Skip to content
1887
Volume 68 Number 2
  • ISSN: 2056-5135

Abstract

In this review, we report on recent advances in the use of mechanochemistry to synthesise new catalytic materials. We report recent results obtained by our groups where a rational design of the milling parameters led to the synthesis of advanced materials with novel properties such as unconventional arrangements of metals on the surface of oxide support materials, highly dispersed metals or the stabilisation of species in particular oxidation states. These properties resulted in superior catalytic performances of the mechanochemically-synthesised catalysts compared to their counterparts prepared by traditional impregnation methods. To illustrate these advances, we review the progress made in two important fields of catalysis where noble metals are used: (i) emission control catalysis using palladium-based materials; (ii) the development of photocatalysts to produce hydrogen based on gold and palladium materials.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16933888986996
2023-08-30
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/2/Llorca_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16933888986996&mimeType=html&fmt=ahah

References

  1. Takacs L. Chem. Soc. Rev., 2013, 42, (18), 7649 LINK https://doi.org/10.1039/c2cs35442j [Google Scholar]
  2. Baláž P., Achimovičová M., Baláž M., Billik P., Cherkezova-Zheleva Z., Criado J. M., Delogu F., Dutková E., Gaffet E., Gotor F. J., Kumar R., Mitov I., Rojac T., Senna M., Streletskii A., and Wieczorek-Ciurowa K. Chem. Soc. Rev., 2013, 42, (18), 7571 LINK https://doi.org/10.1039/c3cs35468g [Google Scholar]
  3. Rinaudo M. G., Beltrán A. M., Fernández M. A., Cadús L. E., and Morales M. R. Mater. Today Chem., 2020, 17, 100340 LINK https://doi.org/10.1016/j.mtchem.2020.100340 [Google Scholar]
  4. Enayati M. H., and Mohamed F. A. Int. Mater. Rev., 2014, 59, (7), 394 LINK https://doi.org/10.1179/1743280414Y.0000000036 [Google Scholar]
  5. Šepelák V., Düvel A., Wilkening M., Becker K.-D., and Heitjans P. Chem. Soc. Rev., 2013, 42, (18), 7507 LINK https://doi.org/10.1039/c2cs35462d [Google Scholar]
  6. Ardila-Fierro K. J., and Hernández J. G. ChemSusChem, 2021, 14, (10), 2145 LINK https://doi.org/10.1002/cssc.202100478 [Google Scholar]
  7. Iwasaki T. KONA Powder Part. J., 2022, 40, 186 LINK https://doi.org/10.14356/kona.2023014 [Google Scholar]
  8. Amrute A. P., De Bellis J., Felderhoff M., and Schüth F. Chem. Eur. J., 2021, 27, (23), 6819 LINK https://doi.org/10.1002/chem.202004583 [Google Scholar]
  9. Szczȩśniak B., Choma J., and Jaroniec M. Mater. Adv., 2021, 2, (8), 2510 LINK https://doi.org/10.1039/D1MA00073J [Google Scholar]
  10. Do J.-L., and Friščić T. ACS Cent. Sci., 2017, 3, (1), 13 LINK https://doi.org/10.1021/acscentsci.6b00277 [Google Scholar]
  11. Buyanov R. A., Molchanov V. V., and Boldyrev V. V. Catal. Today, 2009, 144, (3–4), 212 LINK https://doi.org/10.1016/j.cattod.2009.02.042 [Google Scholar]
  12. Jiang X., Trunov M. A., Schoenitz M., Dave R. N., and Dreizin E. L. J. Alloys Compd., 2009, 478, (1–2), 246 LINK https://doi.org/10.1016/j.jallcom.2008.12.021 [Google Scholar]
  13. Muñoz-Batista M. J., Rodriguez-Padron D., Puente-Santiago A. R., and Luque R. ACS Sustain. Chem. Eng., 2018, 6, (8), 9530 LINK https://doi.org/10.1021/acssuschemeng.8b01716 [Google Scholar]
  14. Schlem R., Burmeister C. F., Michalowski P., Ohno S., Dewald G. F., Kwade A., and Zeier W. G. Adv. Energy Mater., 2021, 11, (30), 2101022 LINK https://doi.org/10.1002/aenm.202101022 [Google Scholar]
  15. Rainer D. N., and Morris R. E. Dalton Trans., 2021, 50, (26), 8995 LINK https://doi.org/10.1039/D1DT01440D [Google Scholar]
  16. Głowniak S., Szczȩśniak B., Choma J., and Jaroniec M. Mater. Today, 2021, 46, 109 LINK https://doi.org/10.1016/j.mattod.2021.01.008 [Google Scholar]
  17. Thorne M. F., Gómez M. L. R., Bumstead A. M., Li S., and Bennett T. D. Green Chem., 2020, 22, (8), 2505 LINK https://doi.org/10.1039/D0GC00546K [Google Scholar]
  18. Lapshin O., and Ivanova O. Adv. Powder Technol., 2022, 33, (12), 103852 LINK https://doi.org/10.1016/j.apt.2022.103852 [Google Scholar]
  19. Han G.-F., Li F., Chen Z.-W., Coppex C., Kim S.-J., Noh H.-J., Fu Z., Lu Y., Singh C. V., Siahrostami S., Jiang Q., and Baek J.-B. Nat. Nanotechnol., 2021, 16, (3), 325 LINK https://doi.org/10.1038/s41565-020-00809-9 [Google Scholar]
  20. Bolm C., and Hernández J. G. Angew. Chem. Int. Ed., 2019, 58, (11), 3285 LINK https://doi.org/10.1002/anie.201810902 [Google Scholar]
  21. Schreyer H., Eckert R., Immohr S., de Bellis J., Felderhoff M., and Schüth F. Angew. Chem. Int. Ed., 2019, 58, (33), 11262 LINK https://doi.org/10.1002/anie.201903545 [Google Scholar]
  22. Gomes C., Vinagreiro C. S., Damas L., Aquino G., Quaresma J., Chaves C., Pimenta J., Campos J., Pereira M., and Pineiro M. ACS Omega, 2020, 5, (19), 10868 LINK https://doi.org/10.1021/acsomega.0c00521 [Google Scholar]
  23. Bolt R. R. A., Leitch J. A., Jones A. C., Nicholson W. I., and Browne D. L. Chem. Soc. Rev., 2022, 51, (11), 4243 LINK https://doi.org/10.1039/D1CS00657F [Google Scholar]
  24. Casaban J., Zhang Y., Pacheco R., Coney C., Holmes C., Sutherland E., Hamill C., Breen J., James S. L., Tufano D., Wong D., Stavrakakis E., Annath H., and Moore A. Faraday Discuss., 2021, 231, 312 LINK https://doi.org/10.1039/D1FD00025J [Google Scholar]
  25. Fuentes A. F., and Takacs L. J. Mater. Sci., 2013, 48, (2), 598 LINK https://doi.org/10.1007/s10853-012-6909-x [Google Scholar]
  26. Danielis M., Colussi S., de Leitenburg C., Soler L., Llorca J., and Trovarelli A. Angew. Chem. Int. Ed., 2018, 57, (32), 10212 LINK https://doi.org/10.1002/anie.201805929 [Google Scholar]
  27. Chen Y., Soler L., Xie C., Vendrell X., Serafin J., Crespo D., and Llorca J. Appl. Mater. Today, 2020, 21, 100873 LINK https://doi.org/10.1016/j.apmt.2020.100873 [Google Scholar]
  28. Liu Q., Xu Y., Zhao Y., Wang K., Liang C., Zhao S., Wang X., Guo X., Xue N., and Ding W. Adv. Mater. Technol., 2023, 8, (10), 2202007 LINK https://doi.org/10.1002/admt.202202007 [Google Scholar]
  29. Li M., Zhang T., Yang S.-Z., Sun Y., Zhang J., Polo-Garzon F., Siniard K. M., Yu X., Wu Z., Driscoll D. M., Ivanov A. S., Chen H., Yang Z., and Dai S. ACS Catal., 2023, 13, (9), 6114 LINK https://doi.org/10.1021/acscatal.2c05730 [Google Scholar]
  30. Orozco L. F., Nguyen D.-H., Delenne J.-Y., Sornay P., and Radjai F. Powder Technol., 2020, 362, 157 LINK https://doi.org/10.1016/j.powtec.2019.12.014 [Google Scholar]
  31. Feng Y. T., Han K., and Owen D. R. J. Mater. Sci. Eng.: A, 2004, 375–377, 815 LINK https://doi.org/10.1016/j.msea.2003.10.162 [Google Scholar]
  32. Chen W., Dave R. N., Pfeffer R., and Walton O. Powder Technol., 2004, 146, (1–2), 121 LINK https://doi.org/10.1016/j.powtec.2004.07.014 [Google Scholar]
  33. Suryanarayana C. Prog. Mater. Sci., 2001, 46, (1–2), 1 LINK https://doi.org/10.1016/S0079-6425(99)00010-9 [Google Scholar]
  34. Aneggi E., Rico-Perez V., de Leitenburg C., Maschio S., Soler L., Llorca J., and Trovarelli A. Angew. Chem. Int. Ed., 2015, 54, (47), 14040 LINK https://doi.org/10.1002/anie.201507839 [Google Scholar]
  35. Danielis M., Colussi S., de Leitenburg C., Soler L., Llorca J., and Trovarelli A. Catal. Sci. Technol., 2019, 9, (16), 4232 LINK https://doi.org/10.1039/C9CY01098J [Google Scholar]
  36. Rinaudo M. G., Pecchi G., Cadús L. E., and Morales M. R. Ceram. Int., 2023, 49, (11B), 18614 LINK https://doi.org/10.1016/j.ceramint.2023.02.237 [Google Scholar]
  37. Datye A. K., and Votsmeier M. Nat. Mater., 2021, 20, (8), 1049 LINK https://doi.org/10.1038/s41563-020-00805-3 [Google Scholar]
  38. Farrauto R. J., Deeba M., and Alerasool S. Nat. Catal., 2019, 2, (7), 603 LINK https://doi.org/10.1038/s41929-019-0312-9 [Google Scholar]
  39. Morgan C., and Goodwin J. Johnson Matthey Technol. Rev., 2023, 67, (2), 239 LINK https://doi.org/10.1595/205651323X16805977899699 [Google Scholar]
  40. Hagelüken C., Lee-Shin J. U., Carpentier A., and Heron C. Recycling, 2016, 1, (2), 242 LINK https://doi.org/10.3390/recycling1020242 [Google Scholar]
  41. Monai M., Montini T., Gorte R. J., and Fornasiero P. Eur. J. Inorg. Chem., 2018, (25), 2884 LINK https://doi.org/10.1002/ejic.201800326 [Google Scholar]
  42. Benavides P. T., Cronauer D. C., Adom F., Wang Z., and Dunn J. B. Sust. Mater. Technol., 2017, 11, 53 LINK https://doi.org/10.1016/j.susmat.2017.01.002 [Google Scholar]
  43. Kotake N., Kuboki M., Kiya S., and Kanda Y. Adv. Powder Technol., 2011, 22, (1), 86 LINK https://doi.org/10.1016/j.apt.2010.03.015 [Google Scholar]
  44. Chen D., Liu B., Xu W., Zhang C., Guo E., Lu J., Sun G., Pan Y., Zhang J., and Lu X. Adv. Powder Technol., 2022, 33, (11), 103803 LINK https://doi.org/10.1016/j.apt.2022.103803 [Google Scholar]
  45. Goodman E. D., Johnston-Peck A. C., Dietze E. M., Wrasman C. J., Hoffman A. S., Abild-Pedersen F., Bare S. R., Plessow P. N., and Cargnello M. Nat. Catal., 2019, 2, (9), 748 LINK https://doi.org/10.1038/s41929-019-0328-1 [Google Scholar]
  46. Gänzler A. M., Casapu M., Vernoux P., Loridant S., Aires F. J. C. S., Epicier T., Betz B., Hoyer R., and Grunwaldt J.-D. Angew. Chem. Int. Ed., 2017, 56, (42), 13078 LINK https://doi.org/10.1002/anie.201707842 [Google Scholar]
  47. Jeong H., Kwon O., Kim B.-S., Bae J., Shin S., Kim H.-E., Kim J., and Lee H. Nat. Catal., 2020, 3, (4), 368 LINK https://doi.org/10.1038/s41929-020-0427-z [Google Scholar]
  48. Wang H., Liu J.-X., Allard L. F., Lee S., Liu J., Li H., Wang J., Wang J., Oh S. H., Li W., Flytzani-Stephanopoulos M., Shen M., Goldsmith B. R., and Yang M. Nat. Commun., 2019, 10, 3808 LINK https://doi.org/10.1038/s41467-019-11856-9 [Google Scholar]
  49. Hu Y., Li B., Yu C., Fang H., and Li Z. Mater. Today, 2023, 63, 288 LINK https://doi.org/10.1016/j.mattod.2023.01.019 [Google Scholar]
  50. Han G.-F., Li F., Rykov A. I., Im Y.-K., Yu S.-Y., Jeon J.-P., Kim S.-J., Zhou W., Ge R., Ao Z., Shin T. J., Wang J., Jeong H. Y., and Baek J.-B. Nat. Nanotechnol., 2022, 17, (4), 403 LINK https://doi.org/10.1038/s41565-022-01075-7 [Google Scholar]
  51. He X., Deng Y., Zhang Y., He Q., Xiao D., Peng M., Zhao Y., Zhang H., Luo R., Gan T., Ji H., and Ma D. Cell Rep. Phys. Sci., 2020, 1, (1), 100004 LINK https://doi.org/10.1016/j.xcrp.2019.100004 [Google Scholar]
  52. Danielis M., Betancourt L. E., Orozco I., Divins N. J., Llorca J., Rodríguez J. A., Senanayake S. D., Colussi S., and Trovarelli A. Appl. Catal. B: Environ., 2021, 282, 119567 LINK https://doi.org/10.1016/j.apcatb.2020.119567 [Google Scholar]
  53. Chen Y., Soler L., Armengol-Profitós M., Xie C., Crespo D., and Llorca J. Appl. Catal. B: Environ., 2022, 309, 121275 LINK https://doi.org/10.1016/j.apcatb.2022.121275 [Google Scholar]
  54. Raj A. Johnson Matthey Technol. Rev., 2016, 60, (4), 228 LINK https://doi.org/10.1595/205651316X692554 [Google Scholar]
  55. Colussi S., Gayen A., Llorca J., de Leitenburg C., Dolcetti G., and Trovarelli A. Ind. Eng. Chem. Res., 2012, 51, (22), 7510 LINK https://doi.org/10.1021/ie2016625 [Google Scholar]
  56. Colussi S., Gayen A., Camellone M. F., Boaro M., Llorca J., Fabris S., and Trovarelli A. Angew. Chem. Int. Ed., 2009, 48, (45), 8481 LINK https://doi.org/10.1002/anie.200903581 [Google Scholar]
  57. Toso A., Colussi S., Padigapaty S., de Leitenburg C., and Trovarelli A. Appl. Catal. B: Environ., 2018, 230, 237 LINK https://doi.org/10.1016/j.apcatb.2018.02.049 [Google Scholar]
  58. Trovarelli A., Zamar F., Llorca J., de Leitenburg C., Dolcetti G., and Kiss J. T. J. Catal., 1997, 169, (2), 490 LINK https://doi.org/10.1006/jcat.1997.1705 [Google Scholar]
  59. Danielis M., Divins N. J., Llorca J., Soler L., Garcia X., Serrano I., Betancourt L. E., Xu W., Rodríguez J. A., Senanayake S. D., Colussi S., and Trovarelli A. EES. Catal., 2023, 1, (1), 144 LINK https://doi.org/10.1039/D2EY00067A [Google Scholar]
  60. Mussio A., Danielis M., Divins N. J., Llorca J., Colussi S., and Trovarelli A. ACS Appl. Mater. Interfaces, 2021, 13, (27), 31614 LINK https://doi.org/10.1021/acsami.1c05050 [Google Scholar]
  61. Divins N. J., Braga A., Vendrell X., Serrano I., Garcia X., Soler L., Lucentini I., Danielis M., Mussio A., Colussi S., Villar-Garcia I. J., Escudero C., Trovarelli A., and Llorca J. Nat. Commun., 2022, 13, 5080 LINK https://doi.org/10.1038/s41467-022-32765-4 [Google Scholar]
  62. Danielis M., Colussi S., Llorca J., Dolan R. H., Cavataio G., and Trovarelli A. Ind. Eng. Chem. Res., 2021, 60, (18), 6435 LINK https://doi.org/10.1021/acs.iecr.0c05207 [Google Scholar]
  63. Danielis M., Colussi S., de Leitenburg C., and Trovarelli A. Catal. Commun., 2020, 135, 105899 LINK https://doi.org/10.1016/j.catcom.2019.105899 [Google Scholar]
  64. Hellman A., Resta A., Martin N. M., Gustafson J., Trinchero A., Carlsson P.-A., Balmes O., Felici R., van Rijn R., Frenken J. W. M., Andersen J. N., Lundgren E., and Grönbeck H. J. Phys. Chem. Lett., 2012, 3, (6), 678 LINK https://doi.org/10.1021/jz300069s [Google Scholar]
  65. Colussi S., Fornasiero P., and Trovarelli A. Chin. J. Catal., 2020, 41, (6), 938 LINK https://doi.org/10.1016/S1872-2067(19)63510-2 [Google Scholar]
  66. Franken T., Roger M., Petrov A. W., Clark A. H., Agote-Arán M., Krumeich F., Kröcher O., and Ferri D. ACS Catal., 2021, 11, (8), 4870 LINK https://doi.org/10.1021/acscatal.1c00328 [Google Scholar]
  67. Huang W., Goodman E. D., Losch P., and Cargnello M. Ind. Eng. Chem. Res., 2018, 57, (31), 10261 LINK https://doi.org/10.1021/acs.iecr.8b01915 [Google Scholar]
  68. Cargnello M., Jaen J. J. D., Garrido J. C. H., Bakhmutsky K., Montini T., Gamez J. J. C., Gorte R. J., and Fornasiero P. Science, 2012, 337, (6095), 713 LINK https://doi.org/10.1126/science.1222887 [Google Scholar]
  69. Gholami R., Alyani M., and Smith K. Catalysts, 2015, 5, (2), 561 LINK https://doi.org/10.3390/catal5020561 [Google Scholar]
  70. Jiménez J. D., Betancourt L. E., Danielis M., Zhang H., Zhang F., Orozco I., Xu W., Llorca J., Liu P., Trovarelli A., Rodríguez J. A., Colussi S., and Senanayake S. D. ACS Catal., 2022, 12, (20), 12809 LINK https://doi.org/10.1021/acscatal.2c01120 [Google Scholar]
  71. Danielis M., Jiménez J. D., Rui N., Moncada J., Betancourt L. E., Trovarelli A., Rodriguez J. A., Senanayake S. D., and Colussi S. Appl. Catal. A: Gen., 2023, 660, 119185 LINK https://doi.org/10.1016/j.apcata.2023.119185 [Google Scholar]
  72. Toso A., Danielis M., de Leitenburg C., Boaro M., Trovarelli A., and Colussi S. Ind. Eng. Chem. Res., 2022, 61, (9), 3329 LINK https://doi.org/10.1021/acs.iecr.1c04805 [Google Scholar]
  73. Alsalik Y. M., Katsiev K., and Idriss H. J. Phys. Chem. C, 2022, 126, (36), 15184 LINK https://doi.org/10.1021/acs.jpcc.2c04025 [Google Scholar]
  74. Yang R., Fan Y., Zhang Y., Mei L., Zhu R., Qin J., Hu J., Chen Z., Ng Y. H., Voiry D., Li S., Lu Q., Wang Q., Yu J. C., and Zeng Z. Angew. Chem. Int. Ed., 2023, 62, (13), e202218016 LINK https://doi.org/10.1002/anie.202218016 [Google Scholar]
  75. Wang Z., Li C., and Domen K. Chem. Soc. Rev., 2019, 48, (7), 2109 LINK https://doi.org/10.1039/c8cs00542g [Google Scholar]
  76. Ma J., Miao T. J., and Tang J. Chem. Soc. Rev., 2022, 51, (14), 5777 LINK https://doi.org/10.1039/d1cs01164b [Google Scholar]
  77. Matter F., and Niederberger M. Adv. Sci., 2022, 9, (13), 2105363 LINK https://doi.org/10.1002/advs.202105363 [Google Scholar]
  78. Yin S., Yamaki H., Komatsu M., Zhang Q., Wang J., Tang Q., Saito F., and Sato T. Solid State Sci., 2005, 7, (12), 1479 LINK https://doi.org/10.1016/j.solidstatesciences.2005.07.004 [Google Scholar]
  79. Zhang Q., Wang J., Yin S., Sato T., and Saito F. J. Am. Ceram. Soc., 2004, 87, (6), 1161 LINK https://doi.org/10.1111/j.1551-2916.2004.01161.x [Google Scholar]
  80. Zhou Z., Zhang X., Wu Z., and Dong L. Chin. Sci. Bull., 2005, 50, (23), 2691 LINK https://doi.org/10.1007/BF02899637 [Google Scholar]
  81. Umebayashi T., Yamaki T., Tanaka S., and Asai K. Chem. Lett., 2003, 32, (4), 330 LINK https://doi.org/10.1246/cl.2003.330 [Google Scholar]
  82. Tang Y. C., Huang X.-H., Yu H.-Q., and Tang L.-H. Int. J. Photoenergy, 2012, 960726 LINK https://doi.org/10.1155/2012/960726 [Google Scholar]
  83. Ghorai T. K., Chakraborty M., and Pramanik P. J. Alloys Compd., 2011, 509, (32), 8158 LINK https://doi.org/10.1016/j.jallcom.2011.05.069 [Google Scholar]
  84. Subramonian W., Wu T. Y., and Chai S.-P. J. Alloys Compd., 2017, 695, 496 LINK https://doi.org/10.1016/j.jallcom.2016.10.006 [Google Scholar]
  85. Zhu Y., Ling Q., Liu Y., Wang H., and Zhu Y. Phys. Chem. Chem. Phys., 2015, 17, (2), 933 LINK https://doi.org/10.1039/c4cp04628e [Google Scholar]
  86. Ouyang W., Kuna E., Yepez A., Balu A. M., Romero A. A., Colmenares J. C., and Luque R. Nanomaterials, 2016, 6, (5), 93 LINK https://doi.org/10.3390/nano6050093 [Google Scholar]
  87. Marchal C., Behr M., Vigneron F., Caps V., and Keller V. New J. Chem., 2016, 40, (5), 4428 LINK https://doi.org/10.1039/c5nj03053f [Google Scholar]
  88. Marchal C., Piquet A., Behr M., Cottineau T., Papaefthimiou V., Keller V., and Caps V. J. Catal., 2017, 352, 22 LINK https://doi.org/10.1016/j.jcat.2017.04.035 [Google Scholar]
  89. Chen Y., Soler L., Xie C., Vendrell X., Serafin J., Crespo D., and Llorca J. Appl. Mater. Today, 2020, 21, 100873 LINK https://doi.org/10.1016/j.apmt.2020.100873 [Google Scholar]
  90. Pollap A., Serafin J., Serrano I., Srenscek-Nazzal J., and Llorca J. J. Env. Chem. Eng., 2022, 10, (6), 108877 LINK https://doi.org/10.1016/j.jece.2022.108877 [Google Scholar]
  91. Chen Y., Soler L., Armengol-Profitós M., Xie C., Crespo D., and Llorca J. Appl. Catal. B: Environ., 2022, 309, 121275 LINK https://doi.org/10.1016/j.apcatb.2022.121275 [Google Scholar]
  92. Ge S., Chen Y., Guo Y., Llorca J., and Soler L. Appl. Mater. Today, 2023, 33, 101857 LINK https://doi.org/10.1016/j.apmt.2023.101857 [Google Scholar]
  93. Fazlikeshteli S., Vendrell X., and Llorca J. Int. J. Hydrogen Energy, 2023, 48, (32), 12024 LINK https://doi.org/10.1016/j.ijhydene.2022.07.020 [Google Scholar]
  94. Fazlikeshteli S., Vendrell X., and Llorca J. Fuel, 2023, 334, (2), 126799 LINK https://doi.org/10.1016/j.fuel.2022.126799 [Google Scholar]
  95. Fazlikeshteli S., Vendrell X., and Llorca J. Int. J. Hydrogen Energy, 2023, 51, (A), 1494 LINK https://doi.org/10.1016/j.ijhydene.2023.07.349 [Google Scholar]
  96. Braga A., Armengol-Profitós M., Pascua-Solé L., Vendrell X., Soler L., Serrano I., Villar-Garcia I. J., Pérez-Dieste V., Divins N. J., and Llorca J. ACS Appl. Nano Mater., 2023, 6, (9), 7173 LINK https://doi.org/10.1021/acsanm.3c00104 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651323X16933888986996
Loading
/content/journals/10.1595/205651323X16933888986996
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error