.-Y. Yu, J.-P. Jeon, S.-J. Kim, W. Zhou, R. Ge, Z. Ao, T. J. Shin, J. Wang, H. Y. Jeong, J.-B. Baek, Nat. Nanotechnol., 2022, 17, (4), 403 LINK https://doi.org/10.1038/s41565-022-01075-7 [Google Scholar]
  51. X. He, Y. Deng, Y. Zhang, Q. He, D. Xiao, M. Peng, Y. Zhao, H. Zhang, R. Luo, T. Gan, H. Ji, D. Ma, Cell Rep. Phys. Sci., 2020, 1, (1), 100004 LINK https://doi.org/10.1016/j.xcrp.2019.100004 [Google Scholar]
  52. M. Danielis, L. E. Betancourt, I. Orozco, N. J. Divins, J. Llorca, J. A. Rodríguez, S. D. Senanayake, S. Colussi, A. Trovarelli, Appl. Catal. B: Environ., 2021, 282, 119567 LINK https://doi.org/10.1016/j.apcatb.2020.119567 [Google Scholar]
  53. Y. Chen, L. Soler, M. Armengol-Profitós, C. Xie, D. Crespo, J. Llorca, Appl. Catal. B: Environ., 2022, 309, 121275 LINK https://doi.org/10.1016/j.apcatb.2022.121275 [Google Scholar]
  54. A. Raj, Johnson Matthey Technol. Rev., 2016, 60, (4), 228 LINK https://doi.org/10.1595/205651316X692554 [Google Scholar]
  55. S. Colussi, A. Gayen, J. Llorca, C. de Leitenburg, G. Dolcetti, A. Trovarelli, Ind. Eng. Chem. Res., 2012, 51, (22), 7510 LINK https://doi.org/10.1021/ie2016625 [Google Scholar]
  56. S. Colussi, A. Gayen, M. F. Camellone, M. Boaro, J. Llorca, S. Fabris, A. Trovarelli, Angew. Chem. Int. Ed., 2009, 48, (45), 8481 LINK https://doi.org/10.1002/anie.200903581 [Google Scholar]
  57. A. Toso, S. Colussi, S. Padigapaty, C. de Leitenburg, A. Trovarelli, Appl. Catal. B: Environ., 2018, 230, 237 LINK https://doi.org/10.1016/j.apcatb.2018.02.049 [Google Scholar]
  58. A. Trovarelli, F. Zamar, J. Llorca, C. de Leitenburg, G. Dolcetti, J. T. Kiss, J. Catal., 1997, 169, (2), 490 LINK https://doi.org/10.1006/jcat.1997.1705 [Google Scholar]
  59. M. Danielis, N. J. Divins, J. Llorca, L. Soler, X. Garcia, I. Serrano, L. E. Betancourt, W. Xu, J. A. Rodríguez, S. D. Senanayake, S. Colussi, A. Trovarelli, EES. Catal., 2023, 1, (1), 144 LINK https://doi.org/10.1039/D2EY00067A [Google Scholar]
  60. A. Mussio, M. Danielis, N. J. Divins, J. Llorca, S. Colussi, A. Trovarelli, ACS Appl. Mater. Interfaces, 2021, 13, (27), 31614 LINK https://doi.org/10.1021/acsami.1c05050 [Google Scholar]
  61. N. J. Divins, A. Braga, X. Vendrell, I. Serrano, X. Garcia, L. Soler, I. Lucentini, M. Danielis, A. Mussio, S. Colussi, I. J. Villar-Garcia, C. Escudero, A. Trovarelli, J. Llorca, Nat. Commun., 2022, 13, 5080 LINK https://doi.org/10.1038/s41467-022-32765-4 [Google Scholar]
  62. M. Danielis, S. Colussi, J. Llorca, R. H. Dolan, G. Cavataio, A. Trovarelli, Ind. Eng. Chem. Res., 2021, 60, (18), 6435 LINK https://doi.org/10.1021/acs.iecr.0c05207 [Google Scholar]
  63. M. Danielis, S. Colussi, C. de Leitenburg, A. Trovarelli, Catal. Commun., 2020, 135, 105899 LINK https://doi.org/10.1016/j.catcom.2019.105899 [Google Scholar]
  64. A. Hellman, A. Resta, N. M. Martin, J. Gustafson, A. Trinchero, P.-A. Carlsson, O. Balmes, R. Felici, R. van Rijn, J. W. M. Frenken, J. N. Andersen, E. Lundgren, H. Grönbeck, J. Phys. Chem. Lett., 2012, 3, (6), 678 LINK https://doi.org/10.1021/jz300069s [Google Scholar]
  65. S. Colussi, P. Fornasiero, A. Trovarelli, Chin. J. Catal., 2020, 41, (6), 938 LINK https://doi.org/10.1016/S1872-2067(19)63510-2 [Google Scholar]
  66. T. Franken, M. Roger, A. W. Petrov, A. H. Clark, M. Agote-Arán, F. Krumeich, O. Kröcher, D. Ferri, ACS Catal., 2021, 11, (8), 4870 LINK https://doi.org/10.1021/acscatal.1c00328 [Google Scholar]
  67. W. Huang, E. D. Goodman, P. Losch, M. Cargnello, Ind. Eng. Chem. Res., 2018, 57, (31), 10261 LINK https://doi.org/10.1021/acs.iecr.8b01915 [Google Scholar]
  68. M. Cargnello, J. J. D. Jaen, J. C. H. Garrido, K. Bakhmutsky, T. Montini, J. J. C. Gamez, R. J. Gorte, P. Fornasiero, Science, 2012, 337, (6095), 713 LINK https://doi.org/10.1126/science.1222887 [Google Scholar]
  69. R. Gholami, M. Alyani, K. Smith, Catalysts, 2015, 5, (2), 561 LINK https://doi.org/10.3390/catal5020561 [Google Scholar]
  70. J. D. Jiménez, L. E. Betancourt, M. Danielis, H. Zhang, F. Zhang, I. Orozco, W. Xu, J. Llorca, P. Liu, A. Trovarelli, J. A. Rodríguez, S. Colussi, S. D. Senanayake, ACS Catal., 2022, 12, (20), 12809 LINK https://doi.org/10.1021/acscatal.2c01120 [Google Scholar]
  71. M. Danielis, J. D. Jiménez, N. Rui, J. Moncada, L. E. Betancourt, A. Trovarelli, J. A. Rodriguez, S. D. Senanayake, S. Colussi, Appl. Catal. A: Gen., 2023, 660, 119185 LINK https://doi.org/10.1016/j.apcata.2023.119185 [Google Scholar]
  72. A. Toso, M. Danielis, C. de Leitenburg, M. Boaro, A. Trovarelli, S. Colussi, Ind. Eng. Chem. Res., 2022, 61, (9), 3329 LINK https://doi.org/10.1021/acs.iecr.1c04805 [Google Scholar]
  73. Y. M. Alsalik, K. Katsiev, H. Idriss, J. Phys. Chem. C, 2022, 126, (36), 15184 LINK https://doi.org/10.1021/acs.jpcc.2c04025 [Google Scholar]
  74. R. Yang, Y. Fan, Y. Zhang, L. Mei, R. Zhu, J. Qin, J. Hu, Z. Chen, Y. H. Ng, D. Voiry, S. Li, Q. Lu, Q. Wang, J. C. Yu, Z. Zeng, Angew. Chem. Int. Ed., 2023, 62, (13), e202218016 LINK https://doi.org/10.1002/anie.202218016 [Google Scholar]
  75. Z. Wang, C. Li, K. Domen, Chem. Soc. Rev., 2019, 48, (7), 2109 LINK https://doi.org/10.1039/c8cs00542g [Google Scholar]
  76. J. Ma, T. J. Miao, J. Tang, Chem. Soc. Rev., 2022, 51, (14), 5777 LINK https://doi.org/10.1039/d1cs01164b [Google Scholar]
  77. F. Matter, M. Niederberger, Adv. Sci., 2022, 9, (13), 2105363 LINK https://doi.org/10.1002/advs.202105363 [Google Scholar]
  78. S. Yin, H. Yamaki, M. Komatsu, Q. Zhang, J. Wang, Q. Tang, F. Saito, T. Sato, Solid State Sci., 2005, 7, (12), 1479 LINK https://doi.org/10.1016/j.solidstatesciences.2005.07.004 [Google Scholar]
  79. Q. Zhang, J. Wang, S. Yin, T. Sato, F. Saito, J. Am. Ceram. Soc., 2004, 87, (6), 1161 LINK https://doi.org/10.1111/j.1551-2916.2004.01161.x [Google Scholar]
  80. Z. Zhou, X. Zhang, Z. Wu, L. Dong, Chin. Sci. Bull., 2005, 50, (23), 2691 LINK https://doi.org/10.1007/BF02899637 [Google Scholar]
  81. T. Umebayashi, T. Yamaki, S. Tanaka, K. Asai, Chem. Lett., 2003, 32, (4), 330 LINK https://doi.org/10.1246/cl.2003.330 [Google Scholar]
  82. Y. C. Tang, X.-H. Huang, H.-Q. Yu, L.-H. Tang, Int. J. Photoenergy, 2012, 960726 LINK https://doi.org/10.1155/2012/960726 [Google Scholar]
  83. T. K. Ghorai, M. Chakraborty, P. Pramanik, J. Alloys Compd., 2011, 509, (32), 8158 LINK https://doi.org/10.1016/j.jallcom.2011.05.069 [Google Scholar]
  84. W. Subramonian, T. Y. Wu, S.-P. Chai, J. Alloys Compd., 2017, 695, 496 LINK https://doi.org/10.1016/j.jallcom.2016.10.006 [Google Scholar]
  85. Y. Zhu, Q. Ling, Y. Liu, H. Wang, Y. Zhu, Phys. Chem. Chem. Phys., 2015, 17, (2), 933 LINK https://doi.org/10.1039/c4cp04628e [Google Scholar]
  86. W. Ouyang, E. Kuna, A. Yepez, A. M. Balu, A. A. Romero, J. C. Colmenares, R. Luque, Nanomaterials, 2016, 6, (5), 93 LINK https://doi.org/10.3390/nano6050093 [Google Scholar]
  87. C. Marchal, M. Behr, F. Vigneron, V. Caps, V. Keller, New J. Chem., 2016, 40, (5), 4428 LINK https://doi.org/10.1039/c5nj03053f [Google Scholar]
  88. C. Marchal, A. Piquet, M. Behr, T. Cottineau, V. Papaefthimiou, V. Keller, V. Caps, J. Catal., 2017, 352, 22 LINK https://doi.org/10.1016/j.jcat.2017.04.035 [Google Scholar]
  89. Y. Chen, L. Soler, C. Xie, X. Vendrell, J. Serafin, D. Crespo, J. Llorca, Appl. Mater. Today, 2020, 21, 100873 LINK https://doi.org/10.1016/j.apmt.2020.100873 [Google Scholar]
  90. A. Pollap, J. Serafin, I. Serrano, J. Srenscek-Nazzal, J. Llorca, J. Env. Chem. Eng., 2022, 10, (6), 108877 LINK https://doi.org/10.1016/j.jece.2022.108877 [Google Scholar]
  91. Y. Chen, L. Soler, M. Armengol-Profitós, C. Xie, D. Crespo, J. Llorca, Appl. Catal. B: Environ., 2022, 309, 121275 LINK https://doi.org/10.1016/j.apcatb.2022.121275 [Google Scholar]
  92. S. Ge, Y. Chen, Y. Guo, J. Llorca, L. Soler, Appl. Mater. Today, 2023, 33, 101857 LINK https://doi.org/10.1016/j.apmt.2023.101857 [Google Scholar]
  93. S. Fazlikeshteli, X. Vendrell, J. Llorca, Int. J. Hydrogen Energy, 2023, 48, (32), 12024 LINK https://doi.org/10.1016/j.ijhydene.2022.07.020 [Google Scholar]
  94. S. Fazlikeshteli, X. Vendrell, J. Llorca, Fuel, 2023, 334, (2), 126799 LINK https://doi.org/10.1016/j.fuel.2022.126799 [Google Scholar]
  95. S. Fazlikeshteli, X. Vendrell, J. Llorca, Int. J. Hydrogen Energy, 2023, 51, (A), 1494 LINK https://doi.org/10.1016/j.ijhydene.2023.07.349 [Google Scholar]
  96. A. Braga, M. Armengol-Profitós, L. Pascua-Solé, X. Vendrell, L. Soler, I. Serrano, I. J. Villar-Garcia, V. Pérez-Dieste, N. J. Divins, J. Llorca, ACS Appl. Nano Mater., 2023, 6, (9), 7173 LINK https://doi.org/10.1021/acsanm.3c00104 [Google Scholar]
/content/journals/10.1595/205651323X16933888986996
Loading
/content/journals/10.1595/205651323X16933888986996
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test